The priority of abdominal fat tissue in broiler chickens to identify genes involved in metabolism and fat storage is due to the fact that it can be as a prior model in other species and individuals of a species due to its specific metabolic characteristics [38]. The present study detected a total of 34 common genes that played roles in the main process of synthesis route control, metabolism and fat storage, and signaling pathways of endocrine glands activated by adipokines, AMPK and PPAR.
The lower expression of a large number of genes associated with the lipolysis indicated a reduction in decomposition of fats and then an increase in the anabolism and fat storage in broiler chickens, especially in abdominal fat tissue. On the contrary, the higher expression of a large number of genes in the gene set associated with the lipogenesis confirms the increase in metabolism and abdominal fat storage.
Chickens with greater abdominal fat had hyperplasia and hypertrophy of fat cells at younger ages compared to chickens with lower abdominal fat. SREBF1, SREBF2, SCD, FASN and THRSPA were among the most important genes that play major roles in fat storage and metabolism [10]. Hub genes in this study were APP, SREBF1, HMGCR, FADS2, SCD, ACAT1, FASN, HADHB and EHHADH (Fig. 2).
APP gene is a cell surface receptor and an extra-membrane precursor protein that is decomposed by enzymes to form a number of peptides. Some of these peptides are secreted and can be bound to an acetyl transferase complex APBB1/TIP60 to strengthen the transcription activities, while other proteins create amyloid plaques in brains of patients with Alzheimer's disease [39]. It enhances the transcription through binding to APBB1/KAT5, and inhibits Notch signals through interaction with Numb.
Sterol regulatory element-binding transcription factor 1 (SREBF1) is a protein encoding gene. Fatty liver disease is a SREBF1 gene-related disease; and mTOR signaling pathway is a pathway associated with SREBF1. Annotation of this gene includes the DNA and chromatin binding transcription factor activity and it regulates the rate of transcription of the LDL receptor gene, Fatty acid and the cholesterol synthesis pathway to a lesser extent.
HMGCR or 3-hydroxy-3-methylglutaryl coenzyme A reductase is a protein encoding. The Terpenoid backbone biosynthesis pathway is a pathway associated with this gene [40].
Fatty acid desaturase 2 (FADS2) is a protein-encoding gene with pathways such as fatty acid beta-oxidation (peroxisome) and Alpha-linolenic acid metabolism. This gene is a part of the lipid metabolic pathway that catalyzes the biosynthesis of unsaturated fatty acids from unsaturated fatty acids of linoleic acid (18: 2n-6) and linolenic acid (18: 3n-3) [41].
Stearoyl-coenzyme a desaturase (SCD) encodes the enzyme that is involved in the biosynthesis of fatty acids, so that it is first responsible for the synthesis of oleic acid. Its produced protein belongs to the desaturase fatty acid family [42].
ACAT1 (Acetyl-Coenzyme A acetyltransferase 1) is a protein-encoding gene that involved in metabolic pathways of ketone body metabolism and the Terpenoid backbone biosynthesis. The gene plays a key role in the ketone body metabolism [43].
FASN (Fatty acid synthase) is a protein-encoding gene with pathways such as the metabolism of water-soluble vitamins and cofactors as well as the enzymatic complex pathway of AMPK.
Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme Complex Subunit Beta (HADHB) is a protein-encoding gene with pathways such as beta-oxidation of mitochondrial fatty acids and biosynthesis of glycerophospholipids [44].
EHHADH (Enoyl-CoA Hydratase And 3-Hydroxyacyl CoA Dehydrogenase) is a protein encoding gene with pathways such as PPAR alpha pathway and propanoate metabolism. The gene annotation includes the binding of signaling receptors and oxidoreductase activity [45]. Given the ontology expression and functions of important and main genes in the network of genes interactions, it can be stated that these genes are the main genes in the metabolism and fat storage as well as the signaling pathways of endocrine glands, especially AMPK and PPAR signaling pathways.
In Fig. 3, green quadrilateral nodes representing the genes with the highest interaction in the network are the main candidates in lipid metabolism and storage and play roles in the list of desired gene (reference), metabolic and signaling pathways. The genes with the highest repression levels include THBS1, SIK1, COLEC12, and BACE1 respectively.
A combined biological system approach is used to detect metabolic and signaling pathways associated with the interactive bipartite network of Gene-miRNA in the process of fat storage and metabolism of broiler chicken. Fat stored in the skeletal muscles plays roles in important metabolic processes such as immune function, food consumption, hormone sensitivity and relevant signaling pathways [46].
In module 1, gga-miR-1710 suppress HMGCR Gene. gga-miR-1710 has an expression reduction. Its target gene represents the increased expression in higher abdominal fat tissue compared to lower abdominal fat tissue. The gene is classified into a set of genes associated with the lipolysis process. Therefore, reducing expression of gga-miR-1710 and increased gene expression of HMGCR lead to the lipolysis process, thereby reducing the abdominal fat. HMG‑CoA reductase protein-encoding gene is the cholesterol synthesis limiting enzyme that regulates the product of catalyzed reaction by reductase through a negative feedback mechanism by sterols and non-sterol metabolites derived from mevalonate. The enzyme in mammalian cells is usually suppressed by cholesterol derived from the construction and destruction of low-density lipoprotein (LDL) through the LDL receptor [40].
SCD gene indicates the higher expression in larger abdominal fat tissue compared to the lower abdominal fat tissue. SCD gene is put into the set of genes associated with the lipogenesis process. Therefore, increasing the SCD gene expression raises the amount of fat storage in the body, especially in abdominal part. SCD gene (Stearoyl-coenzyme A desaturase) is a protein-encoding gene with pathways including adipogenesis and angiopoietin such as the protein 8 regulatory pathway. It also plays an important role in the lipid biosynthesis and regulating the expression of genes in the mitochondrial fatty acid oxidation and lipogenesis cycle [47].
gga-miR-6554-5p suppress the IRS1 gene. This miRNA has higher expression; and its target gene shows a lower expression in greater abdominal fat tissue compared to the lower abdominal fat tissue. IRS1 gene is among the set of genes associated with the lipolysis process. Therefore, increasing expression of gga-miR-6554-5p miRNA decreases the IRS1 gene expression, thereby reducing the amount of fat catabolism and increasing the abdominal fat storage and anabolism. IRS1 gene encodes a protein that is phosphorylated by insulin receptor tyrosine kinase. Mutations in the gene are associated with type 2 diabetes and insulin resistance [48].
SREBF1 gene shows the higher expression in greater abdominal fat tissue compared to the lower abdominal fat tissue. The gene is among the set of genes associated with lipogenesis process. The higher SREBF1 gene expression increases the abdominal fat storage and anabolism. SREBF1 gene encodes the Helix-Loop-Helix-Leucine Zipper (bHLH-Zip) that binds the sterol-1 regulator. It is also found in the promoter for low density lipoprotein receptor gene and other genes in the sterol biosynthesis [49].
In this module, HMGCR gene is suppressed by miRNAs. The gene is associated with the lipolysis process. Therefore, its suppression can prevent the fat tissue catabolism and lead to the higher fat storage and anabolism in abdominal fat tissue of broiler chickens. In this module, there are six genes, namely HMGCR, SREBF1, SCD, FASN, HADHB and ACAT1 with certain color (green) and have the highest interaction with other genes involved in the module. The enzyme which is encoded by FASN gene is a multi-functional protein. Its main function is the canalization of the synthesis of Palmitate from Acetyl-CoA and Malonyl-CoA in the presence of NADPH to long-chain saturated fatty acids. ACAT1 gene encodes a topical mitochondrial enzyme that catalyzes the reversible form of Acetoacetyl CoA from two acetyl CoA molecules. HADHB Gene is responsible for encoding the beta subunit of mitochondrial function protein and catalyzes three final three stages of the mitochondrial beta-oxidation process of long-chain fatty acids [44].
The gene set of this module, as presented in Table 3, encodes signaling pathways AMPK and PPAR as well as metabolic pathways of fatty acid synthase, unsaturated fatty acid synthase, and cholesterol metabolism pathways. Therefore, it can be concluded that the module and genes involved in the process can be functional modules associated with abdominal fat metabolism and storage in broiler chickens.
The receptor increases the insulin-mediated glucose uptake and improves the blood lipid profile by regulating the lipid metabolism, glucose, and free fatty acid oxidation [50]. Target genes of peroxisome proliferator-activated receptors are related to several proteins that are necessary for absorption, intercellular transfer, and beta-oxidation of fatty acids, while they include Fatty acid transport protein, Fatty Acid Translocase enzyme, and synthase enzyme involved in the production of acetyl CoA (for long-chain fatty acids) and Carnitine palmitoyltransferase I [51]. Peroxisome proliferator-activated receptors play roles in the regulation of the gene transcription process (P2) of fat cells, so that the lean and fat-free meat can be produced by manipulation of the differentiation of fat tissue cells and their fat content through these receptors.
The cellular response to insulin includes the regulation of blood sugar levels by increasing the glucose uptake in muscles and fat tissues in a way that energy reserves in fat tissue, liver and muscles increase by stimulating the lipogenesis, glycogen synthesis, and protein synthesis. Insulin signaling pathway decreases the glucose production by the liver and the total inhibition of energy stored through lipolysis, glycogenolysis and breakdown of proteins. This pathway also acts as a growth factor and stimulates the cell growth, differentiation and survival [52]. The insulin signaling pathway is an important biochemical pathway that regulates some basic biological functions such as glucose and lipid metabolism, synthesis of proteins, cell proliferation and differentiation, and apoptosis [53].
Signaling pathway of Phosphatidylinositol (PI3K)/ Protein Kinase B (Act) is involved in the regulation of many physiological cell processes by activating effective cross-downstream molecules that play important roles in the cellular cycle, growth and proliferation [54].
Mammalian Target of Rapamycin (mTOR) signaling pathway has both internal and external signals and acts as a main regulator of cellular metabolism, growth, proliferation, and survival. Exploration carried out over the past decade indicates that the mTOR signaling pathway is activated in various cellular processes such as tumor formation and angiogenesis, insulin resistance, lipid metabolism, and lymphocyte T activation, and is regulated in human diseases such as cancer and type 2 diabetes [55].
In module 2, APP gene plays the main role. The gene is suppressed by gga-miR-6554-5p. gga-miR-6554-5p represents the up-regulation; and its target gene represents the down-regulation in greater abdominal fat tissue compared to the lower abdominal fat tissue. APP gene is a set of genes associated with the lipolysis process. Therefore its repression by miRNAs in humans is necessary. In poultry, its lower expression is equivalent to a decrease in abdominal fat; and a decrease in body fat is equivalent to an increase in proliferation performance and other functional traits. Increased body weight or obesity caused by increased body fat storage is characterized by excessive accumulation of fat in the body and increased levels of adipokines and inflammatory cytokines. This indicates an increased risk of Alzheimer's disease, type 2 diabetes, and cardiovascular diseases. It has been recently found that the gene expression level of APP increases as brain tissue fat and the fat storage tissues increase in the body [56].
gga-miR-6554-5p and gga-miR-466 miRNAs suppress BACE1 gene. These two miRNAs represent the up-regulation and their target genes indicate the down-regulation in greater abdominal fat tissue compared to lower abdominal fat tissue. BACE1 gene encodes an enzyme that cuts the amyloid precursor protein (APP) and produces Amyloid beta peptides that cause amyloid plaque in brains of patients with Alzheimer's [57, 58]. BACE2 is an important paralog of this gene.
gga-miR-6562-5p and gga-miR-3532-5p suppress the PSEN1 gene. These two miRNAs indicate the up-regulation; and their target gene indicates the down-regulation in the greater abdominal fat tissue compared to the lower abdominal fat tissue. PSEN1 encodes a protein that is called Presenilin 1. Presenilins are APP regulators according to their effects on gamma secretase as APP-decomposing enzymes [59].
PSEN2 gene, which has about 67% of similarity to PSEN1 gene, was identified after PSEN1 gene. PSEN2 gene indicated a lower expression in greater abdominal fat tissue compared to the lower abdominal fat tissue. PSEN2 gene is a protein encoding gene with associated diseases such as Alzheimer's disease and heart muscle diseases. It encodes the intermediate signaling Presenilin and Wnt/ Hedgehog/Notch pathways [60].
gga-miR-3532-3p suppress BACE2 Gene. The miRNAs indicate the up-regulation; and their target gene, BACE2, indicates the low expression in greater abdominal fat tissue compared to lower abdominal fat tissue. BACE2 gene encodes a full membrane glycoprotein that is known as an Aspartic protease [61].
Five genes are involved in this module that is associated with the pathway of Alzheimer's disease. This module and its involved genes encode the Notch signaling pathway and metabolic pathway of Alzheimer's disease. Five genes involved in the module indicated the low expression in fat tissue in greater abdominal fat tissue compared to lower abdominal fat tissue. APP gene plays roles in the lipolysis process; and BACE1, BACE2, PSEN1 and PSEN2 genes play roles in the lipogenesis process. In this module, the lower APP gene expression and lower expression of other genes in the process of lipolysis reduce the fat accumulation, and thus reduce the risk of Alzheimer's disease. If amounts of fat stored in the body increases, it leads to the higher expression of BACE1, BACE2, PSEN1 and PSEN2 genes, especially BACE1 genes, thereby leading to breakage of the protein encoded by APP gene and creation of conditions for development of Alzheimer's disease.
Nutrition of unsaturated fatty acids can play a significant role in reducing Alzheimer's disease. A study indicated that metabolisms of unsaturated fatty acids are significantly regulated in brains of patients with different degrees of Alzheimer's pathology [62]. Another study indicated that the high intake of unsaturated fats could have a protective role against Alzheimer's disease, while the consumption of saturated or trans-unsaturated fats increases the risk of developing Alzheimer's disease [63].
In module 3, MVD gene indicated the higher expression in the greater abdominal fat tissue compared to the lower abdominal fat tissue. MVD gene is a set of genes associated with the lipogenesis process. This gene encodes a Mevalonate diphosphate decarboxylase (MVD) enzyme. Its related pathways include the protein metabolism and synthesis of available substrates in the biosynthesis of N-glycans. DHCR7 gene is another important gene of this module, indicating the higher expression in the greater abdominal fat tissue compared to the lower abdominal fat tissue. DHCR7 or 7-dehydrocholesterol reductase is a protein-encoding gene that plays role in eliminating an enzyme that creates a double bond of C (7–8) in loop B of Sterol and catalyzes the conversion of 7-dehydrocholesterol to cholesterol. Cholesterol I biosynthesis and vitamin D metabolism are its associated pathways. TM7SF2 gene is an important paralog of this gene [www.genecards.org, 64].
ACAT1 gene is another important gene in this module indicating the low expression in greater abdominal fat tissue compared to the lower abdominal fat tissue. This gene catalyzes Acetoacetyl CoA using two acetyl coenzyme A molecules [43].
Given the roles of three main genes involved in the structure of this module as well as using the online database, this module encodes metabolic pathways of cholesterol metabolism and the metabolism of fatty acids.
In the Notch signaling pathway, Notch receptor is phosphorylated and it activates NICD gene in collaboration with PSEN1 gene as a γ-secretase complex. Inside the cell nucleus, this gene encodes the sequence of FABP7 gene and triggers the construction of FABP7 mRNA by cooperation with RBPJ/CBF1 complex. FABP gene is activated by two phosphorylated receptors, called FATP and FATCDB6, in the cell membrane. Thereafter, three signaling complexes, ، and, are activated. These signaling pathways encode genes relating to the fat storage and metabolism in the cell nucleus. These complexes in the nucleus are related to Lipid transport, Lipogenesis, Cholesterol metabolism, and Fatty acid oxidation, leading to the process of lipid metabolism by transcription and translation of the genes. In the signaling path of PPAR, complex is associated with the insulin-related signaling pathway through the phosphorylated mTORC1 gene in the mTOR pathway. The phosphorylation of this gene results in activation of complex. AMPK signaling pathway is also associated with mTORC1 gene and has an inhibitory effect, in a way that the AMPK pathway prevents the phosphorylation of mTORC1 gene, so that complex is not activated; and the lipid metabolism process (e.g. lipogenesis, cholesterol and oxidation metabolisms) is not performed. Two signaling pathways, PPAR (the main pathway of lipid metabolism) and AMPK (the main pathway of cellular energy exchanges), are important in this metabolic-signaling network. These two signaling pathways control each other by mTORC1 gene in the mTOR signaling path, so that increasing or decreasing the intracellular energy levels of AMPK signaling pathway with an inhibitory or activating effect on mTORC1 gene can cause anabolism or catabolism of lipids in cells (Fig. 7).
According to the ontology and functions of genes, which encode two signaling pathways, AMPK and PPAR, these two pathways are the main pathways of cellular energy exchange and lipid metabolism respectively.
Peroxisome proliferator-activated receptors (PPARs) are transcription factors belonging to the nuclear receptor superfamily, and they are activated by long-chain unsaturated fatty acids with several double bonds, eicosanoids, and lipid-lowering agents such as fibrates. Among the unsaturated fatty acids with and double bonds, Eicosapentaenoic Acid (EPA) and Docosahexaenoic acid have been widely studied because of their ability to activate peroxisome proliferator-activated receptors (PPARs). The expression profile of in different organs of poultry is largely similar to mammals, in such a way that it expresses similar functions of in poultry and mammals. Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that are activate by fatty acids and their derivatives. Each of them is encoded in a separate gene and bind fatty acids and eicosanoids. Ligand property of PPAR-RXR heterodimers for fatty acids causes the binding of these heterodimers to "Specific Receptor Elements" in the promoter region of several genes and changes the transcription of downstream genes involved in immune processes, lipid metabolism, and cholesterol metabolism [65].
AMP-activated protein kinase (AMPK) is a serine/threonine kinase that has a high protective system. The AMPK system acts as a cellular energy sensor. When AMPK s activated, it simultaneously inhibits the energy consumption in biosynthetic pathways, such as protein, fatty acids, and glycogen synthesis and activates the catabolic pathways (breakdown) of ATP production, including the fatty acid oxidation and glycolysis [66]. The reduced regulation of liver AMPK activity plays a pathophysiological role in lipid metabolic disorders. However, the signaling pathway of AMPK for regulation of cellular energy balance is essential for the lipid metabolism, so that the pathway activates the catabolism of fat in the shortage of energy in the cell to provide the necessary rate of ATP. Therefore, the AMP-activated protein kinase (AMPK) is a main regulator of cell metabolism and metabolism organ in eukaryotes and it is activated by lowering the intra-cellular ATP level. AMPK plays an important role in the growth regulation and re-planning of cell metabolism [67].