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Abstract. According to the World Health Organization 

(WHO), COVID‑19 has caused more than 6.5 million deaths, 

while over 600 million people are infected. With regard to 

the tools and techniques of disease analysis, spatial analysis 

is increasingly being used to analyze the impact of COVID‑19. 

The present review offers an assessment of research that 

used regional data systems to study the COVID‑19 epidemic 

published between 2020 and 2022. The research focuses on: 

categories of the area, authors, methods, and procedures used 

by the authors and the results of their findings. This input will 
enable the contrast of different spatial models used for regional 

data systems with COVID‑19. Our outcomes showed increased 

use of geographically weighted regression and Moran I spatial 

statistical tools applied to better spatial and time‑based gauges. 

We have also found an increase in the use of local models 

compared to other spatial statistics models/methods.

Introduction

Modeling studies and spatial analysis have tried to reduce 

the effects of different instructive variables on the number of 

COVID‑19 cases (1). The beginning and continued advance‑

ment in geospatial expertise have allowed the local and global 

modeling of social and economic factors and ecological condi‑

tions that impact the occurrence of COVID‑19 (2). Certainly, 
geospatial techniques and Geographical Information Systems 

(GIS) are vital in investigating extensive information on the 

COVID‑19 pandemic worldwide (3). Clustering, simulation 
and prediction, data aggregation, spatial distribution and 

spatial tracking are some methods used in disease transmission 

analyses. At the same time, geospatial and GIS provide the 

interactions between diseases and the environment (4). 
Some non‑spatial research has been carried out to address 

numerous issues connected to COVID‑19 impact  (5). In 
Saudi Arabia, as a result of COVID‑19, the laser Hajj (Umrah 

pilgrimage) and Hajj pilgrimage services were fully suspended 

in Saudi Arabia for more than two years, which resulted 

in a severe negative to the country's economy and placed a 

barrier on private and public sectors such as hospitality and 

tourism, transportation and airlines and so on (5). Recently (6), 
developed a background for a dynamic data‑driven clustering 

to lessen the hostile economic effects of Covid‑19 lockdown 

restrictions. Their outcomes showed that ‘the proposed algo‑

rithms improved the relevant metrics by approximately 50% 

in the lockdown experiments and 60‑80% in potentially less‑

ening economic loss’ (7) projected ‘the infection probability of 
COVID‑19 by investigating social distancing and ventilation 

strategies as effective measures to mitigate disease infection 

risks and transmission’. Based on nurturing the abilities of 

communities to tackle the COVID‑19 pandemic, a study (8) 
stated that ‘supportable architectures and designing healthy 

urban infrastructures may be effective planning policies in 

response to the COVID‑19 pandemic to lessen the menace of 

infection’.

According to the World Health Organization (WHO), 

COVID‑19 has caused more than 6 million deaths, while over 

600 million people are infected. Thus, there is a need to review 

articles that study the COVID‑19 epidemic to enable federal, 

state, and local governments to plan against the web of another 

pandemic in the future. In this paper, we offer an assessment 

of recent research works between 2020 and 2022 that used 

regional data systems to assess the COVID‑19 epidemic, 

which focuses on categories of the area, authors, methods, and 

procedures used by the authors and the results of their findings.

Materials and methods

This research will be based on an assessment of research 

works that used regional data systems to study the COVID‑19 

epidemic published between 2020 and 2022. The query used 

in this research work included: Local Moran's Index, Moran's 

I, OLS, SLM, SEM, GWR, MGWR and others, the area, 
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authors, methods, and procedures used by the authors and the 

results of their findings; with the main keywords ‘COVID‑19’, 
‘GIS’ and/or ‘spatial’ in the well‑known research databases 

including Scopus, Web of Sciences, Google Scholar, Mendeley 

and Collabovid.

Subsequently, we could be grouped into Methods (Local 

Moran's Index, Moran's I, OLS, SLM, SEM, GWR, MGWR 

and others), Author(s), region, nature of COVID‑19 and result. 

Furthermore, we were able to draw a relationship between the 

methods with the following: Bar charts representing the spatial 

Methods/Models used by various authors (see Fig. 1), Bar 
charts representing hotspots and clustering, global, local, and 

other models used during Covid‑19 pandemic (see Fig. 2) and 
Bar charts representing the combination of models/methods 

used during Covid‑19 pandemic (see Fig. 3).

Hotspots and clustering: Moran's I statistic. The autocor‑

relation in the spatial analysis may be computed locally 

or globally. Additionally, spatial autocorrelation can give 

details about each district to determine whether the value of a 

particular indicator is the same as or different from that of its 

sub‑regions (9). Moran's I local statistics were applied to deter‑
mine the localized spatial autocorrelation at the research site. 

The global spatial autocorrelation or clustering is calculated 

using the Moran's I statistic (10), which is defined as (11): 

(1)  

Where xi represents the number of cases in site i and xj repre‑

sents the number of site cases j ( j ≠ i). The average value of 

xi with n sample size represented by x̄ . s2 is the variance of xi. 

The weight matrix which computes connectivity in site i with 

neighbor site j is represented by wij. A typical specification 
of the contiguity relationship in the spatial weight matrix is 

written below (11):

 (2)

Moran's I could take on a range of values between ‑1 and 

1 (12). If Moran's I value is zero (0), it shows a random pattern, 
a spread‑out pattern indicates that the values are negative (13), 
and a clustered pattern indicates that the values are posi‑

tive (11). One disadvantage of global Moran's I is that it did 
not show precisely where the cluster is. Moran's I is used to 

calculate the local spatial correlation, as estimated by (11):

s (3)

‘High‑low, high‑high, low‑low and low‑high’ clusters are the 

four main categories of spatial autocorrelation (11). Moran's I 
positive value consists of low and high‑high clusters. On the 

other hand, a negative value consists of low‑high clusters and 

high‑low clusters cases. Based on Moran's I value, the location 

is a spatial outlier whenever the value is high negative value, 

and the location is spatially clustered when the value is high 

positive (14). A high‑high cluster indicates that the surrounding 
and the neighboring sites have high values (15). Equally, a 
low‑low cluster indicates that both the surrounding and the 

neighboring sites are having low. The remaining areas that are 

not considered indicate no critical clustering of cases (16). 

Ordinary least squares. The Ordinary Least Squares (OLS) 

is a regression method used to investigate the associations 

between a set of explanatory or a dependent variable and inde‑

pendent variables and has the general form of:

(4)

Where, xi represent the selected explanatory variables vector,  

yi represent the dependent variable, εi represent a random error 

term, β0 represent the intercept and β represent the vector of 

regression coefficients (17). The two main implicit OLS norms 
are: the study area must be constant with error terms not corre‑

lated, and the observations are mutually independent (18).
The OLS considered that county‑level observations are 

independent of each other and do not observe spatial depen‑

dence with the fundamental assumption of similarity and 

spatial non‑variability (19).

Spatial lag model (SLM). This method can house the spatial 

need between explanatory and dependent variables by inte‑

grating a ‘spatially lagged dependent variable’ in the regression 

model (18). SLM is denoted as:

 (5)

Where Wi represent the vector of spatial weights; yi value 

for dependent variable; and xi, β0, β, εi are the same as in 

Equation 4 (17). ‘The weight matrix (Wi) specifies how the 
neighbors at district i and connects one independent variable 

to the explanatory variables at that location’ (20). According 
to (21) ‘spatial lag is a variable that averages the neighboring 
values of a location’. Also (16),  stated that ‘the SLM accounts 
for autocorrelation in the model with the weight matrix’.

Spatial error model. The Spatial Error Model (SEM) assumes 

that OLS error terms or residuals have spatially correlated 

or spatial dependence (22). Thus, residuals are disintegrated 
into random error terms, and the general form of the model is 

given as:

 (6)

Where at county i, yi value for the dependent variable, ξi 

specifies the spatial error component, λ specifies the level 

of correlation between these components, and εi represent 

a spatially uncorrelated error term (17). Wi represent spatial 

weights matrix and Wiξi represent the extent to which the 

spatial errors component is correlated with one another for 

nearby observations. The SEM accounts for autocorrelation in 

the error with the weight's matrix (23).

Geographically weighted regression (GWR). Geographically 

Weighted Regression (GWR) is a model that shows the rela‑

tionship between variables over space. Thus is an extension of 

global regression models. The GWR model is given as:

 (7)

Where at an area i, yi is the value for dependent variable, 

the intercept is represented by βi0, βij is the jth regression 
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parameter, Xij is the value of the jth explanatory parameter, 

and εi is a random error term (18).
The GWR is a linear regression model that models the 

spatially varying association between an independent and 

dependent variable  (24). The OLS, SEM, and SLM (global 
regression model) methods are applied to only spatial dataset. 

The global regression model cannot account for a nonstationary 

spatial issue, which explains that the relationship between the 

Figure 3. Bar chats representing the combination of models/methods used during Covid‑19 pandemic.

Figure 2. Bar chats representing hotspots and clustering, global, local, and other models used during Covid‑19 pandemic.

Figure 1. Bar chats representing the spatial Methods/Models used by various authors.
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independent and dependent variables might vary over space (21). 
Consequently (25), proposed that ‘global regression estimates 
parameters that are average of the entire area of interest rather 

than specific locations within an area’ (26). On the other hand, 
GWR model overwhelms this constraint by cumulative the local 

efficiency of the model that includes geographic context where 
parameters are derived for each location distinctly (27).

Multiscale geographically weighted regression (MGWR). 

It is expected that the gauge of all involved variables could 

not be the same over the space as GWR (23). Consequently, 
Multiscale Geographically Weighted Regression (MGWR) is 

an extension of GWR that helps to study this relationship at 

different scales with multiple bandwidths. It relaxes the GWR 

assumption by allowing other processes to use at different 

spatial scales  (28). This is achieved by deriving the best 
bandwidth vector in which each element indicates the spatial 

scale at which a particular function occurs. This latest version 

of GWR is MGWR, which is similar in intent to Bayesian 

no separable Spatially Varying Coefficients (SVC) models, 
although potentially supplying a more flexible and scalable 
framework in which to examine multiscale processes (29). It 
can be formulated as:

 (8)

Where at an area i, yi is the value for dependent variable, βbwj 

represent the bandwidth used, Xij represent the value of the 

jth explanatory parameter, and εi is a random error term (30). 
βbwj is the bandwidths, which are utilized to calibrate the 

jth conditional relationship (18). Compared to MGWR has 
many merits, principally it can reduce collinearity, precisely 

represent spatial heterogeneity and decrease the bias in the 

parameter estimates (27). 
In reality, MGWR is frequently regarded as a generalized 

additive model (GAM), allowing it to be standardized using 

back‑fitting algorithms  (30) by redeveloping MGWR as a 
GAM, we have:

(9)

Where fij [replacing βbwj Xij in (8)] is the jth additive term (2) 
and is a flattening function applied to jth explanatory variable at 

county i. According to (30), ‘Calibrating the model will result in 
a set of bandwidths, one for each of the j explanatory variables 

and differences in bandwidths represent differences in spatial 

scales, and by taking the effect of scale in spatial processes’. 

Thus, MGWR captures spatial heterogeneity accurately (27).

Spatial statistics and COVID‑19

Hotspots and clustering: Moran's I statistic. Hotspots and 

clustering are popular methods used in the study of COVID‑19 

(see Table  I), which can enable targeted involvement by 
federal, state, and local agencies. ‘The global univariate 

Moran's I method is the most widely used, although it has 

mainly been utilized with socioeconomic and COVID‑19 data. 

It can evaluate whether the data tend to be clustered, dispersed, 

or spatially random. It has been used to identify clustering of 

COVID‑19 and facilitate the production of vulnerability and 

risk maps’ (31,33‑35,61‑64).

As a global indicator, ‘Moran's I neglects the instability 

of local spatial processes, which led to the development of 

the local version of Moran's I which identifies both the spatial 
clustering of entities with similar values and the occurrence 

of divergent values. This latter version is also known as a 

Local Indicator of Spatial Association (LISA) (14,37,38,65,59) 
and (41) in China (50), and (58) in the United States, and (66) in 
Mexico (50), in Italy (11), in Malaysia and (15) in Bangladesh  
‘produced LISA cluster maps to analyze the characteristics of 

COVID‑19 at various spatial levels of aggregation’.

Global regression modelling. In spatial modeling problem 

studies (67), ‘it is common to start with OLS regression to 
categorize significant relationships between the independent 
and dependent variables. If the residuals of an OLS model are 

spatially autocorrelated, then it is appropriate to use spatial 

regression‑based methods’ (68).
For instance, ‘SLM can be used to scrutinize how actions at a 

location influence similar actions in nearby locations (i.e., spatial 
interaction); and SEM can be useful to account for autocorrelation 

of the residuals’ (2,21,40‑42,46,49). From Table I, it can be observed 
that Spatially Combined Autoregressive models (SAC) have also 

been used as a mixture of the previous models to concurrently 

consider SEM and SLM in the study COVID‑19 (18,19,21,58,69) 
and (23) uses SAC to analyze the ‘characteristics of COVID‑19 at 
various spatial levels of aggregation’.

Local regression modelling. A local modeling process is an 

effective approach that builds upon traditional global regres‑

sion by allowing non‑stationary (local) rather than stationary 

parameter estimates to be computed’ (1).
Another common method is Geographically Weighted 

Regression (GWR), using the variables previously included in 

OLS regression’ (42,43,45‑47,70). ‘GWR creates a local model 
and calculates the parameters for all points of the sample 

considering the spatial variation in the relationships’ (49,71). 
It can consider ‘non‑stationary variables (such as climate, 

demographic factors, and environmental factors) and models 

the local relationships between those predictors and the patterns 

under study’ (50). It facilitates ‘the analysis of spatial varia‑

tion in a phenomenon in a given place, following Tobler's first 
law of geography that everything is related to everything else, 

but near things are more related than distant things’ (Tobler, 

1970). Regarding COVID‑19, GWR has been used to study 

the relationships between environment, disease, and a variety 

of socioeconomic activities. For example (45), used GWR and 
other models to ‘assess the evolution of air pollution during 

2020 in urban contexts in China’ (50).  studied ‘the geographic 
parallels between affected areas in the Po Valley, Italy, and 

Wuhan, China, where they found that pollution and land use 

play an important role in the distribution of COVID‑19 in 

both regions’ (1). used GWR to ‘identify relationships between 
sociodemographic variables (population density, age groups, 

diabetics) and COVID‑19 in Oman’ (42). demonstrated that 
‘GWR model best explains the spatial distribution of COVID‑19 

in the city of São Paulo, highlighting the spatial aspects of the 

data’. Spatial analysis has shown the spread of COVID‑19 in 

areas with highly vulnerable populations in Brazil.

(23) in India shown that ‘the global models perform poorly
in explaining the factors for COVID‑19 incidences. MGWR 
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Table I. Spatial analysis models.

Region of study Model/method Covid‑19 data Results Study

Pacific and Local Moran's index, Confirmed According to the results that’ three conceptual  (9)
Colombian Moran's I, and Getis‑ cases models are herein proposed that relate the indices 

Caribbean Ord index with the geomorphological characteristics:  

(a) the higher the grouping, the higher the

geomorphological heterogeneity; (b) the higher

the degree of clustering, the smaller the

geomorphological homogeneity; (c) the higher

the degree of clustering, the smaller the

geomorphological complexity. Lastly, it is

established that sedimentation processes and

coastal erosion prevail along low coasts’.

Malaysia Moran's I Confirmed The study results ‘indicated significant changes (11)
cases in the COVID‑19 hotspots over time. At the

beginning of 2020, the state of Selangor and

Sarawak were the first locality to become a
significant COVID‑19 hotspot. Furthermore, this
research showed all affected areas during the

study period. Overall, a non‑random distribution

of COVID‑19 occurrences was detected, thus

suggesting a positive spatial autocorrelation.

Many parties are affected by the COVID‑19

pandemic, especially those involved in healthcare

provision, financial assistance allocation, and law
enforcement’.

Chinese cities Moran's I Confirmed The paper finds that ‘Foreign direct investment (14)
cases (FDI) plays a positive role in promoting green

total factor productivity (TFP) in high‑high and

high‑low cluster cities, and the technology

spillover effect of highly agglomerated FDI is

more significant than that of decentralized FDI,
thus promoting the upgrading and agglomeration

of green TFP and surrounding cities. The positive

benefits of low‑high and low‑low cluster cities
are not significant. Therefore, it is necessary to go
beyond its policy of administrative regions and

give full play to radiation effect of High‑high FDI

agglomeration cities and promote the green TFP

of their surrounding cities’.

Bangladesh Moran's I, GWR,  Confirmed ‘Twelve statistically significant high rated (15)
IDW and Getis‑Ord cases clusters were identified by space‑time scan
Gi statistics statistics using a discrete Poisson model. IDW

predicted the cases at the undetermined area,

and GWR showed a strong relationship between

population density and case frequency, which

was further established with Moran's I (0.734;
P≤0.01). Dhaka and its surrounding six districts
were identified as significant hotspots whereas
Chattogram was an extended infected area,

indicating the gradual spread of the virus to

peripheral districts. This study provides novel

insights into the geostatistical analysis of

COVID‑19 clusters and hotspots that might assist
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Table I. Continued.

Region of study Model/method Covid‑19 data Results Study

the policy planner to predict the spatiotemporal  

transmission dynamics and formulate imperative  

control strategies of SARS‑CoV‑2 in Bangladesh.  

The geospatial modeling tools can be used to 

prevent and control future epidemics and  

pandemics’.

United States SLM, SEM, GWR, Confirmed The results suggested that ‘even though incorpo‑ (18)
and MGWR cases rating spatial autocorrelation could significantly 

improve the performance of the global ordinary 

least square model, these models still represent 

a significantly deficient performance compared to 
the local models. Moreover, MGWR could 

explain the highest variations with the lowest 

AICc compared to the others. Mapping the effects 

of significant explanatory variables (i.e., income 
inequality, median household income, the 

proportion of black females, and the proportion 

of nurse practitioners) on spatial variability of 

COVID‑19 incidence rates using MGWR could 

provide useful insights  

to policymakers for targeted interventions’. 

Bangladesh OLS, SLM, SEM, Confirmed The results of the models showed that ‘urban  (19)
GWR, and spatial  cases population percentage, monthly consumption,  

regression model  number of health workers, and distance from  

(SRM).  the capital significantly affected the COVID‑19  
incidence rates in Bangladesh. Among the four  

developed models, the GWR model performed  

the best in explaining the variation of COVID‑19  

incidence rates across Bangladesh with a R2 value  

of 78.6%. Findings from this research offer a  

better insight into the COVID‑19 situation and  

would help to develop policies aimed to prevent  

the future epidemic crisis’.  

31 European OLS, SLM, SEM,  Confirmed The result shows that ‘for the COVID cases, the  (21)
countries GWR, partial least  cases local R2 values, which suggesting the influences  

square (PLS) and  of the selected socio‑demographic variables on  

principal component COVID cases and death, were found highest  

regression (PCR)  in Germany, Austria, Slovenia, Switzerland,  

Italy. The moderate local R2 was observed  

for Luxembourg, Poland, Denmark, Croatia,  

Belgium, Slovakia. The lowest local R2 value  

for COVID‑19 cases was accounted for Ireland,  

Portugal, United Kingdom, Spain, Cyprus,  

Romania. Among the 2 variables, the highest local  

R2 was calculated for income (R2=0.71), followed  

by poverty (R2=0.45). For the COVID deaths, the  
highest association was found in Italy, Croatia,  

Slovenia, Austria. The moderate association was  

documented for Hungary, Greece, Switzerland,  

Slovakia, and the lower association was found  

in the United Kingdom, Ireland, Netherlands,  

Cyprus. This suggests that the selected  
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Table I. Continued.

Region of study Model/method Covid‑19 data Results Study

demographic and socio‑economic components,  

including total population, poverty, income, are  

the key factors in regulating overall casualties of  

COVID‑19 in the European region. In this study,  

the influence of the other controlling factors, such  
as environmental conditions, socio‑ecological  

status, climatic extremity, etc. have not been  

considered. This could be the scope for future  

research’.

India SLM, SEM, GWR, Confirmed The results show that ‘the global models perform  (23)
and MGWR cases poorly in explaining the factors for COVID‑19  

incidences. MGWR shows the best‑fit‑model  
to explain the variables affecting COVID‑19  

(R2=0.75) with lowest AICc value. Population  

density, urbanization and bank facilities were  

found to be most susceptible for COVID‑19  

cases. These indicate the necessity of effective  

policies related to social distancing, low mobility.  

Mapping of different significant variables using  
MGWR can provide significant insights for policy  
makers for taking necessary actions’. 

Brazil Moran's I and Confirmed The result showed that ‘the population density is  (31)
LISA clustering cases a key indicator for the number of deaths, whereas  

analysis the number of hospital beds is less related,  

implying that the fatality depends on the actual  

patient's condition. Social isolation measures  

throughout the State of Sao Paulo (SSP) have been 

gradually increasing since early March, an action  

that helped to slow down the emergence of the  

new confirmed cases, highlighting the importance  
of the safe‑distancing measures in mitigating the  

local transmission within and between cities in  

the SSP’. 

China Moran's I Confirmed The results showed that ‘most of the models,  (32)
cases except medical‑care‑based connection models,  

indicated a significant spatial association of  
COVID‑19 infections from around 22 January  

2020’.

China Health index of Confirmed The results showed that ‘both internal and  (33)
cities (HIC) model cases intercity population movements have been  

significantly affected by the COVID‑19 epidemic,  
and the decline in both was more than 50%  

at some points. &e intercity movement is more  

affected than the intracity movement, and the  

impact is more sustained. Compared with the  

same period before the outbreak, the health index  

of cities (HIC) in China decreased by 28.6%   

from January 20 to April 21, 2020’. 

China Moran's I Confirmed They found that ‘positive associations between  (34)
cases particulate matter (PM) pollution and COVID‑19  

case fatality rate (CFR) in cities both inside and  

outside Hubei Province. For every 10 µg/m3  
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Table I. Continued.

Region of study Model/method Covid‑19 data Results Study

increase in PM2.5 and PM10 concentrations, the  

COVID‑19 CFR increased by 0.24% (0.01‑0.48%)  
and 0.26% (0.00‑0.51%), respectively. PM  

pollution distribution and its association with  

COVID‑19 CFR suggests that exposure to such  

may affect COVID‑19 prognosis’. 

Brazil Local Moran's  Confirmed They observed that ‘an increasing trend in the (35)
index, Moran's I cases incidence rate in all states. Spatial auto‑correlation 

and log‑linear  was reported in metropolitan areas, and 178 

regression model  municipalities were considered a priority,  

and the local  especially in the states of Ceará and Maranhão.  

empirical Bayesian They also identified 11 spatiotemporal clusters  
estimator of COVID‑19 cases; the primary cluster included  

70 municipalities from Ceará state. COVID‑19  

epidemic is increasing rapidly throughout the  

Northeast region of Brazil, with dispersion towards 

countryside. It was identified elevated risk clusters 
for COVID‑19, especially in the coastal side’. 

All countries Moran's I and Confirmed The result shows that ‘southern, northern and  (36)
hot spot analysis cases western Europe were detected in the high‑high  

clusters demonstrating an increased risk of  

COVID‑19 in these regions and also the  

surrounding areas. Countries of northern Africa  

exhibited a clustering of hot spots, with a  

confidence level above 95%, even though these  
areas assigned low CIR values’. 

China Moran's I Confirmed The results show that: ‘(1) the epidemic spread  (37)
cases rapidly from January 24 to February 20, 2020,  

and the distribution of the epidemic areas tended  

to be stable over time. The epidemic spread rate  

in Hubei province, in its surrounding, and in some  

economically developed cities was higher, while  

that in western part of China and in remote  

areas of central and eastern China was lower.  

(2) The global and local spatial correlation

characteristics of the epidemic distribution

present a positive correlation. Specifically, the
global spatial correlation characteristics

experienced a change process from agglomeration

to decentralization. The local spatial correlation

characteristics were mainly composed of the

‘high‑high’ and ‘low‑low’ clustering types, and

the situation of the contiguous layout was

incredibly significant. (3) The population inflow
from Wuhan and the strength of economic

connection were the main factors affecting the

epidemic spread, together with the population

distribution, transport accessibility, average

temperature, and medical facilities, which affected

the epidemic spread to varying degrees.

(4) The detection factors interacted mainly
through mutual enhancement and nonlinear
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Table I. Continued.

Region of study Model/method Covid‑19 data Results Study

enhancement, and their influence on the epidemic  
spread rate exceeded that of single factors.  

Besides, each detection factor has an interval  

range that is conducive to the epidemic spread’. 

China MGWR Confirmed The results find that ‘mean temperature (MeanT), (38)
cases destination proportion in population flow from 

Wuhan (WH), migration scale (MS), and 

WH*MeanT, are generally promoting for Covid‑19 

incidence before Wuhan's shutdown (T1); the WH 

and MeanT play a determinant role in the disease 

spread in T1. The effect of environment on 

COVID‑19 incidence after Wuhan's shutdown 

(T2) includes more factors (including mean DEM, 

relative humidity, precipitation (Pre), travel 

intensity within a city (TC), and their interactive 

terms) than T1, and their effect shows distinct 

spatial heterogeneity. Interestingly, the dividing 

line of positive‑negative effect of MeanT and 

Pre on COVID‑19 incidence is 8.5˚C and 1 mm,  
respectively. In T2, WH has weak impact, but the 

MS has the strongest effect. The COVID‑19 

incidence in T2 without quarantine is also modeled 

using the developed GWR model, and the modeled 

incidence shows an obvious increase for 75.6% 

cities compared with reported incidence in T2 

especially for some mega cities. This evidences 

national quarantine and traffic control take 
determinant role in controlling the disease spread.  

The study indicates that both natural environment 

and human factors integrated affect the spread 

pattern of COVID‑19 in China’. 

United States Logistic regression  Confirmed The result show that ‘the two decision tree  (39)
(LR), random forest cases methods (RF and GBDT) outperformed the other  

(RF), k‑nearest  algorithms. Moreover, the results of the RF and  

neighbors (KNN),  GBDT indicated that higher spring minimum  

and (SVM) temperature, increased winter precipitation, and  

higher annual median household income were  

among the most substantial factors in predicting  

the hotspots’.  

China SLM Confirmed The result showed that ‘the spatial correlation  (40)
cases between taxi trips as gradually weakened after the  

outbreak of the epidemic, and the consumption  

travel demand of people significantly decreased  
while the travel demand for community life  

increased dramatically’ 

China Morans I Confirmed The result show that ‘the correlation experiment  (41)
cases with the new cases in the next two weeks shows  

that the risk estimation model offers promise in  

assisting people to be more precise about their  

personal safety and control of daily routine and  

social interaction. It can inform business and  

municipal COVID19 policy to accelerate recover’. 
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Table I. Continued.

Region of study Model/method Covid‑19 data Results Study

Brazil GWR Confirmed Their results have ‘demonstrated that the  (42)
cases geographically weighted regression (GWR)  

model best explains the spatial distribution of  

COVID‑19 in the city of São Paulo, highlighting  

the spatial aspects of the data. Spatial analysis  

has shown the spread of COVID‑19 in areas with  

highly vulnerable populations’. 

Oman MGWR Confirmed ‘As the relationships between these covariates  (1)
cases and COVID‑19 incidence rates vary  

geographically, the local models were able to  

express the non‑stationary relationships among  

variables. Furthermore, among the eleven selected  

regressors, elderly population aged 65 and above,  

population density, hospital beds, and diabetes  

rates were found to be statistically significant  
determinants of COVID‑19 incidence rates. In  

conclusion, spatial information derived from this  

modeling provides valuable insights regarding the  

spatially varying relationship of COVID‑19  

infection with these possible drivers to help  

establish preventative measures to reduce the  

community incidence rate’. 

Saudi Arabia GWR Confirmed The result shows that ‘the cities with the highest  (43)
cases population and population density were found to  

be at a higher risk of COVID‑19’. 

African ANOVA Confirmed They found a significant association between  (44)
countries cases international mobility based on the average annual  

air passengers carried and based on the apparent  

lack of capacity in most African countries'  

healthcare systems. This no doubt raises critical  

concern for these countries' capacity to control the  

virus's spread. Africa may unintentionally become  

a significant viral reservoir, with the potential for  
the creation of new strains in the future. 

China GWR and MGWR Confirmed ‘The results are crucial for understanding how  (45)
cases the decline pattern of particulate matter pollution  

varied spatially during the COVID‑19 outbreak,  

and it also provides a good reference for air  

pollution control in the future’. 

175 countries MGWR Confirmed ‘The percentage of the population age between  (46)
cases 15‑64 years (Age15‑64), percentage smokers  

(SmokTot.), and out‑of‑pocket expenditure  

(OOPExp) significantly explained global  
variation in the current COVID‑19 outbreak in  

175 countries. The percentage population age  

group 15‑64 and out of pocket expenditure were  
positively associated with COVID‑19. Conversely, 

the percentage of the total population who smoke  

was inversely associated with COVID‑19 at the  

global level’. 

United state  OLS and GWR Confirmed The result shows that ‘minority status and  (47)
cases language, household composition and  
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transportation, and housing and disability  

predicted COVID‑19 infection’. 

Iran Moran's I, OLS and Confirmed The spatial autocorrelation (Global Moran's I)  (48)
GWR cases result showed that ‘COVID‑19 cases in the  

studied area were in clustered patterns. For  

statistically significant positive z‑scores, the larger 
the z‑score is, the more intense the clustering of  

high values (hot spot), such as Semnan, Qom,  

Isfahan, Mazandaran, Alborz, and Tehran. Hot  

spot analysis detected clustering of a hot spot with 

confidence level 99% for Semnan, Qom, Isfahan,  
Mazandaran, Alborz, and Tehran, as well. The  

risk factors were removed from the model step by  

step. Finally, just the distance from the epicenter  

was adopted in the model. GWR efforts increased  

the explanatory value of risk factor with better  

special precision (adjusted R‑squared=0.44)’. 
United States GWR and MGWR Confirmed The result shows that ‘among the two local spatial  (49)

cases regression models, MGWR performs more  

accurately, as it has slightly higher Adj. R2 values  

(for cases, R2=0.961; for deaths, R2=0.962),  

compared to GWR's Adj. R2 values (for cases,  

R2=0.954; for deaths, R2=0.954). To inform  
policymakers at the nation and state levels,  

understanding the place‑based characteristics of  

the explanatory forces and related spatial patterns  

of the driving factors is of paramount importance.  

Since it is not the first‑time humans are facing  
public health emergency, the findings of this  
research on COVID‑19 therefore can be used as a  

reference for policy designing and effective  

decision making’. 

Italy Moran's I and GWR Confirmed The result shows that ‘aspects such as land take,  (50)
cases pollution can seriously influence the Covid‑19  

and justify a pattern as that observable in Italy.  

The analyses and observation of the Covid‑19  

also suggests that policies based on urban  

regeneration, sustainable mobility, green  

infrastructures, ecosystem services can create  

a more sustainable scenario able to support the  

quality of public health’. 

China GWR Confirmed They found out that the population flow out of  (51)
cases Wuhan had a long‑term impact on the epidemic's  

spread.

Germany Moran's I Confirmed The results show that ‘nitrogen dioxide (NO2) is . (52)

cases significantly associated with COVID19 incidence, 
with a 1 µg m‑3 increase in long‑term exposure to 
NO2 increasing the COVID‑19 incidence rate by  

5.58% [95% credible interval (CI): 3.35, 7.86%]’ 
London, UK Regression Confirmed The results are ‘compared to those for a later  (53)

coefficients cases period, April 18‑May 31. The findings show that 
despite some spatial diffusion of the disease,  
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a greater number of deaths continues to be  

associated with Asian and Black ethnic groups,  

socio‑economic disadvantage, exceptionally large  

households (likely indicative of residential  

overcrowding), and fewer from younger age  

groups. The analysis adds to the evidence showing 

that age, wealth/deprivation, and ethnicity are key  

risk factors associated with higher mortality rates  

from Covid‑19’. 

United State Spatially explicit Confirmed The results showed ‘substantial spatial variation  (54)
mathematical model cases in the spread of the disease, with localized areas  

showing marked differences in disease attack  

rates’.

Italy Artificial neural Confirmed The research ‘reaches the ambitious result of  (55)
networks and index cases forecasting the risk in different scenarios  

RCovid‑19 assuming different administrative policies in the  

Apulia region. Finally, the results of this research  

can be useful for local administrators and civil  

protection. Beyond this, also researchers and  

other government can exploit the proposed model  

to obtain maps of risk at different scales: urban,  

regional, and national’. 

China OLS Confirmed The results of the analysis showed that ‘the  (56)
cases COVID‑19 lockdown improved air quality in  

the short term, but as soon as coal consumption  

at power plants and refineries returned to normal  
levels due to the resumption of their work,  

pollution levels returned to their previous level’. 

New York City  Getis‑Ord (GI*) Confirmed The results showed that ‘the proportions of both  (57)
and Chicago, statistic) cases foreign‑born and Latinx residents are higher in  

USA New York City hot spots than cold spots (but hot  

spot values are similar to the rest of the city),  

whereas the opposite is true for Chicago with  

lower proportions of foreign‑born (P<0.06) and  

Latinx (P=0.12) residents in hot spots vs. other  

parts of the city’. 

South Korea Moran's I and Confirmed The result showed that ‘the spatial pattern of  (58)
retrospective space‑ cases clusters changed, and the duration of clusters  

time scan statistic became shorter over time’. 

China Moran's I, GWR,  Confirmed The results state that: ‘Population migration plays  (59)
MGWR and time‑ cases a two‑way role in COVID‑19 variation. The  

serial data and  emigrants’ and immigrants' population of Wuhan  

geographically and  city accounted for 3.70 and 73.05% of the total  
temporally weighted migrants’ population respectively; the restriction  

regression model  measures were not only effective in controlling  

(GTWR) the emigrants, but also effective in preventing  

immigrants. COVID‑19 has significant spatial  
autocorrelation, and spatial‑temporal  

differentiation influences COVID‑19’. 
China GWR Confirmed The results show that ‘the time series coefficients  (60)

cases of monthly PM2.5 concentrations distributed  

with a U‑shape, i.e., with a decrease followed by  
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shows the best‑fit‑model to explain the variables affecting 

COVID‑19 (R2=0.75) with lowest AICc value. Population 

density, urbanization and bank facility were found to be most 

susceptible for COVID‑19 cases. These indicate the necessity 

of effective policies related to social distancing, low mobility. 

Mapping of different significant variables using MGWR can 
provide significant insights for policy makers for taking neces‑

sary actions’ (18). Established that ‘even though incorporating 
spatial autocorrelation could significantly improve the perfor‑
mance of the global ordinary least square model, these models 

still represent a significantly deficient performance compared 
to the local models (72). Moreover, MGWR could explain the 
highest variations with the lowest AICc compared to the others. 

Mapping the effects of significant explanatory variables (i.e., 

income inequality, median household income, the proportion 

of black females, and the proportion of nurse practitioners) on 

spatial variability of COVID‑19 incidence rates using MGWR 

could provide useful insights to policymakers for targeted 

interventions’ in the United States of America.

Other spatial models. Pearson correlation has been used 

with all kinds of variables, but especially with socioeco‑

nomic data, for spatiotemporal analysis, risk maps, health 

accessibility, and environmental repercussions due to the 

pandemic (34,50,59,73).
 ‘Spearman and Kendall tests have been used with confirmed 

cases of COVID‑19 and socioeconomic variables, as well as with 

climate and air quality, to analyze the spatiotemporal evolution 

of the pandemic, mainly in urban contexts (53,74)’.
Getis‑Ord: (Maroko, Denis, & Brian, 2020) uses Getis‑Ord 

and showed that ‘the proportions of both foreign‑born and 

Latinx residents are higher in New York City hot spots than 

cold spots (but hot spot values are similar to the rest of the 

city), whereas the opposite is true for Chicago with lower 

proportions of foreign‑born (P<0.06) and Latinx (P=0.12) 

residents in hot spots vs. other parts of the city  (9). also 
uses Getis‑Ord and proposed that relate the indices with 

the geomorphological characteristics: (a) the greater the 

geomorphological heterogeneity, the greater the grouping; 

(b) the greater the geomorphological homogeneity, the lower

the degree of clustering; (c) the greater the geomorphological

complexity, the lower the degree of clustering. Finally, it is

confirmed that coastal erosion and sedimentation processes
predominate along low coasts’.

(55) in Italy uses Artificial Neural Networks and index
RCovid‑19 and establishes research that ‘forecasting the risk in 

different scenarios assuming different administrative policies 

in the Apulia region. Finally, the results of their research can 

be useful for local administrators and civil protection. Beyond 

this, also researchers and other government can exploit the 

proposed model to obtain maps of risk at different scales: 

urban, regional, and national’.

Dissection. From Fig. 1, it is shown that Moran I (may be due 
to the fact that it recognizes both the occurrence of divergent 

values and the spatial grouping of objects having similar 

characteristics) and GWR (may be because it examines the 

relationships between the variety of socioeconomic activities, 

the air quality and the disease) are the two most spatial science 

methods used to study COVID‑19 spread. On the other hand, 

local Moran's model is the least spatial method used in the 

study of COVID‑19 spread in 2020 to 2022 maybe because it 

neglects the instability of local spatial processes. 

From Fig. 2, it has shown that Local models is the spatial 
model mostly used in the study of COVID‑19 spread between 

2020 to 2022 while other models were rarely used during the 

pandemic.

From Fig. 3, shows that one model/method is greatly used 
in the study of spatial analysis of COVID‑19 spread while only 

few used six models in their studies.

Conclusions

This review brings together various spatial analytical tools and 

methods, along with the findings of authors and their research 
on COVID‑19 across different regions. Our review provides a 

fresh perspective on the subject, helping to improve the devel‑

opment of spatial science methods for studying COVID‑19. 

GIS‑related tools and techniques have played a significant role 
in monitoring, evaluating, predicting events, and informing 

policy decisions during the vaccination campaigns. The 

changes in the economic, societal, and environmental land‑

scape resulting from the pandemic's evolution are expected to 

impact the scientific world, leading to new research strategies. 
However, the impact of COVID‑19 may be uneven with the 

emergence of new waves and the arrival of vaccines. Spatial 

analysis and geography will remain powerful tools in compre‑

hending and predicting the evolution of the pandemic across 

diverse spatial and spatiotemporal scales.
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