Quantum computing uses quantum resources provided by the underlying quantum nature of matter to enhance classical computation. However, the current Noisy Intermediate-Scale Quantum (NISQ) era in quantum computing is characterized by the use of quantum processors comprising from a few tens to, at most, a few hundreds of physical qubits without implementing quantum error correction techniques. This limits the scalability in the implementation of quantum algorithms. Digital-analog quantum computing (DAQC) has been proposed as a more resilient alternative quantum computing paradigm to outperform digital quantum computation within the NISQ era framework. It arises from adding the flexibility provided by fast single-qubit gates to the robustness of analog quantum simulations. Here, we perform a careful comparison between the digital and digital-analog paradigms under the presence of noise sources. The comparison is illustrated by comparing the performance of the quantum Fourier transform and quantum phase estimation algorithms under a wide range of single- and two-qubit noise sources. Indeed, we obtain that when the different noise channels usually present in superconducting quantum processors are considered, the fidelity of these algorithms for the digital-analog paradigm outperforms the one obtained for the digital approach. Additionally, this difference grows when the size of the processor scales up, making DAQC a sensible alternative paradigm in the NISQ era. Finally, we show how to adaptthe DAQC paradigm to quantum error mitigation techniques for canceling different noise sources, including the bang error.