[1] Bantis F, Ouzounis T, Radoglou K. Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum, but variably affects transplant success[J]. Scientia Horticulturae, 2016, 198:277-283.
[2] Olle M, Virsile A. The effects of light-emitting diode lighting on greenhouse plant growth and quality[J]. Agricultural and Food Science, 2013, 22(2): 223-234.
[3] Huang X, Liang J, Li B, et al. High-efficiency and thermally stable far-red-emitting NaLaMgWO6: Mn 4+ phosphors for indoor plant growth light-emitting diodes[J]. Optics letters, 2018, 43(14): 3305-3308.
[4] Sun Q, Wang S, Li B, et al. Synthesis and photoluminescence properties of deep red-emitting CaGdAlO4: Mn4+ phosphors for plant growth LEDs[J]. Journal of Luminescence, 2018, 203: 371-375.
[5] Huang X, Guo H. Finding a novel highly efficient Mn4+-activated Ca3La2W2O12 far-red emitting phosphor with excellent responsiveness to phytochrome PFR: towards indoor plant cultivation application[J]. Dyes and Pigments, 2018, 152: 36-42.
[6] Lin K, Huang M, Huang W, et al. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata)[J]. Scientia Horticulturae, 2013: 86-91.
[7] Wojciechowska R, Dlugoszgrochowska O, Kolton A, et al. Effects of LED supplemental lighting on yield and some quality parameters of lamb's lettuce grown in two winter cycles[J]. Scientia Horticulturae, 2015, 187(187): 80-86.
[8] Pust P, Schmidt P J, Schnick W, et al. A revolution in lighting[J]. Nature Materials, 2015, 14(5): 454-458.
[9] Uheda K, Hirosaki N, Yamamoto Y, et al. Luminescence Properties of a Red Phosphor, CaAlSiN3: Eu2+, for White Light-Emitting Diodes[J]. Electrochemical and Solid State Letters, 2006, 9(4).
[10] Niewa R, Jacobs H. Group V and VI Alkali Nitridometalates: A Growing Class of Compounds with Structures Related to Silicate Chemistry[J]. Chemical Reviews, 1996, 96(6): 2053-2062.
[11] Zhou Z, Zhou N, Xia M, et al. Research progress and application prospects of transition metal Mn4+-activated luminescent materials[J]. Journal of Materials Chemistry C, 2016, 4(39): 9143-9161.
[12] Li Y, Qi S, Li P, et al. Research progress of Mn doped phosphors[J]. RSC Advances, 2017, 7(61): 38318-38334.
[13] Zhou Q, Dolgov L, Srivastava A M, et al. Mn 2+ and Mn 4+ red phosphors: synthesis, luminescence and applications in WLEDs. A review[J]. Journal of Materials Chemistry C, 2018, 6(11): 2652-2671.
[14] Millard R L, Peterson R C, Hunter B K. Study of the cubic to tetragonal transition in Mg2TiO4 and Zn2TiO4 spinels by 17O MAS NMR and Rietveld refinement of X-ray diffraction data[J]. American Mineralogist, 1995, 80(9-10): 885-896.
[15] Shannon R D, Prewitt C T. Effective ionic radii in oxides and fluorides[J]. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 1969, 25(5): 925-946.
[16] Medic M, Brik M G, Dražic G, et al. Deep-Red Emitting Mn4+ Doped Mg2TiO4 Nanoparticles[J]. Journal of Physical Chemistry C, 2015, 119(1): 724-730.
[17] Ye T, Li S, Wu X, et al. Sol–gel preparation of efficient red phosphor Mg2TiO4: Mn4+ and XAFS investigation on the substitution of Mn4+ for Ti4+[J]. Journal of Materials Chemistry C, 2013, 1(28): 4327-4333.
[18] Venturini F, Baumgartner M, Borisov S. Mn4+-Doped Magnesium Titanate — A Promising Phosphor for Self-Referenced Optical Temperature Sensing[J]. Sensors, 2018, 18(3).
[19] Li S, Wang L, Hirosaki N, et al. Color Conversion Materials for High‐Brightness Laser‐Driven Solid‐State Lighting[J]. Laser & Photonics Reviews, 2018, 12(12): 1800173.
[20] Liu Z, Li S, Huang Y, et al. The effect of the porosity on the Al2O3-YAG: Ce phosphor ceramic: microstructure, luminescent efficiency, and luminous stability in laser-driven lighting[J]. Journal of Alloys and Compounds, 2019, 785: 125-130.
[21] Yan Ru Tang, Sheng Ming Zhou, Xue Zhuan Yi, Hui Lin, Shuai Zhang, and De Ming Hao, "Microstructure optimization of the composite phase ceramic phosphor for white LEDs with excellent luminous efficacy," Opt. Lett. 40, 5479-5481 (2015).
[22] Zhao H, Li Z, Zhang M, et al. High-performance Al2O3‒YAG: Ce composite ceramic phosphors for miniaturization of high-brightness white light-emitting diodes[J]. Ceramics International, 2020, 46(1): 653-662.
[23] Ten J G, Orts M J, Saburit A, et al. Thermal conductivity of traditional ceramics. Part I: Influence of bulk density and firing temperature[J]. Ceramics International, 2010, 36(6): 1951-1959.
[24] Srivastava A M, Beers W W. Luminescence of Mn4+ in the distorted perovskite Gd2MgTiO6[J]. Journal of The Electrochemical Society, 1996, 143(9): L203-L205.
[25] Dey S, Ricciardo R A, Cuthbert H L, et al. Metal-to-metal charge transfer in AWO4 (A= Mg, Mn, Co, Ni, Cu, or Zn) compounds with the wolframite structure[J]. Inorganic chemistry, 2014, 53(9): 4394-4399.
[26] Zhang S, Hu Y, Duan H, et al. An efficient, broad-band red-emitting Li2MgTi3O8:Mn4+ phosphor for blue-converted white LEDs[J]. Journal of Alloys and Compounds, 2017, 693:315-325.
[27] Paradiso R, Meinen E, Snel J F H, et al. Spectral dependence of photosynthesis and light absorptance in single leaves and canopy in rose[J]. Scientia Horticulturae, 2011, 127(4): 548-554.
[28] Racah G. Theory of complex spectra. II[J]. Physical Review, 1942, 62(9-10): 438.
[29] Tanabe Y, Sugano S. On the Absorption Spectra of Complex Ions. I[J]. Journal of the Physical Society of Japan, 1954, 9(5): 753-766.
[30] Tanabe Y, Sugano S. On the Absorption Spectra of Complex Ions II[J]. Journal of the Physical Society of Japan, 1954, 9(5): 753-766.
[31] Tanabe Y, Sugano S. On the Absorption Spectra of Complex Ions, III The Calculation of the Crystalline Field Strength[J]. Journal of the Physical Society of Japan, 1956, 11(8): 864-877.
[32] Brik M G, Camardello S J, Srivastava A M. Influence of covalency on the Mn4+ 2Eg→ 4A2g emission energy in crystals[J]. ECS Journal of Solid State Science and Technology, 2015, 4(3): R39-R43.
[33] Sekiguchi D, Nara J, Adachi S. Photoluminescence and Raman scattering spectroscopies of BaSiF6: Mn4+ red phosphor[J]. Journal of Applied Physics, 2013, 113(18): 183516.
[34] Xu Y K, Adachi S. Properties of Na2SiF6: Mn4+ and Na2GeF6: Mn4+ red phosphors synthesized by wet chemical etching[J]. Journal of Applied Physics, 2009, 105(1): 013525.
[35] Takahashi T, Adachi S. Mn4+ activated red photoluminescence in K2SiF6 phosphor[J]. Journal of The Electrochemical Society, 2008, 155(12): E183-E188.
[36] Adachi S, Takahashi T. Photoluminescent properties of K2GeF6: Mn4+ red phosphor synthesized from aqueous HF/KMnO4 solution[J]. Journal of Applied Physics, 2009, 106(1): 013516.
[37] Kasa R, Arai Y, Takahashi T, et al. Photoluminescent properties of cubic K2MnF6 particles synthesized in metal immersed HF/KMnO4 solutions[J]. Journal of Applied Physics, 2010, 108(11): 113503.
[38] Kasa R, Adachi S. Red and deep red emissions from cubic K2SiF6: Mn4+ and hexagonal K2MnF6 synthesized in HF/KMnO4/KHF2/Si solutions[J]. Journal of The Electrochemical Society, 2012, 159(4): J89.
[39] Arai Y, Adachi S. Optical properties of Mn4+-activated Na2SnF6 and Cs2SnF6 red phosphors[J]. Journal of luminescence, 2011, 131(12): 2652-2660.
[40] Murata T, Tanoue T, Iwasaki M, et al. Fluorescence properties of Mn4+ in CaAl12O19 compounds as red-emitting phosphor for white LED[J]. Journal of luminescence, 2005, 114(3-4): 207-212.
[41] Aoyama M, Amano Y, Inoue K, et al. Synthesis and characterization of Mn-activated lithium aluminate red phosphors[J]. Journal of luminescence, 2013, 136: 411-414.
[42] Shao Q, Lin H, Hu J, et al. Temperature-dependent photoluminescence properties of deep-red emitting Mn4+-activated magnesium fluorogermanate phosphors[J]. Journal of alloys and compounds, 2013, 552: 370-375.
[43] Xu Y D, Wang D, Wang L, et al. Preparation and luminescent properties of a new red phosphor (Sr4Al14O25: Mn4+) for white LEDs[J]. Journal of alloys and compounds, 2013, 550: 226-230.
[44] Wu X X, Feng W L, Zheng W C. Investigations of EPR parameters for Cr3+ and Mn4+ ions in anatase (TiO2) crystals[J]. physica status solidi (b), 2007, 244(9): 3347-3351.
[45] Bryknar Z. Application of spectroscopic probes in study of ferroelectrics[J]. Ferroelectrics, 2004, 298(1): 43-48.
[46] Brik M G, Sildos I, Berkowski M, et al. Spectroscopic and crystal field studies of YAlO3 single crystals doped with Mn ions[J]. Journal of Physics: Condensed Matter, 2008, 21(2): 025404.
[47] Brik M G, Srivastava A M, Avram N M. Comparative analysis of crystal field effects and optical spectroscopy of six-coordinated Mn4+ ion in the Y2Ti2O7 and Y2Sn2O7 pyrochlores[J]. Optical Materials, 2011, 33(11): 1671-1676.
[48] Srivastava A M, Brik M G. Ab initio and crystal field studies of the Mn4+-doped Ba2LaNbO6 double-perovskite[J]. Journal of luminescence, 2012, 132(3): 579-584.
[49] Brik M G, Camardello S J, Srivastava A M. Influence of covalency on the Mn4+ 2Eg→ 4A2g emission energy in crystals[J]. ECS Journal of Solid State Science and Technology, 2015, 4(3): R39-R43.
[50] Brik M G, Srivastava A M. Electronic energy levels of the Mn4+ ion in the perovskite, CaZrO3[J]. ECS Journal of Solid State Science and Technology, 2013, 2(7): R148.
[51] Cao R, Ouyang X, Jiao Y, et al. Deep-red-emitting SrLa2Sc2O7: Mn4+ phosphor: Synthesis and photoluminescence properties[J]. Journal of Alloys and Compounds, 2019, 795: 134-140.
[52] Senden T, van Dijk-Moes R J A, Meijerink A. Quenching of the red Mn 4+ luminescence in Mn 4+-doped fluoride LED phosphors[J]. Light: Science & Applications, 2018, 7(1): 8.
[53] Peng L, Chen W, Cao S, et al. Enhanced photoluminescence and thermal properties due to size mismatch in Mg2TixGe1−xO4: Mn4+ deep-red phosphors[J]. Journal of Materials Chemistry C, 2019, 7(8): 2345-2352.
[54] Yang L, Chen M, Lv Z, et al. Preparation of a YAG: Ce phosphor glass by screen-printing technology and its application in LED packaging[J]. Optics letters, 2013, 38(13): 2240-2243.