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Abstract
Background: Radiomics is a valuable tool for predicting hematoma expansion (HE) but has not been
used for small intracerebral hemorrhage (ICH). We hypothesized that not all small hematomas are benign
and that radiomics could predict HE and short-term outcomes in small hematomas.

Methods: We analyzed 313 patients with small ICH who underwent baseline noncontrast CT within 6 h of
symptom onset between September 2013 and February 2019. Small ICH was de�ned as baseline
hematoma volume <10 mL. A radiomic score (R-score) was developed in a training (n=218) and validated
in a test cohort (n=95). Poor outcome was de�ned as a Glasgow Outcome Scale score ≤3. The
relationship of the R-score with HE and outcomes was investigated using univariate and multivariate
analyses. Predictive performance was assessed by the area under the receiver operating characteristic
(ROC) curve (AUC).

Results: R-score was an independent predictor of HE in the training (odds ratio [OR]: 2.557; 95% CI, 1.455–
4.492) and test cohorts (OR, 3.985; 95% CI, 1.051–14.453). In the 3–10 mL subgroup, but not in the <3 ml
subgroup, the R-score was independently associated with HE (OR, 4.293; 95% CI, 2.095–8.796) and poor
outcome (OR, 1.297; 95%CI, 1.004–1.674) after adjusting for confounders. The R-score achieved good
discrimination ability for HE in the training and test cohorts and the 3–10 mL subgroup (AUCs 0.728,
0.717, and 0.740, respectively).

Conclusions: Radiomics provides an objective and effective approach for discriminating between benign
and malignant course in patients with small ICH, particularly 3–10 mL hematomas.

Introduction
Intracerebral hemorrhage (ICH) is the most devastating subtype of stroke with high morbidity and
mortality[1]. Baseline hematoma volume is an independent predictor of hematoma expansion (HE) and
poor outcome in patients with ICH [2, 3].Although patients with smaller hematomas are more likely to
have a benign clinical course [4, 5], some studies reported that small hemorrhage in deep locations
caused functional dependence or mortality, and the volume cutoff to predict poor outcome was less than
the widely used of 30 mL [6-8]. In a prior study, small ICH was de�ned as benign or malignant, and
patients with the latter experienced HE and had worse outcomes [5].

Several clinical trials have also enrolled many patients with small-volume ICH [9-11], but these trials failed
to demonstrate a clinical bene�t of the intervention. One possibility might be that small ICH is malignant
in only a proportion of patients and those with benign small ICH have little opportunity to bene�t from
treatment. Therefore, it is important to improve patient selection and identify those with malignant small
hematomas at high risk of expansion. Currently, there is no standard de�nition of small hematoma [4, 5,
12, 13]. As the average ICH volume in clinical trials is approximately10 mL, we de�ned small hematomas
as those with a baseline hematoma volume less than 10 mL.
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Radiomics is an emerging approach that extracts high-throughput quantitative features from medical
images and enables us to utilize the full potential of images [14, 15]. It has been widely used for the
prediction of cancer and differentiation of benign and malignant tumors [16, 17]. Recently, radiomic
analyses have been applied to ICH for the prediction of HE [18-20]. However, clinical risk factors known to
be associated with HE were not taken into account in these studies. Moreover, to the best of our
knowledge, no study has applied radiomics to predict HE or the short-term outcomes in patients with
small hematomas.

Therefore, in this study, we hypothesized that not all small hematomas (< 10 mL) are benign and that
radiomics could predict HE and the short-term outcomes in patients with small hematomas.

Materials And Methods
Study design and patient population

We retrospectively analyzed the records of patients aged>18 years who presented with primary ICH at our
Neurological Emergency Room between September 2013 and February 2019.The inclusion criteria were
as follows: (1) a baseline noncontrast computed tomography (NCCT) scan performed within 6 h after
symptom onset; (2) a follow-up NCCT scan performed within 72 h after the initial CT scan; (3) and
Glasgow Outcome Scale (GOS) score evaluated at discharge. The exclusion criteria were as follows: (1)
secondary ICH (tumor, trauma, cerebral aneurysm, arteriovenous malformation, or hemorrhagic
transformation from brain infarction); (2) primary intraventricular hemorrhage (IVH) or multiple cerebral
hemorrhage; (3) surgical evacuation before the follow-up NCCT scan; (4) anticoagulant-associated ICH;
and (5) CT images with severe motion artifacts.

Patients were randomly assigned to the training or test cohorts. HE was de�ned as a relative increase of
33% or an absolute increase of 6 mL of a hematoma from the baseline volume[21]. Poor outcome was
de�ned as a GOS score ≤ 3 at discharge [22-24].

This study was approved by the Medical Ethics Committee of The First A�liated Hospital of Wenzhou
Medical University. The requirement for written informed consent was waived owing to the retrospective
design of the study.

Image acquisition and segmentation

All patients were examined using a 64-slice spiral CT scanner ((LightSpeedVCT64; GE Medical Systems,
Milwaukee, WI, USA). The baseline and follow-up CT scans were performed using a standard clinical
protocol with an axial technique, with slice thickness of 5 mm, tube voltage of 120 kV(p), and tube current
of 80 mA.

Figure 1 illustrated the �ow chart of the study. All images were analyzed by a radiologist (2-year
experience) blinded to the patients’ identity and clinical data. The contours of all intracerebral
hematomas were drawn manually layer-by-layer. Fifty images were randomly chosen and were assessed
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by another radiologist (5-year experience). The ventricular extension was not included. Three-dimensional
segmentation of the region of interest (ROI) was performed using the ITK-SNAP software (version 3.8,
www.itksnap.org) (Figure 2).

Clinical analysis

The essential clinical data, including age, sex, history of hypertension, diabetes mellitus, ischemic stroke,
ICH, and Glasgow coma scale (GCS) scores, were recorded after admission. We also recorded the time
from symptom onset to CT, location of the hematoma, presence of IVH, and hematoma volume after the
initial NCCT scan. Two radiologists (2-year and 5-year experience) blinded to the patients’ identity and
clinical data interpreted the baseline NCCT images to assess the following features: (1) satellite sign; (2)
black hole sign; (3) blend sign; and (4) Island sign. In case of discrepancy, the �nal decisions were
reached by consensus.

Radiomic analysis

In our study, the set of radiomic features contained 396 descriptors from �ve groups: (1) �rst-order
statistics of intensity (n=42), (2) shape (n=20), (3) gray-level co-occurrence matrix (n=144), (4) gray-level
run length matrix (n=172), and (5) Haralick features (n=18).Feature extraction was performed using the
Arti�cial Intelligence Kit version 3.0.0.R in the training cohort.

Least absolute shrinkage and selection operator (LASSO) logistic regression was used for feature
selection to reduce redundancy. Ten-fold cross-validation was applied to choose the tuning parameter
that determined the magnitude of penalization. Features with non-zero coe�cients were selected to
calculate the radiomic score (R-score) using the following formula:

R-score =∑βiXi+ Intercept (i =0, 1, 2, 3……), (1)

where Xi represents the ith selected radiomic features, and βi is the respective coe�cient determined by
LASSO regression. We further validated the R-score in subgroups with volumes 3–10 mL and less than
3 mL. Receiver operating characteristic curve analysis was performed to assess the predictive
performance with the associated classi�cation measures. The Youden index (sensitivity + speci�city-1)
was used to select the cutoff value to determine the corresponding sensitivity and speci�city. The
reproducibility of the radiomic features was assessed using the interclass correlation coe�cient (ICC),
with an ICC greater than 0.75 indicating good interobserver agreement.

Evaluation of the clinical outcome at discharge

Univariate analysis was used for comparing the differences between patients with favorable (GOS
score4–5) and those with poor outcome (GOS score1–3) in both subgroups (volumes of 3–10 mL and
<3 mL). Multivariate logistic regression analysis with a backward step-wise selection was performed to
determine the independent predictors.
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Statistical analysis

For categorical variables, differences were calculated using thechi-square test or Fisher’s exact test.
Student’s t-test or Mann-Whitney’s U test was used for estimating the differences in continuous variables.
Normally distributed continuous data were represented as mean ± standard deviation, otherwise as
median with interquartile range (IQR). Univariate analysis was used to compare the variables to discover
the possible signi�cant predictors for HE and poor outcome. Variables with p < 0.05 were included in the
multivariate logistic regression analysis. The relative risk was estimated by odds ratios (ORs) with 95%
con�dence intervals (CIs) for each independent variable. All statistical analyses were performed with
SPSS (version22.0, IBM) and R statistical software (version3.6.1,https://www.r-project.org).A two-sided p-
value < 0.05 was considered statistically signi�cant.

Results
Patients’ characteristics

In total, 313 patients with ICH were included in the �nal analysis. There were 218 patients in the training
cohort and 95 in the test cohort.

The baseline characteristics of the training and test cohorts are detailed in Table1.The characteristics of
the subgroups are presented in Tables S1 and S2.The incidence of HE was13.8% (30 of 218) in the
training cohort and 14.7% (14 of 95) in the test cohort. No signi�cant difference was found between the
two cohorts (all p>0.05). In the subgroup analysis, HE was observed in 28 patients (11.2%)of the 3–
10 mL subgroupand in 16 patients (25.8%) of the <3 mL subgroup.

Development and validation of the R-score

After evaluating the differentiating ability of the radiomic features in the univariate analysis, 58 features
with p-values < 0.05 were selected. These features were reduced to three potential predictors (kurtosis,
HaralickCorrelation_AllDirection_offset1_SD, ShortRunHighGreyLevelEmphasis_AllDirection_offset4_SD)
that had non-zero coe�cients in the LASSO logistic regression model in the training cohort (Figure 3).
The R-score was then calculated using the following formula:

R-score = -2.180 - 0.299 × kurtosis - 0.858 × HaralickCorrelation_AllDirection_offset1_SD - 0.272
× ShortRunHighGreyLevelEmphasis_AllDirection_offset4_SD.

(2)

The calculated R-scores are summarized in Table 1. There were signi�cant differences between the HE
and non-HE(NHE) groups in the training and test cohorts, and the 3–10 mL subgroup (all p < 0.001;
Tables 1, S1).

Table 1. Patients’ baseline characteristics.
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  Training cohort (n=218)   Test cohort
(n=95)

  P*

HE (n=30) NHE
(n=188)

P
value

HE (n=14) NHE
(n=81)

P
value

Age, y,
mean(SD)

64.0(9.1). 62.6(12.0) 0.541 56.6(8.6) 63.1±11.9 0.022 0.657

Male 22(73.3) 106(56.4) 0.080 8(57.1) 46(56.8) 0.98 0.757

Medical history              

Arterial
hypertension

26(86.7) 159(85) 1 11(78.6) 69(88.5) 0.384 0.695

Diabetes
mellitus

6(20) 31(16.6) 0.644 3(21.4) 15(19.2) 1 0.597

ICH 1(3.3) 8(4.3) 1 2(14.3) 3(3.8) 0.165 0.765

Ischemic stroke 3(10) 10(5.3) 0.397 0 6(7.7) 0.586 0.859

IVH 4(13.3) 71(37.8) 0.009 3(21.4) 29(35.8) 0.37 0.902

Black hole sign 5(16.7) 10(5.3) 0.039 4(28.6) 2(2.5) 0.004 0.854

Blend sign 3(10) 5(2.7) 0.082 3(21.4) 3(3.7) 0.04 0.372

Island sign 2(6.7) 6(3.2) 0.303 0 3(3.7) 1 1

Satellite sign 9(30) 29 (15.4) 0.051 2(14.3) 16(19.8) 1 0.748

Location     0.851     0.084 0.279

Deep 25(83.3) 154(81.9)   8(57.1) 65(80.2)    

Other 55(16.7) 34(18.1)   6(42.9) 16(19.8)    

Hematoma
volume, mL,
mean(SD)

5.3 (3.0) 5.7 (2.6) 0.431 5.8(3.6) 6.2(2.5) 0.637 0.204

Time from
onset to CT, h,
mean(SD)

2.6(1.4) 3.1(1.5) 0.073 2.2 (1.3) 3.2(1.5) 0.02 0.853

Admission GCS
score, median
(IQR)

14 (10.5–
15)

15 (14–15) 0.066 15(11–
15)

15 (12–
15)

0.928 0.156

R-score, median
(IQR)

-1.257
(-2.055–
-0.977)

-2.088
(-2.970–
-1.077)

<0.001 -1.461
(-1.810–
-1.230)

-2.097
(-2.824–

-1.388)

<0.001 1

                  Poor
outcome

23(76.7) 87(46.3) 0.002 10(71.4) 48(59.3) 0.389 0.084
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All values are presented as count (%) unless otherwise speci�ed. CT,computed tomography; HE,
hematoma expansion; NHE, non-hematoma expansion; GCS, Glasgow coma scale; ICH, intracerebral
hemorrhage; IVH, intraventricular hemorrhage; R-score, radiomic score; SD, standard deviation; IQR,
interquartile range. * Indicates comparison between the trainingand test cohorts.

 

Association between the R-score and HE

In the training cohort, IVH, black hole sign, and the R-score signi�cantly differed (all p < 0.05) between the
HE and NHE groups (Table1). Multivariate logistic regression analysis indicated the R-score (OR, 2.557;
95% CI, 1.455–4.492; p = 0.001) as an independent predictor of HE (Table 2).

In the test cohort, age, black hole sign, blend sign, time from symptom onset to CT, and the R-score
signi�cantly differed between the HE and NHE groups (Table1). The R-score (OR, 3.898; 95% CI, 1.051–
14.453; p = 0.042) was also independently associated with HE (Table 2).

Table 2. Multivariate analysis for hematoma expansion in the training and test cohorts.

Variables Training cohort Test cohort

  OR (95% CI) P Value OR (95% CI) P Value

IVH 0.292 (0.096–0.890) 0.030 NA NA

R-score 2.557 (1.455–4.492) 0.001 3.898(1.051–14.453) 0.042

Black hole sign 2.710 (0.759–9.677) 0.125 10.326(1.330–80.186) 0.026

Blend sign NA NA 3.985 (0.332–47.897) 0.276

Age NA NA 0.930(0.869–0.996) 0.037

Time from onset to CT NA NA 0.557 (0.307–1.011) 0.054

OR, odds ratio; CI, con�dence interval; CT, computed tomography; R-score, radiomic score; IVH,
intraventricular hemorrhage; NA, not available.

In the 3–10mL subgroup, patients with HE had higher rates of black hole sign and blend sign, larger
hematoma volumes, lower GCS scores, and higher R-scores (Table S1). The R-score was independently
associated with HE (OR, 4.293; 95% CI, 2.095–8.796; p < 0.001) after adjusting for confounders (Table 3).
In the <3 mL subgroup, univariate analysis showed that there was no signi�cant difference in the R-score
between the HE and NHE groups (Table S2).

Table 3. Multivariate analysis for hematoma expansion and poor outcome in the 3–10ml subgroup.
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Variables Hematoma expansion Poor outcome

  OR (95% CI) P Value OR (95% CI) P Value

Blend sign 4.748(1.114–20.246) 0.035 NA NA

Hematoma volume 1.385(1.088–1.762) 0.008 NA NA

Admission GCS score 0.869(0.765–0.987) 0.031 0.737(0.643–0.844) <0.001

R-score 4.293(2.095–8.796) <0.001 1.297(1.004–1.674) 0.046

Location, deep NA NA 5.167(2.104–12.689) <0.001

Black hole sign 2.311 (0.666–8.021) 0.187 3.460 (0.724–16.546) 0.120

Island sign NA NA 3.641 (0.758–17.487) 0.106

OR, odds ratio; CI, con�dence interval; GCS, Glasgow coma scale; R-score, radiomic score; NA, not
available.

In the training cohort, the area under the curve (AUC) value of the R-score was 0.728 (95% CI, 0.631–
0.826) (Table S3, Figure 4). In the test cohort, the R-score showed an AUC value of 0.716 (95% CI, 0.596–
0.836). The AUC value was 0.740 (95% CI, 0.659–0.820) in the 3–10 mL subgroup. Furthermore, the
optimal cutoff value for the R-score was -1.430 in the training cohort according to the Youden index. The
interobserver agreement on the radiomic features reached a mean ICC of 0.89.

Association between the R-score and short-term poor outcomes

Of the 313 patients with small ICH, 168(53.7%) had poor outcomes at discharge. In the two subgroups,
143 (57%) of the 251 patients in the 3–10 mL subgroup and 25(40.3%) of the 62 patients in the <3 ml
subgroup had poor outcomes. The rate of poor outcome was signi�cantly lower in the 3–10 mL
subgroup (40.3% versus 57%; p = 0.019).

In the 3–10 mL subgroup, patients with poor outcomes had a higher frequency of the black hole sign
(9.8% versus 2,8%, p= 0.029) and island sign (6.3% versus 0.9%, p = 0.047), lower admission GCS scores
(median, 14 [IQR, 11–15] versus 15 [IQR, 15–15]; p < 0.001), higher R-scores (median, -1.968 [IQR, -2.749–
-1.288] versus -2.382 [-3.257– -1.427]; p =0.024), and a higher rate of deep ICH(90.0% versus 75.9%,
p = 0.001) (Table S1). The multivariate logistic regression analysis indicated that deep location (OR,
5.167; 95% CI, 2.104–12.689; p < 0.001), the GCS score (OR, 0.737; 95% CI, 0.643–0.844; p < 0.001), and
the R-score (OR, 1.297; 95% CI, 1.004–1.674; p = 0.046) were independent predictors of poor outcomes
(Table 3). In the <3 ml subgroup, the univariate analysis showed no signi�cant difference in the R-score
between patients with poor and those with favorable outcome (Table S2).

Discussion
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In this retrospective study, we established an R-score to predict HE in small hematomas (<10 mL).We
additionally explored the association between the R-score and short-term poor outcomes in subgroups
with hematoma volumes of 3–10 mL and less than 3 mL. Our results indicated that small hematomas
could exhibit a malignant course and that the R-score based on NCCT was strongly associated with HE.
We also found that the R-score could independently predict poor outcomes in small hematomas with a
volume of 3–10 mL, but not in very small hematomas with a volume of less than 3 mL.

To date, most trial inclusion criteria and clinical grading scales have used a cutoff of 30 mL to identify
patients likely to have a malignant clinical course with a high expansion rate and a poor outcome[3, 24,
25]. However, hematomas less than 10 mL could account for approximately one-third to one-half of all
patients with ICH [5, 13, 26]and their destructive effects should not be underestimated. One study
demonstrated that baseline hematoma size categories of <10 mL had the same ability to predict outcome
regardless of the HE de�nition[21]. Ironsideet al. modi�ed the original ICH score and the volume cutoff
was less than 10 mL in the deep and brainstem location[8].Therefore, it is meaningful to discriminate
hematomas with a benign clinical course from those with a malignant course so the effects of
interventions could be improved. Our results showed that very small hematomas (<3 mL) had a higher
rate of HE compared to those with a volume of 3–10 mL, but with a more benign outcome. We further
con�rmed the �ndings of other studies that demonstrated very small hematomas were likely to have
benign outcomes[12, 13].This may indicate that the very small growth in very small hematomas is
insu�cient to translate into functional deterioration and the bene�ts of anti-expansion therapy in those
patients may be outweighed by the potential of harm.

Recently, several radiographic features have been used to predict HE and poor outcome, including the
black hole sign, blend sign, satellite sign, and CT angiography (CTA) spot sign[27, 28].Li et al. reported
that patients with benign ICH who had none of these signs would not experience HE[5].Their de�nition
was complicated for inexperienced radiologists and clinical physicians to make accurate and fast
identi�cation. Our R-score could objectively identify patients with HE whose NCCT signs were negative. In
the Antihypertensive Treatment of Acute Cerebral Hemorrhage II (ATACH-II) trial, there was no evidence
that patients with ICH with CTA spot sign or NCCT signs would bene�t from intensive blood pressure
reduction[29, 30].It is uncertain whether these signs were inadequate to identify the patients most likely to
bene�t due to their subjective judgment and somewhat overlapped de�nition. In addition, the CTA spot
sign is unsuited in the emergency room, particularly for patients with ICH with kidney insu�ciency and
contrast agent allergies, because it is time-consuming and requires a contrast injection. Therefore,
quantitative NCCT predictors have been sought to identify subtle changes beyond visual assessment.

Radiomics was initially proved to be useful in tumor assessment due to its ability to quantify the
heterogeneity of the ROI and was then applied to ICH[31]. Shen et al. demonstrated that by using the
Laplacian of the Gaussian bandpass �lter, NCCT textures could discriminate between HE and NHE[20].
However, only histogram-based features were analyzed in 108 patients with ICH, which limited the
comprehensive assessment of hematoma heterogeneity compared with that achievable with radiomic
signatures. Subsequently, Ma et al. reported that a �ve-feature-based R-score could independently
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evaluate the risk for HE with an accuracy of 0.852[19]. Another study also showed that the radiomic
model had an accuracy of 0.726 in predicting HE and the AUC value was 0.729[18].In accordance with
these studies, the R-score in our study showed a good capability of predicting HE (with AUCs of 0.716–
0.740),except in very small hematomas. This may further prove that very small hematomas are
homogenous and would have a benign course. Recently, Xie et al. compared the NCCT-based radiomic
model with the conventional radiological model in the prediction of HE[32]. Their analysis revealed that
the radiomic model was a reliable and objective method for HE prediction and outperformed the
radiological model. Our results also con�rmed that the R-score was independently associated with HE
after adjusting for confounders. Moreover, we found that in the 3–10 mL baseline hematoma volume
category, the R-score was not only associated with HE but could independently predict poor outcomes at
discharge. It should be more bene�cial if the predictor is not only associated with HE but also related to
poor outcomes. Our �ndings might have clinical implications for future clinical trials or practices,
improving the ability to stratify the risk for HE or poor outcomes in patients with small hematomas.
Because of the high density of hematomas relative to the surrounding edema or brain parenchyma, semi-
automatic or automatic segmentation of hematomas may be applicable in the future, making it more
convenient to apply radiomics.

There are some limitations in our study. First, it was a single-center retrospective study with a relatively
small sample size. The small dataset may in�uence the performance of the R-score in the training cohort
and reduce the reliability of the veri�cation in the test cohort. Further multi-center studies with larger
samples are needed to support our �ndings. Second, the �nding cannot be applied to all types of ICH due
to the exclusion of patients with secondary ICH and anticoagulant treatment. Finally, the GOS score at
discharge was the only prognostic indicator. Whether long-term neurological deterioration or mortality is
associated with the R-score should be further investigated.

Conclusions
The R-score could provide a noninvasive, objective, and reproducible method for discriminating between
benign and malignant clinical course in patients with small ICH, particularly hematomas with a volume of
3–10 mL. Radiomics can be used as a supplement to conventional medical imaging, improving clinical
decision-making and facilitating personalized treatment in ICH.
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Figures

Figure 1

Flow chart of the study.
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Figure 2

Manual three-dimensional (3D) segmentation of the hematoma. A) The patient’s baseline computed
tomography (CT) showed a small hematoma in the left basal ganglia (58 years, male, baseline volume =
7.41 mL, radiomic score = -1.145). B) Delineation of the lesion using the ITK-SNAP software. C)
Generation of a 3Dregion of interest. D) Detection of hematoma expansion on follow-up CT (volume =
16.92 mL, Glasgow outcome scale score = 3).
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Figure 3

Radiomic feature selection using the least absolute shrinkage and selection operator (LASSO) regression
model. We used 10-fold cross-validation to tune parameter (λ) selection in the LASSO model. A) AUC was
plotted versus log(λ). Three features with non-zero coe�cients were selected using the minimum criteria.
B) LASSO coe�cient pro�les of the features. Each colored line represents the coe�cient of each feature.
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Figure 4

The receiver operating characteristic curves for the radiomic score in the three cohorts. AUC, area under
the curve.
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