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Abstract: 
Progressive dysfunction of mitochondria, organelles responsible for energy provision to cells, 

is a major hallmark of ageing. How the dysfunction steadily accrues over a lifetime remains 

unclear, given the transient nature of free radical damage and the high turnover of 

mitochondria. Here, we leveraged whole-genome sequencing data from single-cell derived 

foetal and adult haematopoietic stem/progenitor cell colonies to study the clonal dynamics of 

turnover and selection in mitochondrial genomes throughout life. We found that genetic drift 

and independent convergence of mitochondrial mutations complicate their use as lineage 

marks in single-cell sequencing experiments. Point mutations accrued linearly with age at an 

average rate of 0.007 mutations/genome/year. Using the distribution of mtDNA allele 

frequencies with age, we infer that a cell’s complement of mitochondrial genomes is replicated 

every 4-19 weeks in adults, with faster turnover rates during foetal development. Clock-like 

accumulation of mutations coupled with rapid turnover induces complex evolutionary 

dynamics in mitochondria as individuals age. Nonsense mutations are disadvantageous 

regardless of their heteroplasmy level. Missense variants, however, are positively selected at 

low heteroplasmy but negatively selected at high heteroplasmy, suggesting that some 

mutations improve fitness of individual mitochondria, even though fitness of the whole cell 

deteriorates if their expansion proceeds too far. Thus, age-related decline in mitochondrial 

function can arise from preferential cellular accumulation of selfish mitochondrial clones whose 

superior fitness ultimately disadvantages the host cell.   
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Main text: 

 

Introduction 

Mitochondria have a codependent relationship with eukaryotic cells, being responsible for the 

regulation of the Krebs cycle and oxidative phosphorylation1. They have maintained their own 

genome, which in humans is ~16.6kb in size, typically present at 1,000–10,000 copies in each 

cell. The numbers of mitochondria in a cell increase (mitochondrial fission) or decrease 

(mitophagy, mitochondrial fusion) throughout the cell cycle – at mitosis, mitochondria, and 

therefore their genomes, then assort to the two daughter cells2. Drift of mitochondrial clones 

over time can arise from uneven partitioning of mitochondria between daughter cells at cell 

division (known as vegetative segregation) or through uneven turnover outside cell division 

(termed relaxed replication), the latter occurring even in post-mitotic cells3. Mutations in 

individual copies of the mitochondrial genome may be acquired somatically, predominantly 

arising through errors during replication of mitochondrial DNA (mtDNA)4, reported to be 10-

100-fold higher than that of the nuclear genome5–8. The high mutation rates of mtDNA, coupled 

with the complex dynamics of mitochondrial turnover, mean that a given mutation may be 

present in all mtDNA copies of the cell (homoplasmy), or in a subset (heteroplasmy), with 

heteroplasmic variants being subject to genetic drift and selection. 

 

Mitochondrial dysfunction is a major hallmark of ageing in humans and other species, 

associated with decreased efficiency of the respiratory chain9. Reactive oxygen species 

produced by the electron transport chain directly damage mitochondria, but have a half-life 

measured in milliseconds. To produce age-related deterioration of mitochondrial function, 

accumulating over decades, such damage must cause long-term, heritable changes in the 

cell, especially given the active destruction and replenishment of mitochondria in all cells. 

Several hypotheses for the nature of these long-term changes have been advanced – reactive 

oxygen species may elicit long-lived, progressive cellular responses that lead to age-related 

deterioration10; oxidative stress at low levels may induce cellular defence mechanisms that 

are initially adaptive but at higher levels contribute to cellular damage and ageing (so-called 

mitohormesis)11; mitochondria with mutations that slow the respiratory chain may expand 

within a cell, leading to cumulative dysfunction12. 

 

Germline mitochondrial mutations, inherited through the maternal oocyte, cause human 

diseases, with >100 mtDNA single nucleotide variants (SNVs) identified in clinical disorders, 

together affecting ~1 in 8,000 individuals13. Due to the high functional percentage of the 

mitochondrial genome, with 13 protein coding, 22 tRNA and 2 rRNA genes, many variants 

could be subject to selective pressures14 and, as a result, the dynamics of heteroplasmic drift 

and selection have been thoroughly investigated for germline mtDNA variants15–17. Recent 

large-scale sequencing studies have investigated the patterns of heteroplasmic mutations in 

kinships18 as well as across a broad variety of sample sources in health and disease19, aiming 

to understand the transmission to offspring and their prevalence in the population.  

 

Mutations in mtDNA may also accumulate somatically, evidenced by studies in either normal 

somatic tissues20–22 or in cancers4,23–25. These studies have demonstrated a progressive 

accumulation of somatic mitochondrial mutations with age, occurring with the same distinctive 

mutational spectrum as observed in the germline and suggesting complex dynamics of 

positive and negative selection on individual variants. However, the estimates and analyses 

described in these studies rely on assessments in bulk tissues, which typically demonstrate a 
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polyclonal mix of cells – this has the difficulty that heteroplasmy levels in individual clones 

cannot be measured accurately, making inference of drift dynamics challenging. To be able to 

investigate the true degree of somatic mutation, drift and selection, analyses at the level of 

individual cells or clones are necessary. 

 

Recently, we published large-scale genomic studies of single haematopoietic stem and 

progenitor cells (HSPCs)26,27. Here, using these data, we combined whole-genome sequences 

from 4,217 colonies across 12 subjects, leveraging the unprecedented resolution enabled by 

single-cell-derived colonies to quantify clone-specific rates of mitochondrial somatic mutation, 

turnover, drift and selection. We demonstrate 270-fold higher rates of somatic mutation in 

mtDNA than the nuclear genome; a rapid rate of mitochondrial genome turnover every 4-19 

weeks; and antagonistic selection pressures acting at the levels of individual mitochondria 

versus the whole somatic cell. Together, these forces shape the evolution of mitochondrial 

genomes over the human lifespan, explaining how decline in mitochondrial function can both 

progressively accumulate with age and be heritable from mother to daughter cell. 
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Results 

The dataset comprises whole-genome sequencing (WGS) data from 4,217 single HSC/HPC-

derived colonies of 12 haematopoietically normal individuals: two foetuses (8 and 18 post-

conception weeks [pcw])27, two neonates, and eight adults26 (Supplementary Table 1). In brief, 

HSCs/MPPs were isolated from multiple anatomical locations and cultured on cytokine-

supplemented medium. Genomes were sequenced to a mean nuclear genome coverage of 

14.6×, enabling somatic mutation calling from the nuclear genome with established variant-

calling algorithms28,29.  

 

SNVs in the nuclear genome were used to construct high-confidence phylogenetic trees, 

which were stable across phylogeny-building algorithms and bootstrapping approaches26,27. 

The mitochondrial genome was represented at high coverage across all samples, with mean 

coverage of 6,008x and >99% of samples achieving >1,000× (Extended Data Fig. 1a). 

Although we observed uneven coverage at some positions in the mitochondrial genome, the 

median coverage was consistently over 1000× at all positions enabling reliable somatic 

mutation calling (Extended Data Fig. 1b). 

 

Mitochondrial copy number and point mutations throughout life 

We inferred the average mtDNA copy number (CN) in each colony, using the ratio of 

mitochondrial to nuclear genome coverage4,25,30. This revealed consistent median values 

between individuals (range of median: 192-896), with no age correlation (Fig. 1a, Extended 

Data Fig. 1c; Supplementary Table 2). However, we observed broad within-individual 

variation, reflected by a log-normal distribution. These differences were related to cellular 

composition of colonies (erythroid, myeloid or monocytic), with monocytic or myelomonocytic 

colonies having 2.5-fold higher CN values than erythroid colonies on average (Fig. 1b; 

Supplementary Table 3). In keeping with this, white cells have previously been demonstrated 

to influence mtDNA CN measurements in peripheral blood31. No robust phylogenetic signal 

for CN was evident after correction for multiple hypothesis testing (Extended Data Fig. 1d). 

 

We identified potential somatic mutations in the mitochondrial genome using a site-specific 

error model, removing artefacts arising from sample contamination or mis-mapping of reads 

from the nuclear genome (Extended Data Fig. 1e). Previous studies of mitochondrial mutations 

have been limited to variant allele fractions (VAFs) >1% 4,25,32, but the high coverage of mtDNA 

and single-cell origin of colonies in our study meant that calling of variants with lower VAFs 

was possible. The consistency of the mutational signature in mitochondria across individuals, 

with a predominance of C>T and T>C transitions and significant heavy-/light-chain strand bias, 

as previously described, enabled the precise assessment of true somatic variants using 

signature decomposition (Extended Data Fig. 2a: ‘N1’)4,25,33. Reassuringly, mutations 

attributable to this characteristic signature were evident down to 0.1% VAF, suggesting that 

variants at very low heteroplasmy can be identified. All other mutational signatures identified 

were strongly enriched at very low VAFs, suggesting they are signatures of sequencing and 

amplification errors (Extended Data Fig. 2a-b). For this reason, the final dataset of mtDNA 

point mutations comprises the 9,200 mutations for which the assigned signature was the 

canonical ‘N1’ signature.  

 

We estimated the average number of mutations per individual copy of the mitochondrial 

genome for each colony, calculated as the sum of VAFs of mtDNA mutations for that colony 

(Fig. 1c). Interestingly, within a given individual, there was broad variation in mutation burden, 
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mirroring observations for the CN variation, evenly following a log-normal distribution. There 

was a gradual increase in mean mutation burden per mitochondrial genome with age 

(p=4.7×10-9, R2 = 0.97, linear regression; Fig. 1d). Low VAF mutations were present in most 

colonies even at birth (64% in cord blood), while homoplasmic mutations were rare until old 

age (<6% below 40 years of age, ~20% by 75-80 years) (Fig. 1e).  
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Fig. 1| Genomic variation in the mitochondrial genome throughout life. a, Mitochondrial copy 

number (log10, y-axis) across all samples per patient (x-axis). Patients have been ordered by increased 

age. Horizontal red line indicates the median copy number across all samples within a patient annotated 

above. b, Mitochondrial copy number (y-axis) for each HSC-derived colony where the colony cell type 

composition was available. c, Mitochondrial mutation burden represented as the sum of variant allele 

fraction (VAF) across all samples per patient. Patients are ordered by increasing age. d, Correlation 

between median mitochondrial mutation burden (y-axis) and age (x-axis). The black line highlights a 

linear regression with gray boundaries indicating the standard error. Each dot is coloured according to 

the patient identity. e, Proportion (y-axis) of samples per patient with at least 1 mutation at a VAF higher 

than our detection limit. The x-axis indicates the VAF level of a respective mutation. (Ery - Erythroid, 

Gran - Granulocytic, EryMy - Erythroid/ myeloid, MyGran - Myeloid/ Granulocytic, MyMono - Myeloid/ 

Monocytic, Mono - Monocytic, NKMy - Natural Killer/ Myeloid)  
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Evidence of negative and positive selection in mitochondria 

To measure selection acting on the mitochondrial genome, we calculated dN/dS ratios, while 

accounting for the trinucleotide spectrum and replication strand asymmetry of mtDNA34 (Fig. 

2a; Extended Data Fig. 3a-b; Supplementary Table 4). dN/dS is a normalised ratio of non-

synonymous to synonymous mutations such that a score of 1.0 represents overall neutrality 

(or exact balance between positive and negative selection), whereas a ratio <1.0 suggests an 

excess of negative selection over positive selection and vice versa for dN/dS >1.0. We found 

strong negative selection on nonsense mutations across all age groups with dN/dS ratios 

consistently close to 0, compatible with rapid elimination of mitochondrial genomes containing 

protein-truncating mutations. In contrast, for missense mutations, we found low dN/dS ratios 

in cord blood (dN/dS=0.5, CI95%=0.4-0.6), but high ratios in adult blood (dN/dS=1.2, CI95%=1.1-

1.3; Fig. 2a). Notably, when looking at gene-level dN/dS estimates for adult and cord blood 

respectively, MT-CO1, MT-ND1 and MT-ND4 demonstrated significant positive selection 

across missense mutations, while MT-CYB, MT-ND3 and MT-ND4 showed significant 

negative selection (q≤0.05, Extended Data Fig. 3c).  

 

To evaluate these findings further, we repeated the dN/dS analysis splitting SNVs into distinct 

heteroplasmy groups in the adult blood samples and excluding very low VAF (<1%) variants 

(Fig. 2b-c; Extended Data Fig. 3b). While we found consistent negative selection on nonsense 

mutations at all VAF levels (dN/dS<1), our results for missense mutations showed positive 

selection on low VAF mutations (1-5%: dN/dS=1.4, CI95%=1.2-1.6), which progressively 

declined with increasing VAF, only to show negative selection at high heteroplasmy levels 

(≥50%: dN/dS=0.8, CI95%=0.7-1.0). This signal could not be attributed to any particular gene 

in the mitochondrial genome and was spread across many genes (Fig. 2d).  

 

Taken together, these data suggest that some missense mutations improve the fitness of 

individual mitochondria but become deleterious to the fitness of the whole cell as they 

approach homoplasmy – evidence of antagonistic selection landscapes at the scale of 

organelles versus the scale of cells.  
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Fig. 2| Functional somatic mutations in the mitochondrial genome. a, Mitochondrial genome-wide 

dN/dS ratio for missense and nonsense mutations in the overarching age groups. Asterisks highlight 

dN/dS ratios where the confidence intervals from dndscv were infinitive. b, Boxplots highlighting the 

variant allele fraction (y-axis) of all mutations per mutation type (x-axis) across age groups. Statistical 

annotations denote the results of a Wilcoxon rank sum test using synonymous mutations as a reference. 

Of note, the 8pcw fetus did not have truncating mutations therefore not showing any data for this 

mutation type. c, Mitochondrial genome-wide dN/dS ratio for missense and nonsense mutations of 

specific VAF levels in the adult blood. d, Gene-level dN/dS ratios for missense and nonsense mutations 

for all coding mitochondrial genes on the heavy strand across VAF levels. Note that MT-ND6 is on the 

light strand and was not considered for this analysis. Only point estimates which have a significant q-

value as provided by dndscv (q-value ≤ 0.05) are highlighted in cells. 

 

Heteroplasmic mtDNA mutations in the oocyte 

Heteroplasmic mtDNA mutations may be inherited from the mother if present in the oocyte. If 

deleterious, such mutations have the potential to cause disease in offspring, even if present 

at benign levels in the mother35, and dramatic shifts in mutation heteroplasmy from mother to 

child have been observed15,36,37. Previous studies have found no more than 2 variants in any 

one oocyte, although their sensitivity to detect mutations was restricted to VAFs >1-2% 38,39. 

Given that oocytes have several hundred thousand copies of the mitochondrial genome3, this 

means mutations must be present in >1,000 mtDNA molecules to have a chance of detection. 

The frequency of variants below this threshold is unknown. We reasoned that the foetal and 

cord blood somatic phylogenies provide a sensitive way to detect such mutations, even if 

present at low VAFs in the oocyte, since low VAF variants may drift up to detectable levels in 

some lineages, and the phylogenetic relationships of mutation-positive samples would imply 

their origin in the oocyte. 

 

Across the four foetal/neonatal phylogenies, we found strong evidence for 21 heteroplasmic 

mutations that were likely present in the oocyte (range: 1-8 per individual, mean=5.25; Fig. 3). 

For each mutation, the most recent common ancestor (MRCA) of colonies with that mutation 

was the zygote, with most demonstrating significant phylogenetic signal. Independent 
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acquisition of the same mutation in different somatic lineages is unlikely at this early stage of 

life given the low mutation burdens overall. In all cases, the mutation was present in ≥2 

samples and had drifted up to a VAF >1% in at least one of these, although the mean VAF 

across all samples was generally low (range: 0.01%-3.9%, median: 0.25%). The mean VAF 

represents the maximum likelihood value for the heteroplasmy level in the oocyte, and would 

therefore have been below the 1% detection threshold of previous studies for 16/21 mutations. 

These results suggest that low-level heteroplasmic mutations in the oocyte may be more 

common than previously appreciated. 

Fig. 3| Heteroplasmic mutations during early development. a-d, Bar plots below the phylogenetic 

trees for the 8pcw foetal (a), 18pcw foetal (b), CB001 cord blood (c) and CB002 cord blood (d) samples, 

showing the VAF for shared mutations (present at >1% VAF in >1 sample) across samples. Printed 

below each bar plot are the maximum mutation VAF, the mean VAF across all samples and the p-value 

for the Cmean measure of phylogenetic signal. The phylogeny illustrates the clonal relationships 

between samples. Only shared mutations for which the inferred MRCA was the zygote are depicted, 

with the exception of the highly asymmetric 18pcw phylogeny, for which the depicted mutation has an 

inferred MRCA of the 2-cell stage embryo. The red box highlights a known pathogenic mutation 
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associated with chronic progressive external ophthalmoplegia. pcw, post-conception weeks; MRCA, 

most recent common ancestor; VAF, variant allele fraction. 

 

Inferring heteroplasmic drift from VAF distributions 

The rate at which the heteroplasmy of mtDNA mutations drifts up or down is currently unknown 

in vivo in human somatic lineages. We found that the VAF distribution of mtDNA somatic 

mutations changes with increasing age (Fig. 4a), and reasoned that the rate of heteroplasmic 

drift within HSCs could therefore be estimated. We modelled drift using a Wright-Fisher (WF) 

population model4,40 in which mutations were introduced into a population at a fixed rate per 

mitochondrial genome per generation, and allowed to drift over subsequent generations. Drift 

rates are determined by the effective population size (number of mitochondrial copies) 

multiplied by the generation time (time to replicate the population), with lower values 

corresponding to more rapid drift. As predicted, the simulated VAF distributions mirrored the 

changing distributions observed with increasing age in the data (Fig. 4b). Importantly, this 

highlighted that after many generations, low VAF mutations were only recently acquired, while 

high VAF mutations had invariably been acquired during early generations, indicating that 

mutation VAF is predictive of time of acquisition (Extended Data Fig. 4), in line with previous 

modelling41. 

 

Based on this, we used Approximate Bayesian Computation (ABC) to quantify the number of 

generations and mtDNA mutation rate for each individual. Our results demonstrated a linear 

increase in the estimated total number of mitochondrial generations with age (Fig. 4c), 

suggesting a constant mitochondrial turnover rate across life. We estimated a drift parameter 

of 16,000 mitochondria days (CI95% 13,000-19,000). This drift rate may represent various 

combinations of effective population size and generation time (Fig. 4d). In practice, the 

effective population size is likely to be between the mtDNA copy number (600, the median in 

adults), and the total number of mitochondria (~120, at ~5 mtDNA genomes/mitochondrion 32). 

Therefore, this range would correspond to a generation time of between 27 and 133 days, 

suggesting that the set of mitochondrial genomes within a given HSC will be replicated 

approximately once every 4-19 weeks. These estimates are of the same order as directly 

measured mitochondrial turnover rates in rat tissues42.  

 

The inferred mtDNA mutation acquisition rates clustered around 4-6×10-4 mutations/mtDNA 

genome/generation, corresponding to rates of 3×10-8/base/generation (Fig. 4e), similar to 

previous modelling43. Given estimates of 0.7 mutations/division in the diploid nuclear 

genome27,44, our mtDNA mutation rate estimate indicates that the mtDNA mutation acquisition 

rate is ~270x higher than the nuclear genome, although in any given lineage most mtDNA 

mutations will in fact be lost through drift7,8,45. 

 

Lastly, we aimed to assess the rate of heteroplasmic drift in early human development. We 

leveraged the six heteroplasmic oocyte mutations detected in the 8pcw foetus using a similar 

ABC approach (Fig. 3a, Methods). With this framework, we modelled drift of heteroplasmic 

oocyte mutations of the 8pcw foetus down independent lineages, comparing the simulated 

VAF distributions to the data. Our combined results across mutations estimated the average 

drift parameter during this 8-week period to be ~1,200 mitochondria days (CI95% 1,100-1,300 

mitochondria days) (Fig. 4a). This implies a 13-fold faster drift compared to adult HSCs, which 

likely relates to the rapid cell division at this point of development46. However, one might expect 

this to be offset by the extremely high mitochondrial copy number during blastulation38. 
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Therefore, this finding supports the concept of a somatic mitochondrial bottleneck, whereby a 

transient drop in mitochondrial copy number accelerates neutral drift32.  

 

Fig. 4| Shifting variant allele fraction distributions of mtDNA mutations through life. a, The 

average number of mutations per sample at different VAF levels in different individuals. Includes only 

those mutations that most likely derive from the genuine ‘N1’ signature. b, Histograms of simulated VAF 

distributions after different numbers of WF generations, assuming constant rate of mutation acquisition 

in each generation and a population size of 600. Each mutation in the barplot is coloured according to 

the WF generation in which it was acquired. c, Dot plot showing the posterior distribution of the number 

of WF generations (y-axis) for each individual, against individual age (x-axis). The black line shows the 

inferred relationship between WF generations and age (linear mixed effects regression). d, Plot 

illustrating the combinations of population size and generation time consistent with the inferred drift rate 

in the WF model (black line). Also shown, are the corresponding generation times assuming the true 

effective population size to be the average mtDNA copy number (red dashed line) or the number of 

mitochondria (blue dashed lines) which may be considered the upper and lower bounds for this value. 

e, Dot plot showing the inferred mitochondrial mutation acquisition rate per mitochondria, per WF 

generation (x-axis) for each patient.  Error bars represent the 95% posterior interval on these values. f, 

Posterior distribution for the inferred average WF generation time during the first 8 weeks of 
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development. ABC, Approximate Bayesian Computation; WF, Wright-Fisher; VAF, variant allele 

fraction; PI, Posterior Interval. 

 

Mitochondrial mutations as lineage-tracing markers 

The potential to utilise SNVs in the mitochondrial genome as lineage-tracing markers has 

garnered major interest in recent years8,33,47. We assessed the power of mtDNA mutations to 

report on known clonal relationships between cells. For this purpose, we selected the four 

individuals over 75 years of age, whose SNV-based phylogenies showed the richest clonal 

structure (Fig. 5, Extended Data Fig. 5). Across these four individuals, there were 58 expanded 

clones (Extended Data Fig. 6a), defined as an ancestral lineage contributing at least 1% of 

colonies. 

 

Each expanded clone was tested for mtDNA mutations present at >1% VAF in any colony. In 

total, 24 of 58 clones had no mtDNA mutation shared by more than one colony. More 

importantly, in most cases, the best potential lineage marker was present in only a small 

proportion of colonies within the expansion (median=0.25; range=0.07-1). However, 7 of 58 

expansions had a mtDNA marker mutation present in all colonies within the expansion 

(Fig. 5a). Five of these seven mutations were at homoplasmic levels (Fig. 5a, Extended 

Data Fig. 6b), suggesting that the mutations were already homoplasmic in the most recent 

common ancestor of the expansion. Given that mtDNA mutations take time to attain 

homoplasmy, we reasoned that clonal expansions with later ancestors may be more likely to 

have useful mtDNA marker mutations. Indeed, a significant correlation was observed (linear 

model, p=0.04, R2=0.056) (Extended Data Fig. 6b). 

 

Next, we assessed all 348 mtDNA SNVs shared by more than one colony for phylogenetic 

signal, which can be considered a measure of how accurately shared mtDNA mutations report 

true phylogenetic structure. Overall, 72% of shared mutations (249/348) showed no 

phylogenetic signal (Fig. 5a, Extended Data Fig. 5, Extended Data Fig. 6c). While most 

uninformative mutations were shared by just two samples (214/249), some were shared by up 

to 7 samples and sometimes at near-homoplasmic levels. Interestingly, the MRCA of colonies 

with uninformative mutations often occurred in embryogenesis, frequently being the zygote 

(Fig. 5a, Extended Data Fig. 5). This can be explained either by independent mutation 

acquisition in multiple lineages (violation of infinite sites assumption) or by low-level 

heteroplasmy of the mutation in the oocyte, stochastically drifting upwards in independent 

lineages. Using these mutations to infer clones could therefore lead to incorrect conclusions.  

 

Mutations present in more colonies and at higher levels of heteroplasmy were more likely to 

show phylogenetic signal (Fig. 5a; Extended Data Fig. 5-6). Both of these measures are 

captured in the ‘global VAF’, which represents the aggregated VAF across all samples in an 

individual. This can be thought of as a surrogate for the mutation VAF in a bulk sample. All 

mutations with a global VAF >1% and 41/51 mutations with a global VAF >0.5% showed 

significant signal (Extended Data Fig. 6e). However, many mutations with a high phylogenetic 

signal still demonstrated imperfect fit with the true phylogeny (Fig. 5c), therefore being poor 

indicators of subclonal phylogenetic structure. This arises because heteroplasmic mutations 

stochastically increase or decrease within different subclones.  

 

In line with this, we hypothesised that VAF distributions of specific heteroplasmic mutations 

across clonal expansions (Fig. 5c) would provide a complementary approach to estimate drift 

rates in HSCs. We designed a phylogeny-specific WF-based model, wherein drift was 
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explicitly modelled along different ancestral lineages in the phylogeny. An ABC approach 

based on this model estimated the drift parameter as 12,000 mitochondria days (CI95% 9,000-

27,000; Extended Data Fig. 7), highly concordant with our previous approach. 

 

Lastly, we assessed the utility of mtDNA mutations for inferring clonal relationships between 

colonies using a previously described nearest neighbours approach33. We restricted mutations 

to those present (1) at >1% VAF in more than one sample, and (2) at a global VAF >0.5%. 

Utilising these variants resulted in correct recognition of clones with consistent mtDNA marker 

mutations (Extended Data Fig. 8a-b). However, as anticipated based on our previous results, 

the majority of mtDNA clones related to only a minor proportion of the true clones, with some 

mtDNA mutations identifying colonies that were in fact clonally unrelated (Extended Data Fig. 

8). Hence, 4-12% of 'singleton' colonies, which have no clonally related colonies after the time 

of embryogenesis, were inappropriately assigned to the same clones (Extended Data Fig. 8d). 

Hierarchical clustering to reconstruct putative phylogenies of the inferred clones (Extended 

Data Fig. 8e) sometimes correctly grouped related clones (e.g. clones 2, 8 and 10 for KX003), 

but were generally uninformative. 
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Fig. 5| Potential usage of mtDNA mutations as lineage markers. a, Heatmap of all shared 

mitochondrial mutations for KX004, with the SNV-based phylogeny shown above. Mutations that show 

phylogenetic signal - i.e. those that might be informative for inferring clones - are grouped separately 

from those that do not. b, Barplot indicating the number of samples in each expanded clone with the 

presence (green) or absence (orange) of the best mitochondrial marker mutation. Asterisks indicate an 

expansion with a consistent mitochondrial mutation in all samples. c, Selected mutations that show 

phylogenetic signal and are present exclusively within a clonal expansion but are not present within all 

colonies of that clone. Mutations demonstrate poor correlation with the sub-clonal phylogenetic 

structure. The height of the red bars underneath the clone phylogeny indicates the mutation VAF within 

each colony. The blue-green squares indicate the site-specific mitochondrial coverage in each colony, 

showing that the lack of mutation in some samples is unrelated to coverage. 

 

Implications of drift for lineage tracing  

To better understand the implications of our findings for mtDNA mutation-based lineage 

tracing, we used the inferred drift parameters (1,200 mitochondria days in foetal development 

and 15,500 mitochondria days thereafter) to inform simulations of heteroplasmic mutations (1) 

in the oocyte and (2) in the MRCA of clonal expansions. For the oocyte simulations, we 

initiated a heteroplasmic mutation with a VAF of 3.6%, mirroring the highest mean 

heteroplasmic mutation VAF observed in the 8 pcw foetus. We then modelled initial drift with 

the rate inferred in embryogenesis, subsequently followed by drift according to the rate inferred 

from adult HSCs. Consistent with well-established properties of the WF model48, we observed 

initial diffusion, and subsequent polarisation of the VAF distribution, such that by 80 years 

most cells had either lost the initial mutation (VAF < 0.1%, 95.4% of cells) or fixed the mutation 

at homoplasmy (VAF > 99%, 2.1% of cells) (Fig. 6a). This results in patchy presence of the 

mutation in adult cell populations, with a pattern that is a poor indicator of the true phylogeny. 

To illustrate this further, we simulated drift of a theoretical heteroplasmic oocyte mutation at a 

starting VAF of 3.6% in the phylogeny of KX004. Indeed, we observed that the mutation 

became homoplasmic in several unrelated clones (Fig. 6b). Examples for these mutations 

have clearly been seen in other published somatic phylogenies44,49. Heteroplasmic germline 

mutations should therefore be taken into consideration when attempting lineage tracing across 

somatic phylogenies.  

 

We also utilised the estimated HSC drift parameters to simulate heteroplasmic drift in clonal 

expansions with a range of dynamics. At one extreme, we simulated a gradual clonal 

expansion over 35 years, while at the other, we investigated a rapid expansion over 2 years 

(Fig. 6c,d). We modelled the drift with different starting levels of mutation heteroplasmy in the 

MRCA. Measuring the proportion of samples within expansions that had detectable levels of 

mutations (≥1% VAF) clearly highlighted that shorter periods of time, and higher starting VAFs 

led to more consistent marking of samples (Fig. 6d). Rapid expansions over 2 years led to 

relatively consistent marking even with a starting VAF as low as 5%. Conversely, gradual 

expansions over 35 years only had consistent marking when the starting VAF was > ~40%. 

Similar to the experimental data, presence or absence of the mutation within expansions 

correlated poorly with the sub-clonal phylogenetic structure (Fig. 6c).  

 

In summary, these findings indicate that the effectiveness of mtDNA mutations as lineage 

markers will vary considerably as a consequence of heteroplasmic drift. In settings with recent 

and rapid growth dynamics, such as disease relapse following treatment, this may be 

appropriate and useful for distinguishing clonal populations. 

 



17 

Fig. 6| Understanding the implications of drift through simulation. a, Simulation of the VAF 

distribution for a heteroplasmic mutation present in the oocyte at 3.6% VAF through lifetime. By old age, 

the mutation has been either lost or fixed in most lineages. b, Simulated VAF distribution of a 

heteroplasmic mutation present in the oocyte at 3.6% VAF that has undergone drift through the KX004 

phylogeny (used for illustrative purposes only). The mutation has been fixed in multiple unrelated 

lineages. c, Illustrative heteroplasmic drift simulations for clonal expansions arising with distinct 

dynamics (2 yrs = rapid growth, 35 yrs = slow growth). The mtDNA copy number used is 1000, and the 

generation time 20 days, corresponding to the highest density posterior estimates from the ABC. In 

each simulation, VAF in the MRCA is 0.2. d, Boxplot derived from simulations (N=100 for each boxplot) 

indicating the proportion of clonal expansions anticipated to have detectable levels (>1% VAF) of a 

mitochondrial marker mutation depending on the specific dynamic of an expansion (indicated above 

each panel), and mutation VAF in the MRCA. Jittered raw data is plotted overlying. The boxes indicate 

the median and IQR and the whiskers extend to the largest and smallest values no more than 1.5× IQR 
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from the box. Outlying points are plotted individually. ABC, Approximate Bayesian Computation; VAF, 

Variant allele fraction; MRCA, Most recent common ancestor. 

 

Discussion 

Collectively, our data suggest that age-related decline in mitochondrial function is, at least in 

part, due to the accumulation and preferential expansion of selfish mitochondria with mutations 

slowing their respiratory function. The “survival of the slowest” hypothesis12,50 posits that such 

mitochondria would accumulate free radical damage more slowly than their fully functional 

counterparts. Mutated mitochondria would survive longer by delaying turnover triggered by 

free radical damage, thus giving a selective advantage over their wild-type counterparts. 

Despite its articulation >25 years ago, this hypothesis has proved challenging to test due to 

the absence of methods to infer drift dynamics and selection on mtDNA mutations in specific 

somatic lineages over the lifespan. Here, the combination of single-cell colony sequencing 

and detailed lineage trees of stem cell clones enabled us to quantify the ingredients required 

for this Darwinian model of mitochondrial ageing.  

 

Genetic variation in mitochondria accumulates at 270× the rate in the nuclear genome – thus, 

about half of all mitochondrial genomes in haematopoietic stem cells would have at least one 

mutation by ~50 years, even in the absence of selection. We estimate that an HSC replaces 

its complement of mitochondria every 4-19 weeks, 2-10× faster than the rate of cell division51. 

Such high turnover rates mean that mitochondria with selective benefits can preferentially 

expand to meaningful proportions over decades. The dN/dS ratio for missense mutations at 

low heteroplasmy (1-10%) was estimated at ~1.4 – this implies that about a quarter of all 

missense mutations in mtDNA confer selective benefits on their mitochondria. In contrast, at 

high levels of heteroplasmy (>50%), the dN/dS was ~0.8 – this implies that a fifth of missense 

mutations affect energy provision so adversely as to disadvantage the whole cell when present 

in over half of mitochondria in that cell. 

 

Recent studies have demonstrated that somatic tissues are characterised by the preferential 

expansion of clones of cells with driver mutations in the nuclear genome26,52–55, although it 

remains unproven whether these clones contribute to organ-wide phenotypes of ageing. The 

data here have striking parallels shrunk to the scale of the internal microcosm of the cell, but 

with the additional morsel that expansions of selfish mitochondria can, when sufficiently large, 

impair the fitness of the whole cell. This phenomenon may play a particularly important role in 

post-mitotic cells such as neurons – whereas cells with impaired respiratory function will be 

out-competed by cells with more effective energy provision in replicating tissues such as bone 

marrow, this cannot apply in a tissue where cells never turn over. This, then, could be a general 

paradigm of ageing, explaining how stochastic damage in individual organelles or cells 

propagates over decades, through preferential replication of selfish functional units, to 

generate age-related dysfunction system-wide.  
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Methods 

Sample cohort 

Whole-genome sequencing data from two previous studies 26,27 were leveraged for the work 

presented. In both studies, a recently developed low input library preparation method was 

used to generate libraries from each colony 56. Together, this included WGS data from 4217 

single-HSC/HPC-l derived colonies of 12 haematopoietically normal individuals: two fetuses 

(8 and 18 post-conception weeks [pcw]) 27, two neonates, and eight adult individuals 26. In 

brief, HSCs/MPPs derived from either foetal liver and bone marrow, cord blood, peripheral 

blood or post-mortem vertebral bone marrow samples were flow sorted and grown into single-

cell derived colonies. Samples from the two studies were grown using different protocols. 

Colonies from Spencer Chapman et al. were grown by sorting single phenotypic HSCs/ 

HSPCs (for the 8pcw fetus, this included liver-derived Lin− CD34+ CD38+ cells [HPCs], and 

for the 18pcw fetus, this included bone marrow and liver-derived CD34+ CD38− CD90+ cells 

[HSCs], and CD34+ CD38+ CD90− CD45RA− CD49f− cells [CMPs and MEPs]) into 96-well 

plates containing an MS5 feeder layer and cultured for 6–8 days at 37 °C and 5% CO2. 

Colonies from Mitchell et al were grown by sorting single phenotypic HSC/MPP (Lin−CD34+ 

CD38− CD45RA−) or HPC (Lin− CD34+ CD38− CD45RA−) cells into 96-well plates containing 

100 µl supplemented StemPro medium (Stem Cell Technologies) but no mouse feeder layer, 

and culturing for 21±2 days at 37 °C. Full details of sorting strategies and culture supplements 

are available in the original manuscripts. DNA was extracted and sequencing libraries 

prepared using an enzyme-based fragmentation protocol optimised for low input DNA 

quantities 56. In both studies, libraries were sequenced to a mean nuclear genome coverage 

of  approximately 15✕, enabling somatic mutation calling from the nuclear genome with 

established variant-calling algorithms 28,29. BWA mem was used to align 150bp paired end 

reads generated to the human reference genome (GRCh37d5). 

 

Immunophenotyping of flow-sorted colonies 

For samples from Mitchell et al. (all individuals except the 8 and 18 pcw fetuses), a subset of 

colonies were immunophenotyped to define the colony mature cellular composition. Following 

21 +/- 2 days in culture, ½ of each colony selected by size criteria (> 3000 cells) was harvested 

into a U bottomed 96 well plate (ThermoFisher). Plates were then centrifuged (500g/5 

minutes), media was discarded, and the cells were resuspended in an antibody mix as per 

table S5 (30 min/4°C). After washing cells were resuspended in 100 ml PBS/3% FBS 

containing an antibody panel consisting of: CD45/PECy5, CD41/FITC, CD11b/APCCy7, 

CD14/PECy7, CD15/BV421, GlyA/PE, CD56/APC. Immunophenotyping of the mature cells in 

each stained colony was performed using a BD Fortessa2 (BD Biosciences) as per the gating 

strategy in fig. S9A.  In the analysis 50 cells were required in a gate to call that cell type 

present. The one exception was the NK cell gate for which a lower threshold of 30 cells were 

used. The relationships between the mature cell types produced in the assay are shown in fig. 

S9B. 

 

Mitochondrial mutation calling 

Alignment of reads to human genome assembly GRCh37 was carried out by BWA-MEM 57. 

Duplicate reads were marked using biobambam 58. Reads mapping to the mitochondrial 

genome were extracted using samtools 59. bam2R (available as part of the deepSNV R 

package 60) was used to count the number of forward and reverse reads supporting each base 

at each site in the mitochondrial genome for each sample. Unmapped reads, duplicate reads, 



24 

failed reads, secondary and supplementary alignments, reads with mapping quality scores 

<30 and bases with Phred quality scores <30 were excluded from these nucleotide counts. 

 

Variant calling was performed using ShearwaterML 52. A base-specific error model for the 

mitochondrial genome was generated from a reference panel of 102 polyclonal normal 

samples. In order to avoid having reduced calling sensitivity at sites with germline mutations, 

homoplasmic alternative sites in these polyclonal samples were treated as uninformative (i.e. 

the coverage at that site was set to 0). For 7 highly polymorphic sites (263, 750, 1438, 4769, 

8860, 15326 and 16519) at which the reference base was observed less frequently than an 

alternative base, the reference base was instead set as uninformative. 

 

In order to generate the background model, nucleotide counts were assumed to be distributed 

by a beta-binomial distribution, i.e. a binomial distribution in which the probability of success 

in n trials is not fixed but is instead drawn from a beta distribution defined by shape parameters 

α and β. The mean and variance of this distribution are defined as follows: 

 

 
 

The over-dispersion value (ρ) defines the amount of extra variance, as compared with pure 

sampling errors; for ρ = 0, the model is a simple binomial distribution. As there is no closed-

form solution to estimate ρ, we performed a grid-based search within the interval [10-6, 10-0.5] 

(using increments of 0.05 for the index) to obtain a maximum likelihood estimate of ρ for each 

nucleotide at each site in the mitochondrial genome. A conservative lower bound of ρ (2 ✕ 10-

4) was then applied to reduce the risk of artefactual calls being made at sites with insufficient 

depth in the reference panel for accurate ρ estimation. 

 

In order to call variants, a given sample of interest is tested against this base-specific error 

model. A true variant will be present on both strands, with an equal rate that must be higher 

than the background error rates. P-values were obtained from each strand using a likelihood-

ratio test with one degree of freedom for the extra parameter μ and P-values from both strands 

are combined using Fisher’s method, as described previously 52. Homoplasmic germline 

variants in a sample were excluded and P-values were subject to multiple testing correction 

using Benjamini & Hochberg’s False Discovery Rate 61 and a q-value cut-off of 0.01 was used 

to call somatic mutations. 

 

Investigating the trinucleotide context of mitochondrial mutations 

We leveraged a custom R script relying on the R version of samtools to examine the overall 

mtDNA substitution signatures in the 96 possible mutation classes. The mutational spectrum 

remained consistent with previous reports above this threshold (Ju et al., 2014, eLife; Yuan et 

al., 2020, Nature Genetics), with an absolute dominance of C>T and T>C substitutions. By 

splitting the mutations between the heavy and light strand, we could also observe extreme 

replication strand bias. Lastly, we calculated the number of observed compared to expected 

mutations by considering how often each trinucleotide context is observed in the mtDNA 

sequence. 

 



25 

Filtering of mutations resulting from contamination or NUMTs  

We noted that there were multiple heteroplasmic mutations that were widespread at a low VAF 

level across samples from a given individual, or across several individuals, but without any 

phylogenetic signal.  We found that many of these mutations had an inverse correlation 

between the VAF and the mitochondrial copy number, consistent with what might be expected 

from a constant level of contaminating DNA from other sources mapping to the mitochondrial 

genome. If the contaminating DNA has a sequence mismatch, this will be recurrently called 

as a mutation across samples, at a VAF that depends on the total quantity of true mitochondrial 

DNA in the sample.  Such DNA may result from low-level contamination from another 

individual, or from nuclear DNA of mitochondrial origin (so-call “NUMTs”). We therefore tested 

all mutations for this inverse correlation between VAF and mtDNA copy number by performing 

a linear regression, including all samples with VAF greater than 0. This revealed many 

mutations with a strong correlation (fig. S1e). We performed Benjamini-Hochberg multiple 

testing correction on all mutations with a positive correlation coefficient and considered 

mutations with a q-value < 0.01 (n = 316) to commonly result from sample contamination or 

NUMTs.  However, given that such mutations may in some instances be genuine, we retained 

mutations in specific samples if the implied mutation copy number was above a threshold of 

25 (where the mutation copy number is calculated as the mutation VAF multiplied by the total 

mtDNA copy number). To increase the confidence level in our calls and to exclude samples 

which were believed to have inter-individual contamination, we utilised VerifyBamID on the 

somatic mutations called in the nuclear genome of the respective sample 62. Furthermore, 

when multiple germline mtDNA sites had multiple reference reads rather than being 

completely altered we suspected the sample to be contaminated as well and this sample was 

therefore excluded from the analysis.  

 

Filtering of mutations resulting from other artifacts 

Below a VAF of 1% there was contamination by mutations with distinct mutational signatures, 

suggestive of artifact or in vitro-acquired mutations. To better define these processes, and to 

filter such mutations from the call set, we ran a de novo 192-profile mutational signature 

extraction (incorporating heavy/ light strand) using a hierarchical Dirichlet process, treating 

mutations present at different VAF levels in different individuals as ‘samples’. This extracted 

the genuine mutational signature ‘N1’ - accounting for essentially all mutations >1% VAF and 

a subset of lower frequency mutations - and 8 artefactual signatures that were variably present 

between individuals (fig. S2). We were then able to assign individual mutations to their most 

likely causative signature using the mutation VAF, trinucleotide context, and heavy/ light chain 

information. Mutations assigned to the real ‘N1’ signature were retained in the final mutation 

set.  

 

Assessing forces of selection on the mitochondrial genome 

To assess acting forces of selection on the mitochondrial genome, we utilised dndscv in R 34. 

Initially, we assessed global dN/dS ratios of all mitochondrial genes on the heavy strand in our 

dataset (excluding MT-ND6, since it is on the light strand). Mutations were split according to 

age groups and separately utilised as input to dndscv. The output of dndscv was visualised 

using a custom R script. For gene-level analysis, dN/dS estimates with q-value < 0.05 were 

highlighted as a heatmap. For the heteroplasmy-level specific analysis, SNVs were split 

according to VAF groups and leveraged as input for dndscv. In addition, signs of selection 

were visualised by assessing the distribution of variant allele fraction across all mutations per 

age group. In principle, the VAF of synonymous mutations thereby serves as a reference point 
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to compare missense and truncating mutations to. Hence, if the VAF is sufficiently higher 

across mutations compared to the synonymous mutation VAF, this implies positive selection 

and vice versa. Significant differences were assessed utilising a Wilcoxon rank sum test 

across mutation types. 

 

Inferring mitochondrial copy number 

To estimate the number of mitochondrial copies within our samples, we applied a formula 

previously used in the pan-cancer analysis of whole genomes (PCAWG; 25). 

 

𝐶𝑁	 =
𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑚𝑡𝐷𝑁𝐴)

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑛𝐷𝑁𝐴)
	𝑥	𝑝𝑙𝑜𝑖𝑑𝑦(𝑠𝑎𝑚𝑝𝑙𝑒) 

 

where CN is the mtDNA copy number, coveragemtDNA and coveragenDNA are the mean 

coverage depths for mtDNA and the nuclear genome in individual WGS bam files, 

respectively, and ploidysample is 2. We assessed the mean depth for both the nDNA and the 

mtDNA by applying bedtools genomecov. 

 

Measuring the phylogenetic signal 

The phylogenetic signal is a way to assess the heritability of a trait within a known phylogenetic 

structure. For individual mutations, the phylogenetic signal was calculated using the 

phyloSignal function from the R package ‘phylosignal’ (https://cran.r-

project.org/package=phylosignal) 63. This function outputs several measures of the 

phylogenetic signal and their associated p-values for a set of quantitative traits associated with 

the tips of a phylogeny - in this case the VAFs of each mutation. We focussed on the ‘Cmean’, 

which appeared most informative for our data. We used the same approach to assess the 

phylogenetic signal of mitochondrial copy number. 

 

Inference of mtDNA clones 

We aimed to follow the approach outlined as previously by others 33.  However, given our 

results showing the lack of phylogenetic signal for many mutations present at low global VAF, 

we restricted the incorporated mutations to somatic mutations that (1) were present at >1% 

VAF in more than one sample, (2) were present at a global VAF > 0.5%.  We then used the 

VAF matrix for these mutations as inputs to the FindNeighbours/ FindClusters function from 

the R package ‘Seurat’, with slight modifications (cosine distance metric and k.param = 5 for 

the FindNeighbours function, resolution = 10 for the FindClusters functions). Note that we 

made some additional modifications to the approach used by Lareau et al.  Firstly, the 

resolution value of 10 was much higher than their value of 1.  We found that using resolution 

= 1 led to inappropriate merging of clusters.  Secondly, we also used the raw VAF matrix, 

rather than the square root as we found this gave cleaner results. We also performed 

clustering using all shared mutations, including those present at global VAF <0.5%, but found 

that this led to extremely noisy clustering including many clusters that had no relation to the 

true clonal relationships (results not shown). Therefore, our approach represents an attempt 

to optimise that used in Lareau et al, using our prior knowledge of the true clonal relationships. 

 

Approximate Bayesian Computation for embryonic development 

We developed a simple Wright-Fisher model in which the total mitochondria in a single cell is 

the population size, and the wild-type/ mutant alleles represent the two alleles within the 

population.  For each generation, the new number of mutant alleles was determined by a 



27 

random binomial draw of size n (the mitochondrial copy number) and probability p (the 

proportion of mutant alleles in the previous generation).  The total number of generations for 

each cell was decided by rounding the total simulation time (56 days for the 8 post-conception 

week fetus) divided by the generation time for that simulation e.g. for a generation time of 2 

days, there are 28 generations. 

 

We performed 10,000 simulations for each of the 6 heteroplasmic oocyte mutations observed 

in the 8pcw fetus.  For each set of simulations, the starting variant allele fraction was fixed as 

the mean variant allele fraction across all samples for that mutation. The population size was 

fixed at 450, the mean mitochondrial copy number for the 8pcw fetus. However, the precise 

population size used does not affect the final inference of the drift parameter. The log10 of the 

generation time was drawn from a uniform distribution (minimum = -1, maximum = 2.7) 

corresponding to a minimum generation time of 0.1 days and a maximum of 500 days.  For 

each simulation, seven summary statistics were collected: mean VAF, minimum VAF, 

maximum VAF, standard deviation of the VAF and the 5%, 50% and 90% quantiles. The same 

set of generation time parameters were used for all 6 sets of simulations, and the summary 

statistics combined across mutations, creating a final set of 42 summary statistics.  Generation 

time parameter inference was performed using the R package ‘abc’ (https://cran.r-

project.org/package=abc) using a neural network regression. 

 

Approximate Bayesian Computation for adult HSCs  

 

Approach 1: overall VAF distributions with age 

We first developed a simulation framework of mitochondrial mutation VAF distribution as 

follows. One thousand theoretical cells were included per simulation, each cell having a fixed 

mtDNA copy number of 600, approximately the mean mtDNA copy number found for adults in 

the data. For each simulation run, the total number of Wright-Fisher (WF) generations for that 

run was picked from between 1 and 2000. For each cell and generation, mutations were 

introduced into each mitochondria at a constant rate per WF generation. This rate was picked 

from a prior distribution Uniform(min=0.0001, max = 0.001), these bounds being chosen from 

some initial test runs. Once introduced into a single mtDNA molecule, each mutation was 

independently allowed to drift during subsequent generations by sampling with replacement. 

This process continued until the total number of WF generations was reached. At this point, 

the total number of mutations in each VAF category (<0.1%, 0.1-0.2%, 0.2-0.4%, 0.4-0.8%, 

0.8-1.6%, 1.6-3.1%, 3.1-6.2%, 6.2-12.5%, 12.5-25%,  25-50%, >50%) was recorded and 

divided by 1000, to get values for the average number of mutations in each category per cell. 

The number of mutations per VAF category per cell were then used as summary statistics in 

an approximate Bayesian computation (ABC) to infer the most likely number of WF 

generations for each individual, using the same summary statistics for each individual as the 

“target” using the abc function from the R package ‘abc’ (https://cran.r-

project.org/package=abc). For the ABC, the lowest two VAF categories (up to 0.2%) were 

excluded as potentially unreliable in the data due to coverage and copy number limitations. 

 

To infer the drift rate, we first performed a linear mixed effects regression using the lmer 

function from the R package ‘lme4’, with posterior distributions of ‘total WF generations’ as the 

dependent variable, ‘Age’ as a fixed effect and ‘Individual’ as a random effect. This gives a 

value for the number of WF generations per year.  This was converted to a drift rate by: 

 

𝐷𝑟𝑖𝑓𝑡	𝑟𝑎𝑡𝑒	(𝑚𝑖𝑡𝑜𝑐ℎ𝑜𝑛𝑑𝑟𝑖𝑎	𝑑𝑎𝑦𝑠) 	= 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒	(𝑑𝑎𝑦𝑠) 	×𝑊𝐹	𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑠𝑖𝑧𝑒 
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=
365	𝑑𝑎𝑦𝑠

𝑊𝐹	𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠	𝑝𝑒𝑟	𝑦𝑒𝑎𝑟
× 	𝑊𝐹	𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑠𝑖𝑧𝑒 

 

=
365	𝑑𝑎𝑦𝑠

13.72
× 	600	 = 	15,960 

 

This inferred drift rate is thus independent of the precise population size used for the 

simulations. 

 

Approach 2: distribution of specific mutations across clonal expansions 

For this ABC, we devised a phylogeny-specific simulation approach. We selected 10 mutations 

that were heteroplasmic across a given clonal expansion (fig. S7A, some illustrated in Fig. 

3E). For each mutation we simulated independent drift along different branches from a 

common starting VAF in the MRCA, with the number of Wright-Fisher generations proportional 

to the branch length.  For each simulation the starting VAF in the MRCA was drawn from a 

uniform distribution (minimum = 0, maximum = 1), the population size was fixed at 675 (the 

mean mtDNA copy number observed in the adult HSC/MPP colony data), and the generation 

time drawn from a uniform distribution (minimum = -1, maximum = 2.7) corresponding to a 

minimum generation time of 0.1 days and a maximum of 500 days. For each branch, the 

number of generations was then calculated as 17.5 x 365 days x the branch length (in 

molecular time), divided by the generation time, where 17.5 is the average number of SNVs 

acquired per year in HSCs 26. At each node in the clonal expansion, drift continued 

independently in each daughter cell. We performed 20,000 simulations for each clonal 

expansion, collecting 6 summary statistics: (1) the median VAF across samples, (2) the 

number of samples without the mutations (VAF < 0.02), (3) the number of samples with the 

mutation at homoplasmy (VAF>0.98), (4) the number of samples with the mutation at 

heteroplasmic levels (0.02<VAF<0.98), (5) the Cmean measure of phylogenetic signal as 

calculated by the phyloSignal function from the R package ‘phylosignal’ (https://cran.r-

project.org/package=phylosignal) and (6) the sigma parameter calculated by the function 

phyloCorrelogram from the same package, which is a measure relating to the phylogenetic 

distance at which the phylogenetic signal is strongest. These summary statistics were then 

compared with those for the data using the ‘abc’ R package, using the ‘rejection’ method, 

giving a posterior distribution for the generation time. 

 

The posterior distributions for each mutation were combined by multiplying the posterior 

distribution densities across all mutations, to infer the posterior distribution of parameters that 

would most likely explain the observed VAF distributions across all 10 clonal expansions. 

 

Mitochondrial drift simulations 

Once mitochondrial heteroplasmic drift parameters were inferred using the above ABC 

approach, we did further simulations - using the same phylogeny-specific approach - to assess 

the resulting VAF distributions across clonal expansions with different growth dynamics. 

 

The clonal expansions were simulated using the R package ‘rsimpop’ 

(https://github.com/NickWilliamsSanger/rsimpop ) which has previously been used to model 

HSC dynamics while recording the phylogenetic structure of the population 26,64.  It also has 

the ability to introduce driver mutations with specific selection coefficients. Five trees 

containing clonal expansions were modeled such that the final age of the individual was 50 
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years, with the origin of the clonal expansion occurring 35, 25,15, 5 and 2 years prior to this.  

The selection coefficients were altered such that the driver mutation had time to expand to an 

appreciable size by age 50. 

 

Heteroplasmic drift of a theoretical mitochondrial mutation was then superimposed onto these 

phylogenetic structures as described above, using various levels of starting VAF in the MRCA 

of the clonal expansion (5%, 10%, 20%, 40%, 80%, 99%), and the inferred drift parameter in 

adult HSCs. Drift was simulated 100 times for each starting VAF and tree, with the final 

proportion of samples with detectable mutation levels (>1% VAF) recorded in each case. An 

analogous approach was used to assess the consequences of heteroplasmic oocyte 

mutations. However, in this case the KX004 phylogeny structure was used to illustrate these 

consequences. 

 

Code availability  

The aforementioned computational methods provide a summary of the procedures 

implemented in various custom-made R and bash scripts. These scripts contain the 

commands run for the analyses highlighted in this work. To sustain reproducibility, they are 

publicly available on Github (https://github.com/mspencerchapman/mito_mutations_blood). 

 

Data availability 

Information on the availability for the sequencing data from Spencer Chapman et al. and 

Mitchell et al. can be found in frame of the respective publications 

(https://www.nature.com/articles/s41586-021-03548-6#data-availability and 

https://www.nature.com/articles/s41586-022-04786-y#data-availability) . 
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Supplementary Figures 
 

Extended Data Fig. 1| Mitochondrial coverage and copy number throughout life. a, Histograms of 

the mean mitochondrial coverage per colony separated by individual. b, Median coverage by 

mitochondrial genome position across all the adult samples. c, Selected mutations showing significant 

correlation between mutation VAF and 1/ mtDNA copy number. This pattern is expected for mutations 

caused by contamination across a sample set, or by mis-mapping of nuclear genome reads.  Such 
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mutations were excluded from further analysis. d, Median mitochondrial copy number per colony 

(including only HSC-derived colonies) by individual (y-axis) plotted against individual age (x-axis), 

demonstrating no association. The black line highlights a linear regression with gray boundaries 

indicating the standard error. Each dot is colored according to the patient identity. e, Phylogenetic tree 

for the 8 pcw fetus. Below, the mitochondrial copy number (log10) is shown as a bar plot in blue for each 

colony. (VAF = variant allele fraction, MitoCN = Mitochondrial copy number, pcw = post-conception 

weeks) 
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Extended Data Fig. 2| Mitochondrial mutation signature decomposition by variant allele fraction. 

a, 192-profile mutational signatures extracted by a hierarchical Dirichlet process (Methods). Mutations 

were aggregated according to individual and VAF. Positive bars represent mutations on the heavy 

strand, and negative bars those on the light strand. Bars are coloured by the substitution type. Signature 

‘N1’ is the genuine signature. b, Absolute signature contributions to mutation sets at different VAF levels 

in different individuals, demonstrating large contributions of artefactual signatures at low VAFs <0.5%, 

and almost exclusive contributions of the genuine ‘N1’ signature at higher VAFs above ~1%. VAF, 

variant allele fraction. 
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Extended Data Fig. 3| Functional somatic mutations and selection in age groups. a, Functional 

mitochondrial mutation burden for synonymous, missense and truncating mutations represented as the 

sum of variant allele fraction (VAF) across all samples per patient equivalent to Fig. 1A. b, Bar plot 

showing the total number and proportion of functional mitochondrial mutations for synonymous, 

missense and truncating mutations per age groups, coloured according to the variant allele fraction 
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(VAF) category. c, Gene-level dN/dS ratios for missense and nonsense mutations across all coding 

mitochondrial genes on the heavy strand across age groups. Note that MT-ND6 is on the light strand 

and was not considered for this analysis. Only point estimates which have a significant q-value as 

provided by dndscv (q-value ≤ 0.05) are highlighted in cells. 
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Extended Data Fig. 4| Timing of mutation acquisition for mutations present in different VAF 

ranges. Wright-Fisher model of heteroplasmic drift illustrates that after 1200 generations (equivalent to 

an elderly individual of approximately 80 years), mutations in different VAF ranges have been acquired 

at different times. Low VAF mutations have invariably been acquired in recent generations. High VAF 

mutations have more variable time of acquisition, but are more likely to have been acquired early in life. 

(VAF = Variant Allele Fraction)  
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Extended Data Fig. 5| Shared mitochondrial mutations. a - c, Similar to Fig. 5a, heatmaps of shared 

mitochondrial mutations for KX003 (a), KX007 (b) and KX008 (c). Each row represents a mitochondrial 

mutation (labeled with the mutation reference in format MT-Position-Reference-Alternative), and each 

column a sample, ordered by the SNV-based phylogeny (shown above). Mutations are grouped by 

those that correlate with the SNV phylogeny, and those that do not. SNV, Single nucleotide variant; 

VAF, variant allele fraction; MRCA, Most recent common ancestor.  
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Extended Data Fig. 6| Correlation between shared mtDNA mutations and the phylogeny. a, 

Overview of the clonal expansions in each individual, including all post-embryonic clones with >1% 

clonal fraction. b, Proportion of a clonal expansion with the best mitochondrial marker mutation for that 

clone vs the molecular time of the clone’s most recent common ancestor (MRCA). The black line 

represents the relationship estimate by linear regression, p-value = 0.04, R2=0.056. The gray shaded 

area represents the 95% CI. c, Barplot indicating the number of samples sharing each mutation, 

coloured by whether the mutation correlates with the phylogeny. d, Scatter plot of mitochondrial 

mutation phylogenetic signal p-values (Cmean p-value < 0.05 indicates significant correlation), by the 

global VAF.  Dot size indicates the number of samples sharing the mutation. Vertical dashed line is at 

global VAF of 0.5%, the cut-off used for inclusion of mutations for inferring clones. e, Numbers of 

mitochondrial mutations with or without phylogenetic signal, divided into three groups by global VAF. 

mtDNA, mitochondrial DNA; VAF, variant allele fraction; MRCA, Most recent common ancestor; CI, 

Confidence interval. 
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Extended Data Fig. 7| Inference of mtDNA allelic drift through VAF distributions across clonal 

expansions. a, Posterior distribution for the generation time in adult HSCs assessed using an ABC 

leveraging the VAF distributions across clonal expansions of specific mutations. The simulations within 

this ABC were performed using a fixed population size of 675 (the mean mtDNA genome copy number 

across the 4 individuals considered). The corresponding inferred drift parameter was determined as 

12,000 mitochondria days (95% CI, 8,500 - 26,900). b, Posterior distributions for the generation time in 

adult HSCs as inferred from individual mutation distributions that were combined to create (A). mtDNA, 

mitochondrial DNA; VAF, variant allele fraction; ABC, Approximate Bayesian computation, CI, 

Confidence interval. 
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Extended Data Fig. 8| Inferring clones using mitochondrial mutations. a, Clones inferred using 

mitochondrial mutations for KX004, KX003, KX007 and KX008, highlighted as barplots compared to the 

high-confidence SNV-based phylogenies above. b, Bar plots for all four patients highlighting the 

proportion of SNV-based clonal expansions overlapping with the inferred mitochondrial clones 

highlighted in a. c, Heatmap of shared mutations in KX004 utilised for clustering (y axis) in all samples 

(x axis) coloured according to the VAF and grouped according to clone assignment. d, Singleton 
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colonies that have been assigned to clones by using mitochondrial mutations. In these cases, such 

assignment does not reflect genuine clonal relationships as these samples are unrelated to any other 

going right back to embryonic development. e, Dendrograms reflecting the clonal relationship between 

each mitochondrial clone across the four patients highlighted in a. VAF, variant allele fraction. 
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Extended Data Fig. 9| Mature cell phenotyping of colonies. a, Gating strategy used for 

immunophenotyping of mature cells in single HSPC-derived colonies from Mitchell et al 26. The example 

colony is classified as EryMy (Erythroid + Mono + Gran). b, Classification scheme for the different colony 

phenotypes (note that multipotent colonies and NK-only colonies were not observed in this dataset). 
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Supplementary Tables 

 

Supplementary Table 1| Patient metadata. 

 

Supplementary Table 2| mtDNA copy number estimates per sample. 

 

Supplementary Table 3| Cell type and immunophenotype information per sample. 

 

Supplementary Table 4| Annotated mtDNA single nucleotide variants per patient.  

 

Supplementary Table 5| Antibody information for immunophenotyping of flow-sorted 

colonies.  

 


