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Abstract
Background
Cotton is one of the most economically important crops in the world, and it is exposed to
various abiotic stresses during its lifecycle, especially salt stress. However, the molecular mechanisms
underlying cotton tolerance to salt stress are still not fully understood due to the complex nature of salt
response. Therefore, identification of salt stress-tolerance-related functional genes will help us to
understand key components involved in stress response and to provide valuable genes for salt stress
tolerance improvement via genetic engineering in cotton. In a previous study, expression of a Group III
WRKY gene family member from the diploid cotton species Gossypium aridum, GarWRKY5, was
significantly induced in response to salt stress.
Results
In this present study, virus-induced gene silencing
of GarWRKY5 in cotton showed enhanced salt sensitivity compared to wild-type plants under salt stress.
Overexpression of GarWRKY5 in Arabidopsis positively regulated salt tolerance at the stages of seed
germination and vegetative growth. Additionally, GarWRKY5-overexpressing plants exhibited higher
activities of superoxide dismutase (SOD) and peroxidase (POD) under salt stress. The transcriptome
sequencing analysis of transgenic Arabidopsis plants and wild-type plants revealed that there was
enriched co-expression of genes involved in reactive oxygen species (ROS) scavenging (including
glutamine S-transferases (GSTs) and SODs) and altered response to jasmonic acid and salicylic acid in
the GarWRKY5-OE lines.
Conclusion
GarWRKY5 is involved in salt stress response by the jasmonic acid-
or salicylic acid-mediated signaling pathway based on overexpression of GarWRKY5 in Arabidopsis and
virus-induced gene silencing of GarWRKY5 in cotton.

Introduction
WRKY proteins comprise one of the largest transcription factor families in plants. The conserved WRKY
domain contains approximately 60 amino-acid residues. The WRKY domain is defined based on the
conserved WRKYGQK hexapeptide sequence is usually followed by a C2H2- or C2HC-type zinc finger
motif at N-terminal end. WRKY transcription factors are classified on the basis of both the number of
WRKY domains and zinc finger motifs that they contain; WRKY proteins with two WRKY domains belong
to group I, whereas Group II and Group III members have only a single WRKY domain, followed by a novel
zinc-finger-like motif C2H2 (C-X4–5-C-X22–23-H-X-H) and C2HC (C-X7-CX23-H-X-C), respectively [1].
WRKY proteins play diverse roles in regulating plant defense responses, and developmental and
physiological processes of plants. In addition to their role in plant development, WRKY family genes are
also important in regulating plant biotic and abiotic stress. For example, pathogen-induced defense
pathways, drought, salt stress and others [2–4]. Increasing numbers of studies are reporting that WRKY
genes are involved in regulating plant responses to salt stress. Their function has been elucidated using
genetic and molecular approaches in different species, such as AtWRKY25 and AtWRKY33 in Arabidopsis
[5], OsWRKY11 and OsWRKY45 in rice [2], GmWRKY13 and GmWRKY54 in soybean [6], and TaWRKY10 in
wheat [7].

Cotton is one of the most economically important crops in the world, which endures various abiotic
stresses during its lifecycle, especially salt stress. However, the molecular mechanisms underlying cotton
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tolerance to salt stress are still not fully understood due to the complex nature of this response. With the
release of the Gossypium genome sequence [8–10], genome-wide identification of WRKY family genes
has been conducted in G. raimondii, G.arboreum and G. aridum [11–14]. Several studies have suggested
the importance of specific WRKYs in the transcriptional regulation of salt-related genes in cotton. For
example, overexpression of GhWRKY25 from G. hirsutum in Nicotiana benthamiana enhanced tolerance
to salt stress [15]; GhWRKY39–1-overexpressing plants exhibited increased tolerance to salt and
oxidative stress and increased transcription of antioxidant enzyme genes [16]. Overexpression of
GhWRKY34 in Arabidopsis resulted in a transgenic plant with increased tolerance to salt stress [17]. The
ectopic expression of the GhWRKY6-like gene significantly increased salt tolerance in Arabidopsis
thaliana while silencing the GhWRKY6-like gene increased the sensitivity of cotton to abiotic stresses [18].
Despite the abovementioned reports, the molecular mechanisms by which WRKY transcription factors
(TFs) regulate salt stress still remain largely unclear in cotton.

In a previous study, 109 GarWRKYs gene were identified in a salt-tolerant wild cotton species, Gossypium
aridum, based on transcriptome sequencing data; meanwhile, 28 salt-responsive GarWRKY genes were
identified from transcriptome data and real-time quantitative PCR analysis [14]. Of the cotton WRKY
genes, GarWRKY5 belongs to Group III of the WRKY family. The open reading frame of GarWRKY5
(GenBank accession number KM438453) is 921 bp and putatively encodes a 306-amino acid protein. In
roots of G. aridum, GarWRKY5 genes were activated within 3 h of salt treatment, with expression peak
during the 72 h. This observation implies a potentially important role for GarWRKY5 in mediating NaCl
stress responses. In the present study, we further confirmed the role of GarWRKY5 in salt stress response
by overexpression of GarWRKY5 in Arabidopsis and by silencing it in upland cotton. The expression
profile of GarWRKY5-OE lines and wild-type plants was measured to investigate possible mechanisms by
which GarWRKY5 participates in salt stress responses.

Results

Characterization of GarWRKY5 based on structure,
evolution and expression
Based on previous studies, GarWRKY5 encodes a member of Group III of WRKY. The predicted GarWRKY5
proteins and homologous genes from G. hirsutum (Gh_A02G0029/Gh_D02G0043), G. raimondii
(Gorai.005G003900) and G. arboreum (Cotton_A_04316) contain an approximately 60-amino-acid WRKY
domain that is composed of the conserved amino acid sequence (WRKYGQK) and a zinc-finger motif (C-
X4–5-CX22–23-H-X1-C) (Figure 1A).. Based on the evolutionary tree, Gorai.005G003900 from the G.
ramondii genome was close to Gh_D02G0043 from the Dt-subgenome of allotetraploid cotton in
evolutionary relationships. The paralogous pairs had ratios of nonsynonymous to synonymous
substitutions (Ka/Ks) of more than 1.0 between GarWRKY5 and the other four genes except
Gh_D02G0043, indicating that they had gone through positive selection in the evolutionary process
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(Figure 1B, Supplementary Table S1).. In terms of expression in vegetative and reproductive organs of G.
aridum, GarWRKY5 had a higher expression level in the root than in other organs (Figure 1C)..

Silencing GarWRKY5 in upland cotton line compromises
salt tolerance.
To elucidate the role of GarWRKY5, the virus-induced gene silencing (VIGS) method was used to
knockdown the expression of GhWRKY5, a homologous gene of GarWRKY5 in upland cotton. After
growing plants in illumination incubator for one week, we hand-infiltrated Agrobacterium cultures carrying
the VIGS vector into cotton cotyledons. Approximately 7 d after agroinfiltration, leaves of the GhCLA1-
silenced plant displayed the photobleaching phenotype as expected which was uniformly distributed on
the entire true leaves (Figure 2A),, Suggesting that the VIGS system can work well based on our
experimental conditions. To investigate the silencing efficiency of GhWRKY5 in the tested plants, Semi-
quantitative RT-PCR was used to determine the expression levels. The results showed that the GhWRKY5
expression level in the silenced plants was much lower than in the control plants. At least five GhWRKY5-
silenced plants with four true leaves were treated with 300 mM NaCl solution, the distilled deionized water
was used to the control. Ten days later, the tolerance of the TRV::GhWRKY5 plants decreased significantly
compared with TRV::00 (infiltrated with empty vector) plants in two upland cultivars, the growth of
TRV::GarWRKY5 plants from the salt-sensitive cultivar (Su12) being inhibited more severely than was that
of TRV::GhWRKY5 plants from the salt-tolerant cultivar (Miscott 7913–83) (Figure 2B, 2C).. VIGS
experiments were repeated at least three times with more than ten plants for each construct per repeat.

Overexpression of GarWRKY5 regulates salt tolerance in
Arabidopsis.
To further analyze the function of GarWRKY5 under salt stress conditions, we generated GarWRKY5-
overexpressing lines in Arabidopsis for phenotypic observation and physiological analysis. Three positive
transgenic Arabidopsis lines (lines 1, 6 and 14) with high expression levels of GarWRKY5 were selected
for further analysis.

The transgenic Arabidopsis lines overexpressing the GarWRKY5 gene were germinated on solid medium
containing 0 or 150 mM NaCl. The germination rates and root length showed no significant difference in
between WT and transgenic plants under normal growth conditions. However, the germination rates of
the three GarWRKY5-overexpressing lines (GarWRKY5-1,6,14) were significantly improve than that of the
WT (40.0%, 49.3% and 44.0% vs 20.0%, respectively) (Figure 3A).. When 20-day-old GarWRKY5-
overexpressing transgenic plants were treated with 150 mM or 200 mM NaCl solution and the distilled
deionized water was used to control, four weeks later, the growth of both the GarWRKY5–overexpressing
transgenic and the WT plants was significantly inhibited while the GarWRKY5-overexpressing seedlings
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can remain green and continue to grow (Figure 3B).. These data indicated that GarWRKY5 positively
regulated salt tolerance at the stage of seed germination and vegetative growth.

To study the physiological response of GarWRKY5-overexpressing Arabidopsis plants to salt stress, the
three transgenic lines (GarWRKY5-1, 6, 14) were selected to further analyze the activities of SOD and POD
in leaves of WT and transgenicplants. The SOD activity of transgenic plants was significantly higher than
that of WT plants with or without salt stress. In particular, the SOD activity of the three transgenic lines,
relative to the wild-type plants under salt stress, increased 5.1 times (GarWRKY5-1), 5.5 times
(GarWRKY5-6) and 5.0 times (GarWRKY5-14) (Figure 3C).. The POD activity of transgenic plants was
significantly improving in the WT plants under salt stress. The activity of POD in the three transgenic lines
can increase 5.8 times (GarWRKY5–1),, 7.0 times (GarWRKY5–6) and 6.6 times (GarWRKY5–14) (Figure
3D).. Plants have complex antioxidative defense systems to maintain reactive oxygen species (ROS)-
scavenging ability and control intracellular (ROS) homeostasis [19, 20]. These data demonstrated that
overexpression of GarWRKY5 in transgenic Arabidopsis plants resulted in increased activities of
antioxidative enzymes, which was associated with the increased salt tolerance of the transgenic
Arabidopsis plants.

The GarWRKY5 regulatory network in salt stress
To identify potential target genes of GarWRKY5, we then performed RNA-sequencing (RNA-Seq) analysis
of 35S:GarWRKY5 and wild-type plants grown under salt stress for 0 d or 3 d. The SOD and POD activities
were assayed in the three independent GarWRKY5-overexpressed transgenic lines (GarWRKY5–1,
GarWRKY5–6 and GarWRKY5–14),, with three independent biological replicates of each line. In total,
expression of 398 genes was significantly changed in the GarWRKY5-OE lines compared with the wild-
type plants under normal growth conditions (0 d NaCl). Among them, 253 differentially expressed genes
(DEGs) were upregulated in the OE lines whereas 145 DEGs were down-regulated (OE 0d vs WT 0d;
Supplementary Table S2).. These genes represented the candidate downstream genes regulated directly
or indirectly by GarWRKY5.

GO enrichment analysis was performed on the 253 upregulated DEGs and 145 downregulated genes,
respectively. For the upregulated DEGs, under “biological process,” oxidant detoxification, response to
jasmonic acid and salicylic acid, response to salt stress and osmotic stress were significantly enriched,
like glucosyltransferase activity and calcium ion binding in “molecular function,” and vacuole and protein-
containing complex in “cellular component.” For downregulated DEGs, response to ethylene, oxidative
stress and abiotic stimulus were significantly enriched in “biological process,” but no categories were
significantly enriched with respect to “molecular function” and “cellular component” (Supplementary
Table S3)..

GO enrichment analysis showed there were 19 DEGs involved in salt stress and the osmotic stress
process. These 19 genes were grouped into two main categories, namely ROS scavenging and response
to hormone. The “ROS-scavenging group” included glutathione S-transferases (GSTs) (AT1G02920 and
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AT1G02930) and superoxide dismutase (SOD) (AT1G08830 and AT2G28190). The “response of hormone
group” included jasmonic-acid-response genes (AT1G43160, AT1G56650, AT3G16470, AT4G23600 and
AT5G24770) and salicylic-acid-response genes (AT1G43160 and AT2G33380) (Table 1)..

Because GarWRKY5 was homologous to AtWRKY70 [14], we performed network analysis for these 19
DEGs and AtWRKY70 using the STRING database, version 11.0 (https://string-db.org/). The result
showed that AtWRKY70 could regulate AT1G02930 (glutathione S-transferase F6, GSTF6) and
AT5G24770 (acid phosphatase VSP2) (Supplementary Figure S1).. In addition, we analysed the
promoters (1-kb upstream of the translation start sites) of the 19 DEGs using the JASPAR database [21].
Promoter region screening showed that all 19 DEGs had three to ten W-box motifs in their promoter
regions, a DNA-sequence motif (T)TGAC(C/T) which could bind to a WRKY transcription factor (Table 1)..
Based on the data presented in this study, we hypothesize that GarWRKY5 may be a positive transcription
regulator involved in plant response to high salinity stress through the ROS-scavenging system such as
by activating expression of GST and SOD genes by jasmonic acid-mediated or salicylic acid-mediated
signaling pathways.

Discussion
WRKY TFs are key regulators of many plant processes, including responses to biotic and abiotic stresses,
senescence, seed dormancy and seed germination [22]. Recent studies have broadened our knowledge of
the WRKY TF family and its functions in salt stress responses in cultivated cotton [18, 23, 24]. However,
wild relatives of crops represent potentially valuable gene pools and are primary source of important
genes. In the previous study [14], by using a D-genome diploid species (G. aridum) from the Pacific
coastal states of Mexico, which shows remarkable tolerance to salt stress, we set out to perform
transcriptome analysis and identified the response of 28 WRKY TFs in G. aridum to salt stress conditions.
Based on overexpression of GarWRKY17 and GarWRKY104 in Arabidopsis, functional analysis indicated
that these two genes could positively regulate salt tolerance in different developmental stages of
transgenic Arabidopsis [14]. In the present study, we have provided evidence that GarWRKY5 positively
regulates salt stress by overexpressing GarWRKY5 in Arabidopsis and silencing it in upland cotton.
Together with the findings from the previous study, we have concluded that GarWRKYs from G. aridum
might play a significant role in modulation of salt-stress response and could potentially be utilized to
improve salt tolerance in cultivated cotton and other crops.

In the salt stress, the plants can accumulate ROSs and enhance the expression of ROS-scavenging
enzymes. Alleviation of oxidative damage by scavenging ROSs is an important strategy by which plants
can tolerate stress [25]. Transgenic plants overexpressing ROS-scavenging enzymes such as SOD,
glutathione S-transferase/glutathione peroxidase (GST/GPX), and ascorbate peroxidase (APX) have
shown increased tolerance to osmotic, oxidative stress, and temperature [26–28]. In the current study, the
activities of POD and SOD were higher in the GarWRKY5-OE lines than in the wild-type plants and
contributed to the increased salt tolerance of the transgenic Arabidopsis plants. Meanwhile, based on GO
enrichment and prediction of the W-box motif, ROS-scavenging genes were enriched, including

https://string-db.org/
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glutathione S-transferases (GSTs) (AT1G02920 and AT1G02930), and superoxide dismutase (SODs)
(AT1G08830 and AT2G28190) in the GarWRKY5-OE lines. They contained 6–10 W-box motifs at their
promoter region. GSTs and SODs could be regarded as candidate target genes to which GarWRKY5 binds.
Taken together, we hypothesize that GarWRKY5 may be a positive transcription regulator in response to
high salinity stress through the ROS-scavenging system by activating expression of GST genes,
highlighting the importance of GarWRKY5 as a metabolic engineering tool for improvement of salt stress
in cotton.

GarWRKY5 shows sequence homology with OsWRKY45 in rice and AtWRKY70 in Arabidopsis [14]. The
expression of rice WRKY45 (OsWRKY45) was markedly induced in response to the stress-related hormone
abscisic acid (ABA) and various stress factors, e.g. application of NaCl, polyethylene glycol (PEG),
mannitol or dehydration. Constitutive over-expression of OsWRKY45 conferred a number of properties to
transgenic plants, including increased resistance to the bacterial pathogen, and increased tolerance to
salt and drought stresses in Arabidopsis [29]. GST and cytochrome P450 genes are regulated by WRKY45
in rice [30]. In this study, network analysis for AtWRKY70 andthe 19 DEGs enriched with respect to the salt
stress and osmotic stress processes by the STRING database showed that AtWRKY70 could regulate
AT1G02930 (glutathione S-transferase F6, GSTF6). All these observations showed that GarWRKY5 might
have regulatory mechanisms similar to those of OsWRKY45 in rice and AtWRKY70 in Arabidopsis.

Previous studies have demonstrated that the Group III WRKY members may play prominent roles under
biotic and abiotic stress responses. For example, overexpression of a grape Group III WRKY transcription
factor gene, VlWRKY48, in A. thaliana increased disease resistance and drought stress tolerance [31].
Another Group III member, AtWRKY46, functioned in both basal resistance against pathogens and
tolerance to oxidative stress and aluminium toxicity to be induced by drought, salt and oxidative stresses
[32]. Overexpressed OsWRKY45 in Arabidopsis increased pathogen defense, drought and salt resistance
[29]. Overexpression of AtWRKY70 led to upregulation of PR genes and downregulation of PDF1.2,
leading to enhanced resistance against biotrophic pathogens and enhanced susceptibility to necrotrophic
pathogens. AtWRKY70, as a repressor of JA-responsive genes and an activator of SA-induced genes,
integrating signals from these mutually antagonistic pathways [33]. The function of Group III WRKY
members may be a node of convergence that integrates biotic and abiotic stress signals, so they have
great potential for increased stress tolerance [34]. Encoding a member of the Group III WRKY family, the
potential role of GarWRKY5 in mediating response to multiple stress factors needs to be further
investigated.

Conclusions
Based on the data presented in this study, we hypothesize that GarWRKY5 may be a positive transcription
regulator in plant response to high salinity stress through the ROS-scavenging system, such as activating
expression of GST and SOD genes by the jasmonic acid- or salicylic acid-mediated signaling pathway.

Materials And Methods
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Plant materials and treatment conditions
The National Wild Cotton Plantation in Hainan Island, China, kindly supplied seeds from the wild
Gossypium species G. aridum. The same treatment procedure was used as described by Xu et al. (2013)
[35]. The G. aridum seeds were germinated in distilled deionized water, the growth conditions were 60%
humidity, the day and night temperature were 28℃ and 23℃ respectively, photoperiod of 12h light/12h
dark in the growth chamber. The germinated seeds were planted into nutritional soil and cultured in the
plant growth chamber with the same set conditions. The uniform cotton seedlings with about 20cm in
height and four true leaves were transferred into paper cup with 1×Hoagland’s nutrient solution. After
three days, the uniform cotton seedlings were treated for 200 mM NaCl for 0, 1, 3, 6, 12, 24 and 72 h, and
untreated seedlings were used for the control. Root and leaf tissues were collected respectively at each
stage under salt stress treatment. All samples were immediately frozen in liquid nitrogen and stored at –
70℃.

Phylogenetic analysis of GarWRKY5 genes
A phylogenetic tree was constructed using ClustalW alignment and the Neighbor-Joining (NJ) method in
MEGA 7.0 software [36] (https://www.megasoftware.net/), with 1,000 replicates bootstrap test. The ratios
of nonsynonymous to synonymous substitutions (Ka/Ks) between the paralogous pairs were analyzed
with DnaSP v6.0 software [37].

Fluorescence real-time qPCR
The RNA sequencing samples that were also isolated used to perform real-time quantitative (qPCR)
analysis. Total RNA samples with 2μg per reaction were reverse transcribed into cDNA by using M-MLV
Reverse Transcriptase (Promega, USA). qPCR specific primers were designed based on the candidate
gene sequences close to the 3’ end using Beacon Designer 7.0 software from Premier Biosoft
International, Palo Alto, CA, USA. The Histone3 (GenBank NO: AF024716) was used as reference gene.
The light cycler carried out using IQ SYBR Green Supermix (Bio-Rad, USA) based on the manufacturer’s
instructions and the qPCR products were quantified using the ABI 7500 fast (Applied Biosystems, USA).
The amplification reactions conditions for PCR were performed as follows: 94°C for 3 min, followed by
40 cycles at 94°C for 15 s, 60°C for 15 s and 72°C for 30 s. The relative expression levels were calculated
using the 2-ΔΔCt method with three biological replicates and three experimental replicates [38].

Analysis of salt tolerance in transgenic Arabidopsis plants
For the salt tolerance of GarWRKY5 transgenic Arabidopsis plants during the seed germination stage, 50
seeds of T2 generation transgenic lines (three lines for GarWRKY5) were surface sterilized and sown on
Murashige & Skoog (MS) medium with and without 150 mM NaCl, respectively. The wild type (WT) was

https://www.megasoftware.net/
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used to control. After ten days, the germination rate of seeds was calculated. The experiment was
repeated at least three biological replicates. For further verification overexpression of GarWRKY5 could
enhance tolerance to salt stress during vegetative growth, sterilized seeds of WT and T2 transgenic
Arabidopsis were sown in soil. After 20 days, the seedlings were grown in a pot supplemented with 150
mL NaCl solution (150 mM/L) and the distilled deionized water was used for control. The phenotype of
seedlings was observed after four weeks. For the determination of antioxidant enzymes activity, three-
week-old seedlings from WT and T2 generation of three GarWRKY5–overexpressing transgenic lines
(GarWRKY5–1, GarWRKY5–6 and GarWRKY5–14) were soaked in 150 mM/L NaCl solution for 24 h.
Leaves of at least ten seedlings were collected from the wild type and three transgenic lines, respectively.
The activity of peroxidase (POD) and superoxide dismutase (SOD) was determined based on the
procedure described by Liu et al. (2008)[39]. It is one unit of SOD activity that the mount of enzyme
required to cause 50% inhibition of nitro blue tetrazolium (NBT) reduction. The SOD was measured at 560
nm by the ultraviolet spectrophotometer. The activity of Peroxidase (POD) was analyzed at 470nm using
guaiacol as a substrate by the ultraviolet spectrophotometer. The experiment was performed in 50
mmol/L phosphate buffer, 50 mmol/L guaiacol and 2% H2O2 and 2 μl of enzyme extract were added. The
data was recorded after adding 2.0 ml 20% chloroacetic acid. All the above procedures of enzyme
extraction were carried out at 0–4 ℃. The enzyme assays were performed in three biological replicates.

Virus-induced gene silencing (VIGS) assays
In order to knockdown the expression of the GhWRKY5 gene, a 389-bp fragment of the GhWRKY5 cDNA
from TM–1 was amplified using the VIGS primers. The resulting PCR product with double digested (XbaI
and KpnI) was recombined into XbaI-KpnI- digested pTRV2 in order to produce pTRV2::GhWRKY5. The
pTRV2::GhWRKY5 vector was introduced into theAgrobacterium strain GV3101 by means of
electroporation (Bio-Rad, Hercules, CA, USA). For the VIGS assay, the GV3101 containing pTRV1, pTRV2
(mock-treated controls), pTRV2::GhWRKY5 and pTRV2::GhCLA1 respectively were used for VIGS
experiments. The strains were grown overnight at 28°C with shaking at 150 rpm in LB broth containing
two antibiotics kanamycin and rifampicin in concentrations of 50 mg/L each. The Agrobacterium were
harvested by centrifugation for 5 min at 5,000 rpm, and resuspended in infiltration buffer (10 mM MES,
10 mM MgCl2 and 200 mM acetosyringone) to a final OD600 of 2.0. The Agrobacterium strains with the
TRV1 or TRV2 vectors were mixed by equal volume and incubated for three hours at 28℃. Seedlings with
mature cotyledons but no visible true leaf (about one-week post-emergence) were infiltrated by inserting
the Agrobacterium suspension into the cotyledons surface via lightly pricking with a syringe. The plants
were grown at 23°C (day/night) in an illumination incubator  with a 16 h light/8 h dark cycle and at a
relative humidity of 60% for one week [40–42]. VIGS experiments were repeated at least three times with
more than five plants for each construct per repeat.

Transcriptome sequencing and DEGs analysis
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Approximately，a total of 8 μg RNA per sample was used. The RNA purity and quality were assessed by
using an Agilent 2100 Bioanalyzer (Agilent Technologies, USA) and a Qubit® 2.0 Fluorometer (Invitrogen,
Carlsbad, CA, USA). Three biological replicates RNA samples were prepared for library construction and
sequencing. Based on the manufacturer’s guide protocol of kit (Illumina® TruSeq™ RNA Sample
Preparation Kit (Illumina Inc. San Diego, CA, USA)), the cDNA libraries were prepared. The cDNA libraries
were sequenced based on an Illumina HiSeq™ 2000 with 100bp single end reads each. The basis of gene
expression analysis was as follows the number of unambiguous clean tags for each gene was calculated
and then normalized to TPM (number of transcripts per million clean tags) [43, 44].

The reads from RNA-Seq were aligned to the reference genome (TAIR10 data) using Tophat v.2.0.11,
which was compatible with Bowtie2 v2.2.1[45]. All reads were allowed only one nucleotide mismatch.
Clean reads mapping to reference sequences from multiple genes were filtered out. For differentially
expressed genes (DEGs) analysis, we adopted a conservative criterion by choosing consistent results of
cuffdiff (ref), with |log2 (fold change)|≥1 and significant expression with FDR < 0.05 and genes FPKM
value ≥ 1.
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GO: Gene Ontology
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SOD: Superoxide dismutase
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VIGS: Virus-induced Gene Silencing
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Table

Table 1  Nineteen DEGs involved in salt stress and osmotic stress process based

on GO enrichment analysis
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Gene ID Gene Annotation log2
(OE 0d vs WT 0d) padj W-box

AT1G02920 glutathione S-transferase F7 1.50 4.706E-15 6

AT1G02930 glutathione S-transferase F6 1.25 1.1499E-20 8

AT1G08830 superoxide dismutase [Cu-Zn] 1.16 9.3988E-31 6

AT1G27730 zinc finger protein STZ/ZAT10 1.19 4.2955E-07 5

AT1G43160 ethylene-responsive transcription factor RAP2-6 1.59 8.063E-08 8

AT1G52400 beta glucosidase 18 1.51 2.5569E-18 3

AT1G56650 transcription factor MYB75 2.50 9.7036E-37 3

AT1G65690 late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein 1.29 6.2703E-06 7

AT2G28190 copper/zinc superoxide dismutase 2 1.44 5.1156E-56 10

AT2G33380 caleosin 3 1.63 1.2821E-33 4

AT2G38750 annexin D4 1.29 3.9269E-23 4

AT2G38760 annexin D3 1.25 1.6239E-12 6

AT3G16470 JA-responsive protein 1 1.07 6.0879E-12 4

AT3G49580 protein RESPONSE TO LOW SULFUR 1 1.41 3.7982E-06 5

AT4G23600 cystine lyase CORI3 1.06 0.00040635 5

AT4G30650 putative low temperature and salt responsive protein 1.19 6.0605E-18 10

AT5G24660 protein RESPONSE TO LOW SULFUR 2 1.80 2.4011E-10 6

AT5G24770 acid phosphatase VSP2 1.31 1.2086E-06 5

AT5G59820 high light responsive zinc finger protein ZAT12 1.24 1.4181E-05 8

Figures
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Figure 1

Structure, evolution and expression of GarWRKY5.
A: Identification of the WRKY domain. The
approximately 60-amino-acid WRKY domain and C-X7-CX23-HXC-type zinc-finger-like motif. B:
Phylogenetic analysis of GarWRKY5 between homologous genes from G. hirsutum
(Gh_A02G0029/Gh_D02G0043), G. raimondii (Gorai.005G003900) and G. arboreum (Cotton_A_04316). C:
The expression of GarWRKY5 in different tissues and organs from G. aridum.
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Figure 2

The identification of salt tolerance in the GhWRKY5-silenced plants by virus-induced gene silencing.
A:
The leaves of TM-1 turned white after TRV2::GhCLA1 gene silencing, and empty vector (TRV2:00) leaves
remained as green as the wild-type TM-1. B: The leaves of ‘Miscott,’ a salt-tolerant cultivar, withered and
new leaves grew slowly. C: The leaves of ‘Su12,’ a salt-sensitive cultivar, withered, fell off and new leaves
grew slowly.
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Figure 3

Overexpression of GarWRKY5 regulates salt tolerance in Arabidopsis.
A: The germination rate of
transgenic Arabidopsis lines overexpressing GarWRKY5 gene. B: GarWRKY5-OE lines were growth on soil
medium containing 0mM, 150mM and 200mM NaCl. C: The activity of SOD. D: The activity of POD.
Student’s t-test: **P<0.01.
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