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1 Abstract

The biomedical community is producing increasingly high dimensional datasets, integrated from
hundreds of patient samples, which current computational techniques struggle to explore. To uncover
biological meaning from these complex datasets, we present an approach called Multiscale PHATE,
which learns abstracted biological features from data that can be directly predictive of disease.
Built on a coarse graining process called diffusion condensation, Multiscale PHATE learns a data
topology that can be analyzed at coarse levels for high level summarizations of data, as well as at
fine levels for detailed representations on subsets. We apply Multiscale PHATE to study the immune
response to COVID-19 in 54 million cells from 168 hospitalized patients. Through our analysis of
patient samples, we identify CD16hiCD66blo neutrophil and IFNγ+GranzymeB+ Th17 cell responses
enriched in patients who die. Furthermore, we show that population groupings Multiscale PHATE
discovers can be directly fed into a classifier to predict disease outcome. We also use Multiscale
PHATE-derived features to construct two different manifolds of patients, one from abstracted flow
cytometry features and another directly on patient clinical features, both associating immune subsets
and clinical markers with outcome.

2 Introduction

Extremely high throughput biomedical data is generated by a range of technologies [1–6] that
measure dozens to tens of thousands of features in millions of individual cells. Furthermore, these
technologies are now applied to large patient cohorts, providing information that must be integrated
and analyzed at scale to provide insights into cellular mechanisms and patient responses. However,
there are no specific methods designed to sift through such data at varying levels of granularity to
uncover features that are directly associated with disease phenotype. The SARS-CoV-2 pandemic
has brought this problem to the forefront of biologists’ minds. As increasingly large datasets are
built by integrating patient samples from around the globe, computational approaches also must
scale to provide improved insights regardless of technology type.

We posit here that the key to understanding such vast and complex data is to create meaningful
representations that uncover structure at all resolutions or scales. This approach involves learning
representations of the biological system at many levels, allowing for coarse, high level summarization
as well as fine grained, detailed representations of data subsets. Current tools for dimensionality
reduction and data exploration - including t-distributed stochastic neighborhood embedding (tSNE)
[7], uniform manifold approximation and projection (UMAP) [8], as well as principle component
analysis (PCA) [9] - only show a single level of granularity of the data. Recent computational
papers on SARS-CoV-2 have represented data using one of these approaches [10, 11], visualizing
the major cell types such as B cells, T cells and myeloid cells. Differences between an effective
immunological response and an ineffective one, however, may not be found at the granularity of
immune compartment abundance alone. In fact, appreciation of a finer resolution of the T cell
manifold would reveal subsets that may be predictive of disease severity. This phenomenon is found
across biomedical data science, as the state space of the data is generally a collection of manifolds or
continuum structures which can be organized at varying levels of hierarchy.

Based on this insight, we developed Multiscale PHATE, a method that can learn and visualize
abstract cellular features and groupings of the data at all levels of granularity. Our algorithm is
based on a dynamic process we have developed called diffusion condensation [12], which computes a
manifold-intrinsic diffusion space on the original data before slowly condensing data points towards
local centers of gravity to form natural, data-driven groupings across multiple granularities. This
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coarse graining process learns the topology of the underlying dataset not by forcing merges at
each iteration, as done in most agglomerative hierarchical clustering methods, but by allowing cells
to naturally come together over the course of successive condensation steps. Visualizing a series
of iterations in this dynamic condensation process using the manifold-affinity preserving PHATE
method creates Multiscale PHATE embeddings, while evaluating connected cells across granularities
creates Multiscale PHATE clusters. Furthermore through efficient scalable implementation, we
show that we are able to perform condensation, visualization and clustering of large-scale the data
significantly faster than "single-scale" visualization techniques like tSNE, UMAP or PHATE [13].

We showcase our method on 251 blood samples from 168 patients infected with SARS-CoV-2
measured across four different flow cytometry panels, an expanded iteration of a previously published
dataset [14]. Analysis of 54 million of cells by single resolution dimensionality reduction and clustering
algorithms would take days to weeks to perform. With our unique multigranular approach, we
can produce high level summarizations as well as detailed cell type specific analyses of each panel
of markers within minutes. When combined with the MELD [15], we find that our approach is
particularly powerful at identifying cannonical and non-cannonical cellular populations associated
with patient outcome across resolutions. At coarse resolution, we identify T cells to be broadly
protective while monocytes and granulocytes to be pathogenic. At finer resolution, we identify unique
non-cannonical populations of cells, such as D16hiCD66b− neutrophil, CD14−CD16hiHLA-DRlo

monocytes, and IFNγ+GranzymeB+ Th17 cells, to be associated with patient mortality. This
type of multigranaular analysis reveals that though broadly a cell type, such as T cells, may be
protective, fine grain analysis reveals cellular subsets that can be pathogenic, highlighting the need
for a multiresolution approach. Next, we show that Multiscale PHATE-derived cellular groupings can
be used as features input to a random forest classifier to predict outcome better than immunologist
curated and gated features. A unique contribution we make is the use of these multiscale feature
proportions as descriptors of each patient, which can be used to create a patient-level embedding.

Finally, to display the generalizability of our approach across data types, we created a multiscale
distillation of clinical data from 2,135 patients admitted to Yale New Haven Hospital (YNHH).
Built from 18 laboratory, clinical, and demographic variables, Multiscale PHATE was able to create
multiresolution embeddings of patient clinical states and identify regions enriched for different patient
outcomes. By associating clinical features and cellular populations with outcomes, we found markers
of multi-organ dysfunction to be associated with mortality and overall T cell counts to be associated
with length of recovery from infection.

3 Results

3.1 Overview

Although biomedical data is being generated in increasingly larger volumes, current dimensionality
reduction approaches only offer a single-level view of the data. This can be problematic for several
reasons. First, biomedical systems are naturally hierarchical and structure can exist at many levels
of resolution—thus a single level of resolution can miss predictive features of the data. Second, as
the sheer volume of data increases, most dimensionality reduction methods suffer from crowding
problems where it can be difficult to ascertain density and overall structure of the data. In order to
address these issues we develop multiscale PHATE which offers higher level summarizations of the
data along with the ability to "zoom in" to regions to reveal additional structure and detail.

Multiscale PHATE utilizes a data coarse graining approach known as diffusion condensation that
learns the manifold geometry of the data across all levels of granularity [12]. We apply diffusion
condensation starting with the original data in a manifold coordinate space. The condensation
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process iteratively moves points to the average of their diffusion neighbors eventually creating clusters
of many levels of resolution. Then Multiscale PHATE utilizes a dimensionality reduction method
optimized for structure-preserving visualization called PHATE [13] to visualize select levels.

3.2 Multiscale PHATE Algorithm

Figure 1: Overview of Multiscale PHATE algorithm

a. Multiscale PHATE process involves four successive steps. The first step (i) learns the manifold geometry
via diffusion potential calculation. The second step (ii) iteratively coarse grains the manifold construction
through a fast diffusion condensation process to learn data topology. The third step (iii) involves the selection
of salient granularities via gradient analysis before finally visualizing and clustering the manifold in the fourth
step (iv).
b. Gradient analysis identifies a range of scales for visualization.
c. Multiscale PHATE allows for high level summarizations of data as well as finer grain zoom ins of data
subsets for additional detail.
d. Multiscale PHATE abstractions of data are amenable to downstream analyses with algorithms like MELD [15]
and DREMI [16].
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Multiscale PHATE is a multiresolution dimensionality reduction and clustering method that can
reveal the structure of data visually and quantitatively at multiple granularities. Multiscale PHATE
is unique in that it is a topological data analysis method that is based in data diffusion geometry.

While geometric analysis on a cellular manifold is based on distances between data points,
topological analysis is based on how these points relate to one another in their local geometries.
Multiscale PHATE, as a tool based on concepts from topological data analysis, constitutes a hybrid
framework between a purely geometrical view and a purely topological one [17]. In classical
topological data analysis, topology is learned by first computing a pairwise distance matrix D, and
then identifying all point pairs whose distance falls below a distance threshold δ. A pair of cells that
fall below this threshold are deemed ‘connected.’ The value of δ is akin to a granularity level at
which we view the data: as δ increases, more point pairs will become connected, quickly creating
more connected components at coarser granularities. Finally, this process stops when δ is sufficiently
large such that all points are connected. This process of iterated merges reveals the structure of the
underlying dataset across granularities by first identifying how cells relate to one another in their
local geometries at small values of δ before seeing how more dissimilar cells relate to one another at
large values of δ.

Applying these concepts to biological datasets, however, has proved to be problematic. Biomedical
data has been shown to be highly non-linear, requiring non-linear diffusion-based approaches to
visualize and analyze biological manifolds [13, 18]. Classical topological data analysis operates in
the ambient measurement space and is incompatible with more complex manifolds. For this reason,
we use diffusion condensation, which learns the topology of complex manifolds [12] in the manifold
geometric coordinates [13].

Diffusion condensation learns data topology across granularities through a dynamic coarse
graining process by which data points slowly and iteratively come together at a rate determined
by the diffusion probabilities between them [12]. This iterative process is powerful and intuitively
relates to topological data analysis, as it reveals structure and groupings of the data at all levels
of granularity. The diffusion condensation process involves three steps that are repeated until all
points converge:

1. Compute a Markov diffusion operator from the data

2. Apply operator to the data as a low-pass filter, moving points towards local centers of gravity

3. Merge points together that fall below a preset distance threshold ζ to create connected
components, as done in topological data analysis

Step 1 is performed by computing a distance matrix D between all data points, similar to
topological data analysis. We then use a fixed bandwidth Gaussian kernel function to convert
the distance matrix D into an affinity matrix K, so that similarity between two cells decreases
exponentially with their distance as done previously [12]. K is then row normalized to obtain a
diffusion operator between data points, representing the probability distribution of transitioning
from one point to another in a single step.

Step 2 The diffusion operator is applied (left-multiplied) to the input data, effectively replacing
the value of a point with the weighted average of its diffusion neighbors. This process simulates a
one step transition of every cell to its diffusion neighbors, causing points to condense, or move closer
together due to the removal of variation. In graph spectral terms, this step is akin to applying a
low-pass filter on the graph frequency spectrum which smooths the data.

Step 3 the third step, diffusion condensation merges points that have condensed within a preset
merge threshold ζ together.
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These steps are then repeated iteratively. At each step, diffusion operator is calculated on the
output of the previous iteration and used as a low-pass filter to produce an increasingly coarse
dataset for the next iteration. Over the course of many iterations, data points slowly converge to
local centers of gravity and collapse into each other, effectively creating connected components at
that level of granularity. As the diffusion condensation process continues, we scale the diffusion
operator to diffuse points to more global centers of gravity. This first removes local variability in
the data at initial iterations before removing more global variability in later iterations. This deep
cascade of low pass filters effectively builds a topological understanding of the data by merging data
points together in a natural manner across granularities.

In its original form, however, the diffusion condensation process does not scale to millions of data
points, does not condense points on a manifold, and is not optimized for visualization. Thus, we
have modified diffusion condensation to allow for scalable and effective visualizations. The main
steps of Multiscale PHATE include:

1. Computing a fast diffusion condensation process that scales to millions of data points,

2. Transforming datapoints to a novel diffusion potential coordinate system to learn the data
manifold,

3. Identifying levels for visualization based on gradient analysis and creating a density aware
visualization.

Calculation of the complete topology via diffusion condensation is computationally expensive on
massive single cell datasets currently being produced. In order to allow multiscale PHATE to scale to
millions of cell, we apply an initial coarse graining step before running diffusion condensation. This
initial coarse graining step reduces the numbers of points while maintaining data geometry potentially
by two orders of magnitude. Running diffusion condensation in ambient measurement space results
in averaged points off of highly curved manifolds, such as biological ones (Extended Data Figure 1a).
As a result, diffusion condensation as described above is not amenable to learning or visualizing high
dimensional cellular data across granularities. In order to learn the underlying manifold, we compute
manifold dimensions in the form of diffusion potential as done in PHATE [13]. This not only allows
for condensation of points on the manifold but also easy visualization of intermediate granularities.
Finally, in order to identify meaningful resolutions for downstream analysis, we perform retrospective
gradient analysis on the diffusion condensation process to identify metastable states (Figure 1b),
allowing for high level summarizations as well as zoom ins on important data subsets. Finally, to
create a density aware visualization, points are sized by the number of original cells that have merged
to create that connected component (Figure 1c).

Each of these steps are explained in further detail in methods (see Methods).
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Figure 2: Comparison of Multiscale PHATE with other dimensionality reduction tools

a. Visual comparison of Multiscale PHATE with other multiscale dimensionality reduction tools on synthetic
single cell data with either path or cluster structure.
b. Quantitative study comparing embeddings produced by Multiscale PHATE and visualization strategies which
either employ community based or topologically based abstractions of data. Comparisons were evaluated using
DeMAP with increasing levels of 2 different types of biological noise, drop out and variation, as well as on
data with different structures, clusters and paths. Shading represents standard deviation around mean DeMAP
score for each comparison.
c. Quantitative study comparing embeddings produced by Multiscale PHATE and visualization strategies which
visualize condensation based abstractions of data. Comparisons were evaluated using DeMAP with increasing
levels of 2 different types of biological noise, drop out and variation, as well as on data with different structures,
clusters and paths. Shading represents standard deviation around mean DeMAP score for each comparison.

Multiscale PHATE embeddings preserve local and global distances better than other

multiscale visualization approaches.

In order to quantify the quality of our dimensionality reduction strategy compared to other multi-
scale implementations of established visualization tools, we computed Denoised Manifold Affinity
Preservation (DeMAP) scores [13] on embeddings of a variety of splatter simulated datasets [19].
While there is information loss in any sort of dimensionality reduction technique, an ideal embedding
should capture as much local and global distance information as possible. To judge both local and
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global distance preservation, DeMAP quantifies the ability of an embedding to preserve ground truth
manifold distances, also known as geodesic distances, in a low dimensional visual representation.

In our comparisons, we performed two different ablation studies to determine the necessity of
both the diffusion condensation approach to learning data topology (Figure 2b) as well as PHATE to
learn manifold geometry (Figure 2c). In each study, we repeated comparisons on a variety of datasets
which have different geometries, either paths (or trajectories) or cluster structure with increasing
amounts of two types of biological noise: variation and dropout. After visualizing synthetic single
cell datasets produced by splatter (Figure 2a) and running all comparisons, Multiscale PHATE
performed superior to other methods across nearly all ranges of biological noise (Figure 2b,c). In
particular, upon visual and quantitative comparison, multiscale PHATE performed superior to all
other methods when visualizing trajectory structures in low dimensional embeddings (Figure 2a,b,c).

Multiscale clusters more accurately capture established groupings of data in synthetic

and real biological datasets.

In order to quantify the clustering accuracy of Multiscale PHATE on increasingly noisy and
multigranular data, we simulated two and three-layer hierarchical stochastic block models (SBM)
(Extended Data Figure 3a). In these models, a graph is constructed in which there are coarse grain
clusters, each of which could be further broken down into increasingly granular clusters. In order
to compare all clustering techniques across a range of noise levels, increasing amounts of random
gaussian noise is added to the edge weights of the graph. At each level of noise, cluster labels
are computed with multiple clustering tools: Multiscale PHATE, Louvain [20], Leiden [21] and
single linkage hierarchical clustering [22]. These comparisons are run on a range of noise levels and
replicated 10 times across a range of initial hierarchical SBM edge weights in both the two-layer
and the three-layer models. Across both models, Multiscale PHATE performed superior to other
hierarchical clustering techniques in 35 of the 42 comparison conditions (Extended Data Figure
3b,c), with only poorer performance at the finest granularity of the 3 layer SBM. Finally, in order to
determine the clustering accuracy of Multiscale PHATE across granularities on real biological data,
we applied our approach to flow cytometry data where cell type labels have already been established.
Taking the cell population labels as identified with conventional gating analysis, we computed ARI
scores on clustering outputs from a range of clustering techniques at multiple granularities. Across
both fine and coarse grain clusters, Multiscale PHATE computed clusters that more faithfully
represented the underlying known biological cell types (Extended Data Figure 3d).

Generalizability, scalability and reproducibility of Multiscale PHATE

Multiscale PHATE is broadly generalizable to a vast number of biological data types including flow
cytometry, scRNAseq, scATACseq, clinical variables among others (Extended Data Figure 2). When
comparing run times between different techniques, it becomes clear that Multiscale PHATE is able
to rapidly scale to millions of cells, successfully embedding 5 million cells in less than 10 minutes,
while the next most scalable technique, Monocle2, can only embed 500,000 cells in a comparable
time (Extended Data Figure 1c). Across all comparisons, it is important to note that number of
features did not alter run time drastically. Biological technologies applied to single cells measure tens
to hundreds of thousands of features. Since the initial step of each of these dimensionality reduction
algorithms is feature compression with PCA, the only major difference in run time will be length to
compute PCA compression of data. With Randomized SVD, this process is rapid for a number of
features lengths, leading to similar run times across technology types. Finally, Multiscale PHATE is
highly reproducible. A common issue with UMAP and tSNE, which shift clusters randomly from
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run to run based on initialization, is solved by Multiscale PHATE, which can faithfully create the
same embedding across multiple runs with different initializations (Extended Data Figure 1d).

Selection of clusters based on MELD mortality likelihood score to infer clinical associ-

ations

Multiscale PHATE abstracted data is amenable to many downstream computational analysis tools
like MELD [15] for comparative analysis and Density Resampled Estimate of Mutual Information
(DREMI) [16] for computing mutual information between markers within subpopulations (Figure 1d).
In particular, to identify populations that are differentially enriched between experimental conditions
or patients, we combine our powerful multigranular clustering approach with MELD [15] (Extended
Data Figure 1b). MELD creates a joint graph of the samples being compared, and returns a relative
likelihood that quantifies the probability that each cell state in the graph is more likely in the control
condition (which corresponds here to patients with positive outcome) or experimental condition
(which corresponds here to patients with adverse outcomes). This likelihood score highlights regions
of the manifold enriched in different conditions.

Finding a clustering method that matches the level of granularity of relative likelihood is
a difficult problem, requiring the computationally complex vertex frequency clustering solution
proposed previously [15]. However, Multiscale PHATE offers an alternative, less computationally
expensive solution as one of the granularities identified by diffusion condensation matches the clusters
revealed by the MELD likelihood score. Combining the likelihood signal with our multigranular
analysis, we can identify populations that are associated with particular outcomes with greater
accuracy than other methods (Extended Data Figure 3e).

Construction of patient manifold through multiresolution cluster evaluation

After creating a cellular manifold by integrating hundreds of patients samples, it is critical to
understand how similar or different each of these patients are from one another. Uncovering sample
level density variations along the cellular manifold can be a powerful strategy to identify patient
clinical states that are similar or dissimilar from one another. With the goal of creating a manifold of
patients, where each point represents a unique patient sample and distances between points represent
how similar or different the underlying samples are in their cellular states as measured by flow
cytometry, we evaluate clusters at multiple levels of the condensation topology. First, we identify
all clusters at a particular level of the condensation topology. For a particular patient sample, we
identify the proportion of the sample’s cells that fall within each of these clusters, creating a vector
of cell proportions. This process is first applied to a single resolution, creating a set of features for
every sample within this resolution, and is then repeated for all samples across multiple resolutions
to create an even richer, multiscale set of features related to prior work in multiresolution optimal
transport [23]. This high dimensional multiscale feature matrix can then be embedded with PHATE
for visualization.

3.3 Multiscale PHATE analysis of 251 SARS-CoV-2 patient blood samples re-

veals subsets of cells associated with mortality:

One hundred sixty eight patients with moderate to severe COVID-19 [24] were admitted to YNHH
and recruited to the Yale IMPACT (Implementing Medical and Public Health Action Against
Coronavirus CT) study. From each patient, blood samples were collected across multiple timepoints
to characterize patient cellular responses across the spectrum of disease. In total, the composition
of peripheral blood mononuclear cell (PBMC) was measured by flow cytometry on 251 samples.
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Finally, clinical data was extracted from the electronic health record corresponding to each biosample
timepoint to allow for clinical correlation of findings (see Methods). In this analysis, we define
poor or adverse outcomes as patients who died from infection, while good outcomes as patients
who survived. In order to analyze over 54 million cells characterized across 4 different sets of flow
marker panels, we applied Multiscale PHATE to identify subsets of peripheral blood mononuclear
cells (PBMCs) associated with mortality and survival.

Figure 3: CD16hiCD66blo Neutrophil subset enriched in patients who die from COVID-19.

a. Multiscale PHATE visualization of PBMCs identifies all major cell types based on cell type specific markers.
b. Visualization of mortality likelihood score computed by MELD.
c. Visualization of mortality likelihood score organized by cell type reveals enrichment of granulocytes,
monocytes and B cells in patients who die from COVID-19.
d. Zoom in of granulocyte population identifies subsets of neutrophils and eosinophils based on expression of
known markers.
e. Visualization of mortality likelihood score in granulocyte population identifies CD16hi neutrophils enriched in
patients with worse outcomes. Key associations between markers and mortality likelihood scores in neutrophils
computed by DREMI and visualized with DREVI.
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Key dysfunctional myeloid, granulocyte and B cell subsets are enriched in patient who

die from infection:

To explore the role of individual PBMC cell types in disease pathogenesis, we examined 22 million
cells measured on a myeloid-centric flow cytometry panel from 210 patient samples suffering from
COVID-19. Using cell type specific marker staining, we characterized Multiscale PHATE clusters
(Figure 3a). Using MELD and the mortality outcome for each patient in our cellular state space,
we were able to compute the mortality likelihood score, which identified cellular states enriched
in patients who die from infection (darker red) or patients that survive (darker blue) (Figure 3b).
When mapping these scores onto cluster labels, we found that the three populations most enriched
in mortality were granulocytes (CD16+SSChi), B cells (CD19+), and monocytes (CD14+) while the
population most enriched in survival was T cells (CD3+) (Figure 3c).

Resting population of circulating neutrophils enriched in with patients who die from

COVID-19. We zoomed in on the granulocyte population and identified CD16hi neutrophils,
CD16lo neutrophils and eosinophils based on the expression of CD16, CD66b, granularity by side
scatter (SSC) and size by forward scatter (FSC) (Figure 3d). After mapping our mortality scores
onto this granulocyte population we found that the CD16hi neutrophils were enriched in patients
who died from infection. In order to identify which cellular markers beyond CD16 were most
correlated with mortality in neutrophils, we computed DREMI between protein expression and
mortality likelihood scores in both neutrophil subsets. We identified that while CD14 and CD66b
were negatively correlated with mortality, increased FSC and SSC were both strongly positively
correlated with mortality in neutrophils, indicating that CD16hiCD66blo neutrophils were enriched
in patients that died from COVID-19 (Figure 3e). Based on the PBMC isolation protocol used (see
Methods) neutrophils obtained were by definition Low-Density Neutrophils, containing both the
mature and immature subsets. Considering the sensitivity of CD16 expression, high CD16 in our
cohort was most likely indicative of a mature population that has not responded to an activating
stimulus [25–27]. Neutrophils from patients with worse disease also expressed less CD66b; in contrast,
an increase in surface expression of CD66b occurs following degranulation [28]. The combination of
high complexity, high CD16 expression, and low CD66b expression suggests a resting population of
circulating neutrophils present in patients with lethal disease.

CD14−CD16hiHLA-DRlo monocyte subset associated with patient mortality. In order
to identify monocyte subsets implicated in disease, we zoomed in to the monocyte population and
identified major subtypes based on the expression of markers CD16 and CD14 (Extended Data
Figure 4a). The combination of these markers allowed us to distinguish between CD14+CD16−

monocytes, CD14+CD16int monocytes and CD14−CD16hi monocytes. After mapping our computed
mortality likelihood scores onto this population, we identified that CD14−CD16hi monocytes were the
most strongly enriched in severe infection, followed by CD14+CD16int monocytes (Extended Data
Figure 4b). These findings agreed with published observations as others have also noted an influx of
CD14+CD16int and CD14−CD16hi monocytes in the lungs of patients with severe disease [11,29,30].
Furthermore, across all monocytes, CD16 was positively correlated with mortality while CD14 and
HLA-DR were correlated with survival, identifying a distinct CD14−CD16hiHLA-DRlo population
of monocytes enriched in mortality. The loss of HLA-DR has been previously shown in monocytes
from COVID-19 patients [31]. Monocytes expressing HLA-DR can serve as antigen-presenting cells
to shape the adaptive T cell response, but monocytes in this cohort, expressing reduced amounts of
HLA-DR, would likely have very limited capacity to prime effector T cell responses. Interestingly, a
similar phenomenon occurs in sepsis patients, as well, and is indicative of worse outcomes [32–34].
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In this setting, elevated levels of IL-10 have been linked to decreased HLA-DR on monocytes [35,36].
As COVID-19 patients also present with significantly elevated levels of IL-10 in circulation, a similar
mechanism may be at play here [31,37].

Multiscale PHATE identified plasmablast population associated with mortality. There
has been a persistent interest in the role of B cells during disease due to their potential to generate
neutralizing antibodies. In our broad PBMC analysis, however, B cells were among the most
enriched populations in severe outcomes (Figure 3c). In order to explore B cells in greater detail,
we processed 154 patient samples on a B cell specific flow cytometry marker panel. Analyzing
these cells by Multiscale PHATE granted us an unbiased, granular look at B cell subsets which
would otherwise be difficult by traditional two-dimensional gating, popular for flow cytometry
analysis. These subsets include transitional B cells (IgD+IgM+CD27−/CD38+CD24+), naïve B
cells (IgD+IgM+CD27−/CD38−), switched (IgD−IgM−CD27+) and unswitched memory B cells
(IgD+IgM+CD27+), activated B cells (IgD−CD138−CD86+HLADR+), and antibody secreting cells
(CD138+CD38+) (Extended Data Figure 4c). After identifying these major cell types, we computed
mortality likelihood scores to identify B cell subtypes implicated in mortality. Interestingly, the most
enriched cell type in patients with adverse outcomes was a subset of the antibody secreting population
defined by CD86loHLADR−/CXCR3+, also known as plasmablasts. Meanwhile the cell types most
enriched in patients with good outcomes was a subset of late activated mature B cells defined
by CD86+ (Extended Data Figure 4d). Despite the well-described protective roles of circulating
antibodies, these results are consistent with earlier findings from COVID-19 patients, which discuss
the potential role of B cells in disease pathogenesis [38–40]. Given the abundance of circulating
IL-6 in COVID-19 patients, it is possible that in this setting, IL-6 skews B cell differentiation into
antibody secreting cells [41]. Considering the lack of mutations in neutralizing, anti-SARS-CoV-2
antibodies, skewing toward antibody secreting cells may come at the expense of transit through the
germinal center, thus producing a less potent or non-specific antibody response [42].
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Figure 4: Multiscale PHATE identifies Th17 subset enriched in patients who die from COVID-

19

a. Multiscale PHATE visualization of T cell focused cytokine panel identifies broad T cell subtypes.
b. Zoom in of CD4+ T helper cells identifies subsets based on expression of functional markers.
c. Visualization of mortality likelihood score identifies IFNγ+GranzymeB+ Th17 cell enrichment in patients
with poor outcomes. Key associations between markers and mortality likelihood scores are computed by DREMI
and visualized with DREVI.

Key pathogenic T cell subsets are enriched in patients who die from infection:

Although T cells collectively were enriched in patients who recovered from infection (Figure 3c),
there are a diverse set of T cell subsets which have been implicated in severe disease pathogenesis. In
order to identify functional T cell subsets enriched in patients who died from COVID-19, we applied
Multiscale PHATE to 22 million T cells measured on a cytokine-specific flow cytometry panel. After
identifying salient levels of granularity for downstream analysis, we identified both CD4+ and CD8+

T cell subsets at coarse granularity (Figure 4a).

Fine grain analysis of protective T cell population helps identify pathogenic IFNγ+

GranzymeB+ Th17 subpopulation. Using Multiscale PHATE’s zoom and cluster capabilities,
we were able to visualize the CD4+ T cells and subdivide the cells into functional subsets using
functional markers, IFNγ, IL-17, and IL-4 (Figure 4b). Interestingly, in our dataset, we identified two
different subsets of CD4+ IL-17 producing T cells classically known as Th17 cells, one co-producing
GranzymeB and IFNγ and one staining negative for both markers. Finally, we classify two final
subsets based on the expression of IL6 and CXCR3 (Figure 4b). To identify cell types enriched in
mortality, we computed a mortality likelihood score. By organizing our scores by T helper subset, it
became clear that the Th17 subset co-producing IFNγ+GranzymeB+ were enriched in patients who
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died from infection. Furthermore, GranzymeB and IFNγ were positively associated with mortality
likelihood on DREMI analysis across all CD4+ T cell subtsets (Figure 4c).

While Th17 cells can play protective roles [43], IFNγ+GranzymeB+ Th17 cells have been
associated with tissue damage. In a model of murine autoimmune encephalomyelitis, a discrete
subset of IFNγ+GranzymeB+ Th17 cells caused significantly worse disease than traditionally activated
Th17 cells [44]. Previous literature had also observed that high levels of circulating IL-17 produced
from IFNγ+GranzymeB+ Th17 cells could drive a strong pro-inflammatory immune response and
promote neutrophil expansion. Likewise, recent reports have indicated the harmful contribution of
neutrophils and neutrophil extracellular traps (NETs) in SARS-CoV-2 infections [45–47]. This influx
of neutrophils can be further exacerbated by the virus-induced loss of ACE2 [48], and cumulatively,
these events have the potential to trigger ARDS, as seen in COVID-19 patents. However, what
regulates neutrophil recruitment, survival, and subsequent NET release during the disease has not
been definitively identified in COVID-19. Interestingly, patients with adverse outcomes in this cohort
demonstrated an enrichment in IFNγ+GranzymeB+ Th17 cells, as well as CD16+ neutrophils. We
posit that IFNγ+GranzymeB+ Th17 cells in our cohort may precipitate these pathogenic effects
via IL-17 secretion. While our flow cytometry data was limited to identifying cells in circulation,
sequencing data from upper respiratory tracts of COVID-19 patients observed Th17 cells in the
airways, as well [49,50]. Either in the lungs or in circulation, IFNγ+GranzymeB+ Th17 may influence
neutrophil activity by inducing IL-8 release from airway epithelial cells or G-CSF from microvascular
pericytes [51–53]. It was recently shown that MAIT cells comprise a substantial portion of IL-17
expressing cells in the upper respiratory tracts of COVID-19 patients; consequently, secretion of
IL-17 in the lung may not be primarily confined to the Th17 compartment. The two may also act
synergistically as MAIT cells have been shown to promote the recruitment of activated CD4+ T
cells to the lungs during pulmonary infection [54].

Hyperactivated CD8+TIM3+HLA-DR+PD1+ TEMRA cells, expressing GranzymeB

enriched in patients who die from COVID-19. In acute viral infections, CD8+ T lymphocytes
play a critical role in the clearance of virus [55]. By the directed secretion of Granzyme B, these
effectors may rapidly kill virally-infected targets [56]. In order to characterize the role of CD8+

T cell subsets in disease, we zoomed in on CD8+ T cells in our cytokine-focused T cell panel.
Using the expression of cell surface markers and cytokines, we identified three major subsets, one
producing GranzymeB, one producing IFNγ and one producing TNFα (Extended Data Figure
5a). After mapping mortality likelihood scores onto the CD8+ subpopulation, it became clear
that the GranzymeB+ population is most enriched in mortality with GranzymeB expression being
highly associated with mortality in CD8+ T cells (Extended Data Figure 5b). These findings are
consistent with a previous study of SARS-CoV-2 infected patients that observed an association
between the enrichment of CD8+ T cells expressing high amounts of GranzymeB and increased
disease severity [57]. Despite the protective role of GranzymeB in other viral infections, our data and
others indicate that its excess may lead to worse outcomes, including mortality. This possibility is
supported by early findings of GranzymeB+ CD8+-induced tissue damage in different murine models
of respiratory viral infections [58,59] or from clinical studies [60]. In these early studies from mice,
pathogenic GranzymeB+ CD8+ T cell activity manifested in the presence of extremely high viral
loads or in the absence of other lymphocytes and antigen-specific antibodies. Likewise, all of these
factors are present in COVID-19 patients- high viral loads, lymphocytopenia, and ineffective antibody
responses - which permits the emergence of this hyper-activated CD8+ population associated with
more severe disease. To gain additional insight on which discrete subset of CD8+ T cells may be the
source of GranzymeB, we performed detailed surface staining of all T cells.
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We analyzed 208 patient samples using a flow cytometry panel containing markers indicative of T
cell subset identity and activation status. After identifying the ideal granularity to analyze the data,
we identified CD4+, CD8+ and double positive T cell subsets (Extended Data Figure 5c). Zooming
in to the CD8+ subset, we identified a range of activation states based on the expression of key mark-
ers: Effector (TIM3+PD1+/CD45RA+), Follicular (CD45RA−/CCR7−CD127−/CXCR5+PD1+),
Memory (CD45RA−/CCR7+ or CCR7 − CD127+), Naive (CD45RA+/CCR7+CD127+) and T
effector memory cells re-expressing CD45RA (TEMRA) (CD45RA+/CCR7−CD127lo) (Extended
Data Figure 5d). After computing MELD mortality likelihood score, we identified that the TEMRA
population displayed the most enrichment in severe infection. Furthermore, across all CD8++ T
cells, activation state markers PD1, TIM3, HLA-DR and CD45RA were also positively correlated
with mortality on DREMI analysis, while markers like CD127 and CCR7 were negatively correlated
with mortality (Extended Data Figure 5e). Our findings here are in agreement with contempo-
raneous studies of SARS-CoV-2 patients [38, 57, 61]. Cumulatively, our data correlate mortality
with a hyper-activated CD8+ T cell response in the form of CD8+CD45RA+TIM3+HLA-DR+PD1+

TEMRA cells, likely expressing GranzymeB.
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3.4 Multiscale patient manifold construction reveals potential mechanisms of

disease:

Figure 5: Patient manifold corroborates cellular states associated with of disease pathogenesis.

a. Visualization of patient manifold via PHATE and mortality likelihood score based on patient outcomes
computed via MELD.
b. Visualization of key cell population enrichment trends over the manifold with associations computed by
DREMI and visualized with DREVI.
c. Tracing three patients’ hospital courses over patient manifold. Patients 19 and 63 were discharged while
patient 54 died.
d. Comparing predictability of patient mortality using random forest classifier on Multiscale PHATE identified
populations and flow cytometry identified populations. Most predictive Multiscale PHATE clusters are ranked
through feature importance analysis.

Here, we show that Multiscale PHATE-derived clusters across multiple scales form a rich set of feature
descriptors for patients measured in single cell modalities. Although, the purpose of measuring
single cell data is indeed to derive features in the form of cells, patients can be hard to compare and
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analyze at this level. Common approaches simply compare cluster proportion or averaged expression
levels across patients. However, since Multiscale PHATE creates cellular groupings at multiple
granularities, we can derive a rich summarization of patients across scales.

We create a patient-embedding using cluster proportions from several levels of the condensation
topology of the myeloid-focused flow cytometry using our patient manifold approach (Figure 5a).
Briefly, the proportion of a patient’s cells that belong to clusters at several levels of the topology are
used as a feature vector (see Methods). These patient descriptors are then embedded and visualized
with PHATE [13]. The resultant embedding demonstrates that the patients lie on a low dimensional
continuum or manifold themselves. When the patient embedding is colored by the manifold-based
likelihood estimate of mortality outcomes, we see that the dominant progression in the data is indeed
clinical outcome, with patients on the left enriched for good outcomes (darker blue) and patients on
the right enriched for adverse outcomes (darker red).

In order to associate previously identified cellular populations with outcome, we computed
DREMI between these population proportions and mortality likelihood score. We identified that
while T cells overall were negatively correlated with mortality, CD4+IFNγ+GranzymeB+ Th17
cell, plasmablasts, CD16hi neutrophils and CD14−CD16hi monocytes were all strongly positively
associated with mortality (Figure 5b). These findings indicate that precipitous decline in T cells
correlates with mortality, while subsets of neutrophils, monocytes and Th17 cells, all previously
highlighted in our analyses, are increased in patients with adverse outcomes. Finally, we trace
clinical states of three patients, 19, 63 and 54, across the patient manifold to determine if our
construct accurately recapitulates patient trajectories. Surviving patients 19 and 63 had their clinical
trajectories consistently go from the high mortality region to the low mortality region. In contrast,
patient 54, who succumbed to disease, had a tortuous set of clinical states all of which mapped
within the high mortality region (Figure 5c).

To identify if age, sex and other clinical variables were preferentially associated with mortality
on our construction, we mapped these clinical variables onto the patient manifold. We found that
patients who were more likely to experience poor outcomes were also more likely to be older, male,
receive ventilatory support and have higher markers of inflammation (Extended Data Figure 6a). We
ran DREMI analysis to find associations between these clinical variables and key cell types implicated
in infection pathogenesis. We found that females and young individuals were more likely to mount a
robust T cell response. This finding builds upon a body of literature that shows immune responses
may differ across sex and age [62, 63]. Specifically, for SARS-CoV-2, this finding corroborates a
separate analysis that found that activated T cells play a protective role in women but not as
much in men [64]. Additionally, the negative relationship between age and T cell numbers has been
extensively studied [65,66]. Our analysis finds the same trend in our cohort of patients, who are in
general older, predisposing them to requiring hospitalization. Epidemiological data analyzing large
numbers of COVID-19 patients enumerate the significant contributions of age and sex for disease
severity [67,68].

In order to see if Multiscale PHATE-derived sub-populations could predict disease outcome, we
combined the features of patients that we identified in our myeloid-focused flow cytometry panel with
clinical outcome to train a random forest classifier (see Methods). Using these abstracted features,
we accurately predict outcome in 83.5% of cases. When performing a similar prediction task using
flow cytometry gated populations, we were only able to predict outcome with a lower accuracy of
73.8%. Furthermore, we identified that monocytes, CD16hi neutrophils and T cells were three of the
top four cell types most predictive of eventual disease outcome in our classifier model (Figure 5d).
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3.5 Multiscale clinical manifold construction highlights potential mechanisms

of disease convalescence:

Figure 6: Multiscale manifold of patient clinical features identifies cell types associated with

extended COVID-19 recovery phase

a. Visualization of Multiscale PHATE clinical manifold constructed on patient clinical features. Embedding is
colored by likelihood scores based on patient outcomes computed via MELD.
b. Zoom in on transition point between high extended recovery likelihood score and high survival likelihood
score.
c. Patient clinical features and flow cytometry identified cell populations associated with patient outcomes
using DREMI and visualized with DREVI.

Thus far, we have primarily used Multiscale PHATE to identify multiresolution structure in single
cell flow cytometry data. We now showcase the utility of Multiscale PHATE on a different type of
data: laboratory, clinical, and demographic data generated from routine clinical care of COVID-19
patients admitted to YNHH. Patients admitted for severe disease are characterized largely by having
advanced age and have systemic infection leading to multiorgan dysfunction. Using 18 clinical
and demographic measurements collected on 2,135 patients admitted to YNHH diagnosed with
COVID-19, we created a multiscale embedding capturing patient states across the spectrum of
disease severity. Patient outcomes at discharge were categorized as discharge to home, discharge
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to rehabilitation for extended recovery, and discharge to hospice or death while in hospital. Using
each of these outcomes, we computed likelihood scores with MELD corresponding to each outcome:
survival likelihood score, extended recovery likelihood score and mortality likelihood score (Figure
6a).

In order to understand how clinical features could inform outcomes, we computed DREMI and
DREVI analysis between clinical features and each of our likelihood scores (Extended Data Figure
7a-b). As anticipated, markers of physiologic instability, such as decreased systolic blood pressure and
increased respiratory rate, as well as systemic inflammatory markers, increased ferritin, procalcitonin
and CRP, were associated with higher mortality. Beyond these general markers, however, several
markers of organ dysfunction were also strongly associated with mortality. Specifically, kidney
dysfunction, as measured by blood urea nitrogen (BUN) and creatinine, as well as liver dysfunction,
aspartate aminotransferase (AST) and alanine aminotransferase (ALT), were correlated with mortality.
Although COVID-19 most commonly involves the respiratory system, these findings are consistent
with clinical reports of severe disease from a generalized inflammatory state resulting in multiorgan
damage and failure.

A subset of patients infected with SARS-CoV-2 experience prolonged recovery periods. In fact,
our multiscale embedding of patient clinical states suggests a transition between a region of high
survival likelihood score and a region of high extended recovery likelihood score (Figure 6a). In
order to understand which cellular populations and clinical features drive the difference between
these outcomes, we decided to zoom into this transition point (Figure 6b). We computed DREMI
association scores between clinical features and flow sorted cellular populations to identify features
differentially associated with survival and extended recovery. Our analysis found that age and kidney
dysfunction were strongly associated with extended recovery indicating that older patients with
worse kidney function were more likely to experience lengthy recovery periods from infection (Figure
6c).

Beyond clinical features like age and organ function, we also discovered different cellular popu-
lations associated with outcomes such as survival or long-term recovery from disease (Figure 6c),
thus showcasing the way in which Multiscale PHATE can be used as a substrate for integrating and
analyzing multiple modalities of data. Multiple recent publications have addressed the question of
protection conferred by T cell-mediated responses [69–71] - with many demonstrating that antigen-
specificity and T cell responsiveness lead to improved outcomes [72, 73]. Our analyses are in line
with these findings, indicating that though some T cell subsets may be pathogenic, the major T
cell subsets overall are positively associated with survival and negatively associated with a lengthy
recovery phase. Interestingly, no myeloid subsets were found to be associated with length recovery
periods, indicating that T cells and T cell subsets are perhaps more associated with recovery length
while other immune populations may be associated with mortality.

4 Discussion

Here we presented a multiscale data exploration technique to visualize, understand and compare large-
scale datasets, filling a key gap in biological data exploration. Multiscale PHATE finds groupings of
data at varying scales that are predictive of clinical outcome. Biological data naturally contains
multi-granular structure. Most analysis methods, however, whether clustering or dimensionality
reduction algorithms, generally only look at a single level of resolution and do not offer a systematic
way to explore different scales. Hierarchical clustering is one method that could offer certain scales
of resolution. However, due to the constant merges that occur in hierarchical clustering approaches,
like Louvain, many levels of resolution are missed and biologically important levels of granularity are
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not recapitulated. By contrast, Multiscale PHATE offers a fast manifold learning-based technique
for uncovering a continuum of resolutions of structure and features by understanding data topology.
The speed and effectiveness of Multiscale PHATE is due in large part to key algorithmic advances
we presented to make the underlying diffusion condensation process scalable, and representational
advances in using diffusion potential coordinates as the substrate for the condensation.

We show that Multiscale PHATE can be combined with other techniques, like manifold density
estimation (MELD), mutual information (DREMI), and classification (random forest classification)
to provide deep and detailed insights in biological processes. We showed several effective examples of
combining Multiscale PHATE with a technique known as MELD that shows the relative likelihood
of seeing cells from different categories of patients in different parts of the cellular manifold. When
MELD is combined with Multiscale PHATE, we can find levels of resolution that naturally capture
the salient differences between patients with different clinical outcomes. Interestingly, Multiscale
PHATE’s ability to zoom in helps identify pathogenic subsets of protective populations. Across our
analyses, T cells have been shown to be protective against poor outcomes, corroborating previous
work done in COVID-19. While broadly this cell type is protective, a multiscale zoom in of CD4+

T cells reveals a pathogenic CD4+IFNγ+GranzymeB+ Th17 subpopulation. The multiresolution
analysis we performed stresses the need to analyze data at multiple granularities. While broad cell
types, such as T cells, may appear to be protective, smaller cellular subsets, such as pathogenic
Th17 cells, may actually be driving patient mortality. In our work, we show several instances where
DREMI between MELD likelihood scores and Multiscale PHATE identified clusters revealed potential
associations between outcomes and key subpopulations, like CD16+CD14−CD66b− neutrophils and
CD14loCD16+HLA-DRlo monocytes. Furthermore, we showed that Multiscale PHATE identified
populations combined with outcome variables can be used to predict clinical outcomes better than the
current gold standard for flow cytometry analysis. Finally, we show that our approach is generalizable
to a wide variety of biomedical data, including scRNAseq, scATACseq, CyTOF, TCR repertoire
sequencing and clinical datasets.

While we have demonstrated Multiscale PHATE in the context of COVID-19 patient data, we
believe that both the technique and the ways in which we have used it to analyze multi-modal data
are widely applicable. Multiscale PHATE can also be used with an individual data modality to
uncover structure where canonical cellular subtypes are not available, such as in patient-specific
cancer or tumor cell types. Generally, as datasets continue to increase in size and the number of
samples continue to expand, our scalable algorithm will become even more critical for joint analysis.

5 Methods

5.1 Computational Methods

In the following sections we provide a thorough description of each aspect of the Multiscale PHATE
algorithm and the use of downstream analysis tools. This includes but is not limited to explanations
of algorithm design choices, information on how comparisons between algorithms were run and
details on how the patient manifold was constructed.

5.1.1 Diffusion information geometry for visualization and condensation

The multiresolution visualization provided by Multiscale PHATE relies on the construction of a
diffusion geometry that captures the intrinsic structure of the data. Such a construction was first
presented in the context of manifold learning with Diffusion Maps (DM), which rely on diffusion
coordinates derived from spectral decomposition of the heat kernel over (Riemannian) manifolds [74].
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The DM construction approximates the heat kernel on data by defining a Markovian diffusion process
whose transition probabilities are given by p(x, y) = k(x,y)

‖k(x,·)‖1
, where the L1 norm is taken over the

input data and k(·, ·) is a kernel function for capturing the similarity between local neighborhoods
in the data. Then, an integral diffusion operator is constructed as Pf(x) =

∫

p(x, y)f(y)dy, which
is represented in finite settings as a matrix with entries [P]ij = p(xi, xj), where {x1, x2, . . .} are the
input data points (e.g., cells or strains in our case). By taking powers of this diffusion operator, we

can consider t-step diffusion probabilities between data points given by pt(xi, xj) := Pr[xi
t−steps
−−−−→

xj ] = [Pt]ij . Finally, the diffusion geometry considers each data point x via its t-step diffusion
distribution ptx = pt(x, ·), and DM aims to extract low dimensional coordinates where Euclidean
distances capture a diffusion distance metric defined as L2 distances between these distributions,
called diffusion distances.

While several kernels are used in practice to construct the diffusion operator P, a standard
choice is the Gaussian affinity kε(x, y) = exp(−‖x− y‖2/ε) [13, 74–76], in which case we denote the
diffusion operator Pε, where ε determines the neighborhood radius. This kernel choice is often seen in
theoretical and mathematical work due to its established properties on data sampled from locally low
dimensional geometries (i.e., data manifolds) [74,77,78]. In particular, it can be verified that when

the data is sampled from a Riemannian manifold, the diffusion operator Pt/ε
ε constructed from kε(·, ·)

converges to the heat kernel on the underlying manifold as ε → 0. Further, as ε → 0, the eigenvectors
of P t/ε

ε operator converge to eigenvectors of the Laplace-Beltrami operator that characterize the
solutions of the heat equation (∂tf(x, t) = ∇2

xf(x, t)) with von Neumann boundary conditions on
the underlying manifold of the data. Based on these convergence properties, the embedding provided
by DM requires an eigendecomposition of Pt to its eigenvalues 1 = λt

0 ≥ λt
1 ≥ λt

2 ≥ · · · ≥ 0 and
corresponding eigenvectors φ0, φ1, φ2, . . ., which then yield the diffusion coordinates x 7→ (λt

jφj)
η
j=1,

where η is determined by the numerical rank of Pt and the first eigenpair is typically discarded since
φ0 is always constant. We refer the reader to [74] for more details on DM and its properties.

While the analytic relation between spectral embedding with diffusion coordinates is appealing
from a manifold learning perspective, the resulting DM often separates trajectories, pathways, or
clusters into independent eigenspaces. This, in turn, yields multidimensional representations that
cannot be conveniently visualized (e.g., having significantly more than 2-3 dimensions), and more
importantly, cannot be directly projected into 2D or 3D displays that faithfully capture diffusion
distances. In order to overcome this and extract a low dimensional data visualization, the recently
proposed PHATE method treats the constructed diffusion geometry as a statistical manifold and
leverages tools from information geometry to define a family of diffusion information distances

defined as Dγ
t (x, y) =

∥

∥

∥
∆

(γ)
(x,y)(·)

∥

∥

∥

2
where

∆
(γ)
(x,y)(z) = −

∫ pty(z)

ptx(z)
u−

γ+1

2 du =















ptx(z)− pty(z) γ = −1

log ptx(z)− log pty(z) γ = +1
2

1−γ

[

(ptx(z))
1−γ
2 − (pty(z))

1−γ
2

]

otherwise

(1)

and the parameter −1 ≤ γ ≤ +1 attenuates the influence of lower probability differences in the overall
distance. On one extreme (γ = −1), the resulting metric yields the traditional diffusion distance.
When γ = 0, it yields an f -divergence corresponding to Hellinger distances between diffusion
distributions. On the other extreme (γ = +1), the resulting information distance yields an L2

distance between localized diffusion energy potentials given by U t
x(·) = log ptx(z), as discussed in [13].

There, as well as in other work [79], it has been shown that this potential distance is amenable to a low
dimensional embedding that captures and visually accentuates emergent global and local structures
in the data - most importantly, trajectories and transitions between stable clusters in it. Therefore,

21



the PHATE method, as well as its variation here, are based on embedding potential distances directly
into two or three dimensional coordinates via a stress-minimizing optimization procedure provided
by multidimensional scaling (MDS). In addition to the core utilization of diffusion information
geometry, the PHATE algorithm also includes robust construction of the initial neighborhood kernel,
automatic tuning of diffusion resolution, and efficient sampling for scalability purposes. For more
details about these aspects of PHATE, we refer the reader to [13].

Multiscale PHATE not only uses PHATE for visualization of several chosen iterations of the
condensation process (explained below), representing multiple scales of data coarse graining, but
also as the potential coordinate system that learns geometry of the data.

5.1.2 Multiresolution via the diffusion condensation time-inhomogeneous Markov pro-

cess

The diffusion geometry underlying PHATE is naturally multiscale, via the diffusion time parameter t
that controls the resolution of information captured by the diffusion process. Indeed, as the diffusion
time increases, the distributions ptx(·) (or potentials U t

x(·)) consider increasingly diffused energy that
attenuates local differences until eventually as t → ∞ all these distributions converge to a unique
equilibrium stationary distribution, since the process is ergodic. However, as discussed in [80,81],
this process often diffuses information too rapidly to enable multiresolution representation of varying
intermediate scales of data geometry. Further, in [13], it was shown that the diffusion time scale
admits an optimal time scale for visualization, which can be identified automatically by distinguishing
between a rapid denoising phase and a slow decay from metastable to equilibrium diffusion states.
We can use this property to automatically tune the diffusion time scale to transitioning point between
these two phases. However, here we aim to extend this analysis to provide a full multiscale or
multiresolution data geometry, and therefore we need to provide better control of the propagation of
information by intrinsic diffusion over the data.

One of the first attempts at alleviating the rapid convergence to stationary distribution in
multiscale DM was presented in [80], as part of a hierarchical construction of localized diffusion
folders (LDF) using a localized diffusion process, which was further analyzed in [81]. The localized
diffusion process there limited each instantiation of the diffusion random walks to only traverse
between two “diffusion folders” (i.e., clusters), thus blocking global pathways that quickly diffuse to
wide regions in the data. While this process was shown to be effective in some applications involving
hierarchical clustering, it requires separate clustering steps and a priori determination of scales at
which to pause the diffusion and cluster into LDFs. Furthermore, the pruning of the diffusion process
there is computationally intensive, as each diffusion affinity (or transition probability) requires
simulating or approximating a local diffusion process between two considered clusters. However,
the principles posed by this approach clearly established the need for careful manipulation of the
underlying Markov process of DM in order to truly enable multiscale representation learning via
diffusion geometry, and by extension the diffusion information geometry used in PHATE.

Interestingly, topological data analysis naturally creates multiscale structure by combining
geometric and topological perspectives into a single framework. While studying data geometry is
useful in understanding the precise measurements between objects, topological analysis is useful in
describing the relationships between objects. A hybrid perspective can be appealing in situations
such as ours, where geometry and relationships between data points are both important.

Persistent homology denotes a set of algorithms from the field of computational topology. The
express goal of persistent homology is to describe the geometry—or shape—of sampled data sets,
i.e., point clouds, at multiple scales, or granularities. The common scenario of persistent homology
involves the analysis of distance functions on point clouds to approximate the manifold from which
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a dataset X has been sampled. To this end, one typically constructs a simplicial complex [82], i.e., a
generalization of a graph, which can contain higher-dimensional structural elements called simplices,
corresponding to subsets of the data points of a certain cardinality. Given a distance threshold δ,
one typically constructs a simplicial complex containing all simplices whose pairwise distances are
less than or equal to δ, i.e.,

Vδ(X) := {σ ⊆ X | d (xi, xj) ≤ δ} . (2)

Any subset σ of cardinality k − 1 is called a k-simplices, meaning that the 0-simplices are the
vertices of Vδ(X), the 1-simplices are the edges, and so on (a graph can therefore be seen as a simple
1-dimensional simplicial complex). Each k-simplex σ in Vδ(X), with k ≥ 1, can be assigned a weight
wσ based on the pairwise distances of its underlying vertices by setting wσ := maxxi,xj∈σ d (xi, xj).
The resulting simplicial complex Vδ(X) can be seen as a backbone of the dataset X, combining
geometry and scale information—via δ—with topological information. The weighted simplices
can be used to describe topological features such as connected components (0D), cycles (1D), and
voids (2D) in X. Persistent homology therefore is a mixture between strictly geometrical approaches,
which focus only on points, and strictly topological ones, which focus only on connectivity without
incorporating distance—scale—information. The utility of persistent homology becomes apparent
in characterizing the evolution of topological features at multiple granularities, determined via δ.
For a sufficiently large δ, all points are connected to each other, yielding a complete graph or,
equivalently, a full simplex, whereas for δ ≈ 0, almost all simplices in the complex will be vertices,
i.e., higher-dimensional structure will be largely absent. It turns out that topological features can
be efficiently tracked over multiple scales or granularities, i.e., multiple values of δ, so that each
feature is assigned a persistence. This quantity indicates over which granularities a feature is present.
For instance, suppose that X is a densely-sampled square; it will feature one connected component
with a high persistence value, because all points are connected for small values of δ and will not be
connected to another set of points for larger values.

Inspired by this topological data analysis, a more recent approach towards multiresolution
diffusion-based coarse graining was presented in [12]. Diffusion condensation relies on replacing the
traditional time-homogeneous Markov process typically used in diffusion frameworks [13, 74] with an
inhomogeneous process, following the theoretical analysis in [83] that established the mathematical
viability of diffusion geometry construction of such processes. Unlike previous approaches, the coarse
graining in [12] does not rely on a clustering & pruning approach. Instead, it proposes to base the
intuition for the diffusion construction from heat propagation that rapidly spreads over the data
based on connectivity, to a condensation process that alternates between slow gravitation (e.g., as
drops of water slowly gravitate towards each other) and fast merging, concentrated regions collapse
(e.g., as water drops merge together) to a single point, creating a topological understanding of
a dataset by calculating the persistence of individual points. If we view the merges of diffusion
condensation as a change in terms of the topology of the dataset, the alternation between these
meta-stable and transient regimes also provides a diffusion-analogous notion of persistence used
in topological data analysis, which in turn naturally gives rise to emergent stable resolutions for
multiscale visualization and clustering.

Advancements in multiresolution visualization and clustering via Multiscale PHATE

In its original form, the time-inhomogenous diffusion condensation process does is not optimized
for visualizing complex and non-linear biological manifolds. Thus, we have modified diffusion
condensation in the following ways:
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1. Transforming datapoints to a novel diffusion potential coordinate system to learn the data
manifold,

2. Computing a fast diffusion condensation process that scales to millions of data points,

3. Identifying levels for visualization based on gradient analysis and creating a density aware
visualization.

5.1.3 Condensation on potential coordinates

The computation of the diffusion condensation process in [12] only uses the diffusion operator
P, interpreted as a low-pass (smoothing) filter that can be applied to any dataset encoded in a
points-by-features data matrix X. However, condensing in this feature space can lead to “averaged”
points that deviate from the intrinsic data manifold, especially in cases where the intrinsic manifold is
very curved (Extended Data Figure 1a). As cellular state spaces can be heavily non-linear [13,16,18],
we require an alternative method of diffusion condensation that ensures that the condensed points
remain on the manifold. A straightforward method for achieving this might be diffusion map
coordinates. However, the computation of diffusion map coordinates requires eigendecomposition
of a diffusion operator, which is known to be slow (O(n3) complexity). In the current manuscript
rather than using the original features, we use the potential representation of data points used in
PHATE (see Equation 1) as the as initial features. This effectively re-represents points by features
that consist of the log of diffusion probabilities to all other features. In PHATE, this representation
is used as the step before dimensionality reduction and low-dimensional data embedding. However,
we use these diffusion potential coordinates here as a high-dimensional representation of the data on
which the condensation operates, offering a “straightened” and globally coherent intrinsic manifold
space upon which to operate the diffusion condensation process. This way when data points are
condensed, they are condensed in terms of their diffusion probabilities.

5.1.4 Scalable coarse-graining with fast diffusion condensation

In its original form, the condensation process proceeds as follows. Let X
(0) = X be the initial

data matrix with diffusion operator P0 := P constructed from its rows (as data points), and let
X

(1) = P0X
(0). This gives the first iteration of the process, where the application of the diffusion

smoothing intrinsically denoises and reduces local variability in X
(1) compared to X

(0). Then, the
process is repeated to further reduce local data variability by computing the diffusion operator P1

over rows of X(1), yielding X
(2) = P1X

(1). In general, this process is repeated iteratively, resulting
in a time-inhomogeneous Markov process

X
(t+1) = PtX

(t) = PtPt−1 · · ·P1P0X, (3)

whose t-step transition probabilities are given by the entries of a time-varying row-stochastic
operator P(t) = Pt · · ·P0 (note that P(t) does not represent a matrix power, but rather the diffusion
condensation operator at iteration t). As mentioned previously, due to the low-pass nature of each
diffusion operator Pt, this Markov process adaptively removes local (high frequency) variations
in input coordinate functions. The effect on the data points X is to draw them towards local
barycenters, which are defined by the inhomogeneous diffusion process.

In order to allow Multiscale PHATE to enable scalable exploration of large data sets, such as
high dimensional biological data, we propose speeding up of the initial condensation iteration in the
following ways:
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1. Speed-up of the initial iteration using graph partitioning.

2. Fast computation of the diffusion potential via landmarking.

3. Merging of data points to increase computational efficiency over iterations

The complexity of computing a diffusion operator on n points is n2. In order to reduce n for
initial condensation iterations, we run hierarchical kmeans on the PCA space of the data with a high
K (by default 100) to obtain a coarse graining of the data in feature space. In each iteration of the
kmeans approach we partition the data into k more clusters. In subsequent iterations we compute
another k clusters from each of these clusters. This process continues until we have a large number
of clusters from which to compute the diffusion operator (by default 25,000). We then compute
a landmarked diffusion potential (as done in [13] and explained below) on this reduced space, by
convention the centroid of each of these clusters, before starting the coarse graining process.

Creation of the diffusion operator requires the computation of all pairwise distances between
points, before conversion of those distances to affinities. Instead of using spectral clustering on the
full dataset, we can come up with cluster centroids that are treated as "landmarks". Afterwards,
distances Dpl and Apl are computed between points and landmarks, i.e., they are n×k matrices where
n is the number of points and k is the number of landmarks. In addition, distances Dl and affinities
Al are computed between landmarks, resulting in k × k matrices. In order to compute the diffusion
operator P

t, we row normalize Apl and Al to obtain Ppl,Pl and compute P
t = PplP

t
lPlp, thus

decomposing t-step path probabilities between two points as the probability of going to a landmark
and then back to the point. We have shown in [13] that this leads to high quality approximations
of the diffusion operator which lead to near-identical visualizations with PHATE. In addition, we
examined in [84] that this leads to low error approximations of diffusion operators in general. We use
this fast approach to compute a low error diffusion potential system for our coarse graining process.

In order to increase computational efficiency over successive iterations of condensation, we merge
points that fall within a threshold distance into a single point. When two or more points collapse
into the same barycenter (closer than a threshold ζ), we merge them into a cluster since they would
then have approximately the same coordinates. After this merging operation, we effectively treat
the cluster as a single point. Intuitively, this merging process creates a single connected component
from two different components in our calculation of data topology. This has the effect of density
subsampling the data iteratively, and allowing for subsequent iterations to proceed faster. Therefore
the number of points steadily decreases, allowing the algorithm to speed up in successive iterations.

As we iterate this process over and over again, the condensation process slowly coarse grains the
data to reveal structure at all levels of granularity while avoiding the typical tendency of traditional
hierarchical clustering approaches to force (e.g., greedy) cluster merges at every scale.

We show that the resultant method is orders of magnitude faster than competing methods: DM,
t-SNE, UMAP, Monocle2, and PHATE (Extended Data Figure 1c).

5.1.5 Selection of visualization layers via Gradient Analysis

As our iterative coarse graining approach creates hundreds of layers for downstream analysis, selecting
salient level of granularity for visualization is a critical task. We envision users to start with a
coarse-grained level that offers a high-level summarization of the data before "zooming-in" to obtain
finer detail on populations of interest. To offer this type of interactivity, we provide a method for
selecting specific scales for visualization.

We reason that the salient levels of the representation for visualization must be stable levels
which emerge during condensation, i.e., levels whose structure persists for several iterations. To
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find such levels we examine the gradient of points across successive condensation iterations and
determine where the overall shift in data density from one iteration to the next is locally minimal
(Figure 1b). In order to identify these metastable states, we identify changes in manifold density for
every pair of successive condensation iterations ∇(t,t+1) = X

(t) −X
(t+1). In order to identify total

shifts in density we compute the matrix sum of ∇(t,t+1) by G =
∑N

n

∑N
n ∇(t,t+1). Picking scales

for visualization and downstream analysis arises from identifying local minima in G (Figure 1b).
Visualization of a granularity is achieved by the stress-minimizing optimization procedure provided
by multidimensional scaling (MDS) on the condensed diffusion potential as done in [13]. Finally, to
obtain more refined and detailed visualizations, we allow users to select data subsets to view at finer
granularities identified by gradient analysis (Figure 1c).

5.1.6 Distinction and comparison between the diffusion condensation process and

hierarchical clustering

One use of diffusion condensation can be to provide a hierarchy of clusters determined by merged
points. However, it should be noted that the condensation process here is significantly different
from typical hierarchical clustering, and instead provides a richer coarse graining of data geometry.
Indeed, hierarchical clustering algorithms generally belong to two families: divisive algorithms and
agglomerative ones.

Divisive approaches (e.g., bisecting k-means [85] or MST-based clustering [86]) work in a top-down
fashion, each time optimizing a partition of the data into clusters (e.g., using partitional methods
like k-means), and then recursively partitioning further each cluster. The difference between these
and the gradual aggregation approach of the condensation process is clear.

Agglomerative methods, on the other hand, work in a bottom-up fashion by first merging points
into clusters, and then recursively merging increasingly larger clusters. While intuitively more related
to the gradual merges in diffusion condensation, there is a fundamental difference between the coarse
graining operation applied here and the (typically greedy) agglomeration in such methods. Indeed,
most agglomerate clustering methods only operate on determining an iterative or recursive sequence
of merges, without considering any intermediate information or structure in the data.

The condensation process utilized here, on the other hand, is derived from a continuous process
that gradually eliminates local variability in the data. At its core, it relies on a time-inhomogeneous
Markov chain that gradually constructs a diffusion geometry that reveals global and local structures
in the data at increasingly coarse scales. The elimination of local variability in this process allows
points to naturally come together, thus producing natural data clusters from data regions that
collapse to the same point, without the need for partitioning or greedy agglomeration. However, this
is a pattern that emerges from the coarse graining process, rather than directly or explicitly guiding
it. The constructed multiresolution data geometry also reveals other information, beyond clustering,
which makes it amenable for visualization and other downstream tasks. For instance, condensation
homology produces persistent features that are meaningful, and levels of meta-stability can be
analyzed, as we do for the selection of meta-stable resolutions (e.g., for visualization) explained
below.

To demonstrate the difference between diffusion condensation and agglomerative clustering, we
use the Louvain method [20] as a representative example, due to its popularity in single cell data
analysis. This method greedily selects clusters to merge together by their impact on modularity
(i.e., whether and how much they improve it). The forced merges, while ensuring a hierarchy of
data agglomerations, do not provide reliable coarse grained representations for revealing varied data
resolutions. As we showed in Extended Data Figure 3, they miss vital levels of resolution. Meanwhile,
diffusion condensation allows for a systematic exploration of granularity and is better at capturing
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levels where biological differences may exist (Extended Data Figure 3e).
In order to quantitatively compare the accuracy of Multiscale PHATE clusters with hierarchical

clustering approaches, we compared cluster labels generated from a range of clustering strategies to
ground truth labels using Adjusted Rand index (ARI). We first generated a hierarchical stochastic
block model with different clusters at multiple granularities (Extended Data Figure 3a). We then
used Multiscale PHATE, Louvain [20], Leiden [21] and single linkage hierarchical clustering [22]
to identify groupings across multiple levels of granularity. For each level of ground truth clusters,
we computed ARI against cluster labels from each algorithm across all granularities, storing the
highest ARI for each method. For the flow cytometry data, we used gated populations from 3
samples in our myeloid-centric flow cytometry panel as ground truth labels across coarse and fine
grain cluster labels. For instance, at coarse grain monocytes would be identified as one population,
however at fine grain monocytes would be a part of three distinct populations. ARI was computed
similarly for this dataset, ground truth labels were compared to all granulities of clusters from each
algorithm, with the top score stored for each approach. Networkx [87] was used to produce Louvain
clusters, leidenalg was used to produce Leiden clusters and agglomerative clusters were produced
using sklearn [88].

5.1.7 Comparison of multigranular visualizations with DeMAP

DeMAP is a metric for assessing visualization quality in terms of its ability to capture the manifold
geometry of noisy data [13]. DeMAP computes correlation between geodesic distances on ground
truth noiseless data manifolds to Euclidean distances on embedding created from noisy data. High
DeMAP scores indicate visualization that accurately represents geodesic manifold distances in an
embedding.

In order to show that Multiscale PHATE created improved multigranular visualizations when
compared to other approaches, we performed two ablation studies. First, the splatter software was
used to simulate ground truth and noisy single cell data of either group (cluster) or path (trajectory)
geometries [19]. In the first ablation study, differing approaches to build a multiscale abstraction of
the noisy synthetic data were computed: louvain and computational homology. These abstractions
were visualized with a range of visualization strategies. The resultant embeddings were compared
with multiscale PHATE using DeMAP. In the second ablation study, condensation topology on
the noisy synthetic data was computed and a multiscale PHATE embedding was created after
identifying the optimal resolution via gradient analysis. In order to create multiscale visualizations
with other dimensionality reduction strategies, we applied a range of other visualization approaches
to this condensed granularity of noisy data. Finally, all embedings were compared using DeMAP.
These studies were repeated across a range of noise types, biological variation and drop out, and a
range of noise levels. For robustness, this process was run across 10 different splatter datasets with
group geometry and 10 different splatter datasets with path geometry for each comparison. Besides
Multiscale PHATE, the DeMAP package was used to build all other visualizations [13].

5.1.8 Construction of patient manifold through multiresolution cluster evaluation:

Previously, PhEMD built a manifold of samples measured via single cell technologies by binning
cells associated with each sample into histograms and computing Earth Mover Distances or optimal
transport between histograms [89]. This computation, however, is done at a single scale and requires
determining ground distance between histogram bins. Truthfully, cells can occupy a diverse set of
hierarchical labels which a single resolution does not capture. Recently, these optimal transport based
techniques have been implemented on hierarchical trees allowing for multiresolution comparison of
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sample density variations [23]. Furthermore, in [90] it was shown that multiscale smoothing of data
distribution can be used to approximate the Earth-mover distances between them, which are closely
related to optimal transport and essentially measures the energy required to transform one data
distribution to another. Intuitively, this can be understood as computing how difficult it would be
to change the underlying cellular state of one patient to that of another patient.

Inspired by these techniques, we have developed a multiresolution evaluation system for deter-
mining sample level density variations to build a manifold of patients based on differences in their
underlying cellular states. Here, instead, we combine multiple histograms at different scales for each
patient to compute a distance between their underlying cellular states. Our approach of replacing
ground distance with multiscale construction is based on the work of [90] and [23] , which show
that with appropriate weights, the combination of such smoothed data distributions can be used to
efficiently compute or approximate Earth Mover distances. We note that our results show empirically
that even without careful tuning of such weights, the resulting patient to patient distance, and the
constructed manifold, accurately recapitulate the clinical states.

Practically, we create a manifold of samples by simultaneously evaluating multiple levels of
the diffusion condensation topology. At each level ℓ ∈ {1, 2, . . . , L}, a number of Nℓ clusters are
identified. We count the number of cells, nℓ,j,k, of the k-th patient that belong to each cluster Cℓ,j for
every j ∈ {1, 2, . . . , Nℓ} and calculate the normalized percentage as rℓ,j,k =

nℓ,j,k∑
j nℓ,j,k

. We calculate

the proportions for all patients at a series of selected levels of the topology and concatenate these
to create a rich multiscale vector of features for each patient. These multiscale feature vectors are
then used to create an embedding with PHATE [13] and to de-noise patient specific signals using
MAGIC [18] using Euclidean distance between samples.

5.1.9 Use of MELD with Multiscale PHATE

MELD is a method proposed in [15] that takes a discrete signal defined on a data graph and computes
a continuous likelihood score of the signal value by using a sophisticated form of neighborhood
averaging by using a heat kernel at each point (Figure 1c). In order to apply MELD to this dataset,
we combined the flow cytometry data coming from all patients, and used a binary outcome score that
we call mortality, which uses a discrete 0-value for a positive outcome (the patient was discharged),
or a 1-value for a negative outcome (patient died or was sent to hospice). The outcome of the
patient is used as the discrete condition for all cells from that patient. Thus in our combined
flow-cytometry dataset, every cell from positive outcome patients get a raw experimental signal
value of 0. Using MELD, we estimate the likelihood of each outcome over the cellular manifold using
a heat-diffusion kernel applied to the data graph to obtain mortality likelihood score. Values of the
mortality likelihood score range from 0 to 1 and constitute a probability likelihood estimate of the
condition over the manifold. This allows us to identify areas of the cellular manifold that are likely
to be enriched in those with positive or negative outcomes.

Since Multiscale PHATE identifies clusters of cells across all levels of granularity, we can sweep
across resolutions to identify levels which isolate high and low mortality likelihood score regions.
In fact, when comparing our multigranular clusters with other clustering techniques across a range
of granularities, we show that multiscale PHATE is better able to isolate high and low mortality
likelihood score regions in one of our flow cytometry panels (Extended Data Figure 3e). By looking
at these informative resolutions, we can identify populations of cells that are pertinent to patient
outcomes. When identifying these subpopulations in conjunction with cell type defining markers,
we show that we can identify cell types and functional subtypes that are differentially enriched
across patient outcomes and may drive disease pathogenesis. The full Multiscale PHATE and MELD
integrated pipeline can be seen in Extended Data Figure 1b.
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5.1.10 DREMI Associations with mortality likelihood score

DREMI [16], is an information-theoretic metric that quantifies associations or strength of a re-
lationship between two variables. Like most discrete estimates of mutual information, DREMI
starts by binning continuous data into equal-sized partitions, X = {X1, X2, . . . , Xn}, and Y =
{Y1, Y2, . . . , Yn} in both variable dimensions but instead of measuring the mutual information as
I(X, y) = H(Y )−

∑

iH(Y |Xi) the difference between the entropy of Y and the conditional entropy
of X|Y , DREMI "resamples" or equalizes the number of samples in each bin using an extra level
of conditioning. Thus DREMI computes DREMI(X,Y ) = I(X,Y |X) = H(Y |X)−

∑

iH(Y |Xi).
The rationale for this is that normal mutual information is dominated by the density peaks of the X
variable, and does not reveal the full strength of the relationship given imbalanced sampling which
is common in biomedical data.

When combining our DREMI analysis with previously computed mortality likelihood score, we
can identify functional marker trends which are correlated with mortality. As cells of the same type
can occupy a range of functional states that can be enriched in disease, a given subtype may not be
associated with mortality but a functional substate could be. By computing DREMI associations
between mortality likelihood score and cellular functional state markers, we can identify markers,
and by extension activation states, that are associated with outcome.

5.1.11 Patient manifold analysis from Multiscale PHATE Features

In order to identify the differences between individual patient samples, we used Multiscale PHATE to
construct a manifold of patients as described above. Similar to mortality likelihood score computed
by MELD in our flow cytometry analysis, we computed a similar mortality likelihood score for our
patient manifold by identifying if each patient sample originated from a patient that had a positive
outcome or a negative outcome. In order to identify patient sample features correlated with mortality
likelihood score, we compiled a set of clinical, demographic and Multiscale PHATE identified cell
type proportion features for each patient sample. Using the geometry of the patient manifold, we
de-noised our patient sample features using MAGIC [18] before running association analysis between
features using DREMI [16].

5.1.12 Mortality Prediction using Random Forest Classifier

In addition to being useful for visualizing, clustering and identifying condition specific enrichment of
cell types, we wanted to see if the populations we identified across granularities were predictive of
patient outcome. In order to predict patient outcomes from just a single patient sample, we trained
a random forest classifier on populations we identified in our myeloid focused flow cytometry panel.
Similar to our patient manifold analysis, we derived multiscale patient features by identifying the
proportion of each patient’s cells that were labeled with a particular cell type. After partitioning our
dataset of 210 patient samples into 5 sets, we performed 5-fold cross-validation where we iteratively
shuffled training sets (4 of 5) and test sets (1 of 5). Across all runs, we achieved an accuracy of
83.5% across both conditions, with 86.5% classification accuracy for patients that survive and 78.8%
classification accuracy for patients that died from infection. In order to identify cellular types
that were particularly informative of mortality outcome, we computed and compared the feature
importance of random forests. This analysis revealed that that monocytes, CD16+ neutrophils,
dendritic cells and T cells had the highest importance and were most predictive of mortality outcome.
To determine whether our Multiscale PHATE derived cellular populations were more informative
than current gold standard cell typing strategies, we also trained a random forest classifier on cell
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populations identified via conventional flow cytometry gating analysis. This analysis was only able
to accurately predict patient outcomes in 73.8% of cases.

5.1.13 Software availability

The Multiscale PHATE package, as implemented in python, is available for download with a
guided tutorial on the Krishnaswamy Lab Github page: https://github.com/KrishnaswamyLab/

Multiscale_PHATE.

5.1.14 Pre-processing of patient flow cytometry data

Flow cytometry was performed on PBMC from each patients (methods explained in detail below).
The resulting .FCS files were pre-processed by applying compensation based on the respective
single-color compensation controls, 2) selecting only leukocytes and singlets based on FSC and SSC,
and 3) selecting only live cells based on a viability dye. MFI values for each fluorophore on a per-cell
basis were then extracted for downstream analysis. In order to extract T cells for the cytokine
focused T cell panel, cells with CD3 staining greater than 425 were extracted. For the T cell surface
marker panel, cells with a CD3 staining greater than 500 were extracted. For the B cell focused
panel, cells with a CD19 staining greater than 400 were extracted and cells expressing less than a
total of 2700 cumulative staining across all markers were removed. No extraction of cells was done
for the myeloid focused panel, however cells with cumulative staining across all markers less than
2700 across were removed. All datasets were then independently normalized to 1000 staining counts
per cell before square root normalization.

5.2 Biological and Medical Methods

In the following sections we provide details on how patient biological data and clinical information
was acquired and processed.

5.2.1 Ethics statement

This study was approved by Yale Human Research Protection Program Institutional Review Boards
(FWA00002571, protocol ID 2000027690). Informed consent was obtained from all enrolled patients
and healthcare workers.

5.2.2 Patients

Patient enrollment, sample acquisition, processing, and downstream analysis by flow cytometry were
performed as in [14]. One-hundred and sixty-eight patients admitted to YNHH with SARS-CoV2
between 18 March 2020 and 27 May 2020 were recruited to the Yale IMPACT study (Implementing
Medical and Public Health Action Against Coronavirus CT) after testing positive for SARS-CoV2
by qRT-PCR and included in this study. No statistical methods were used to predetermine sample
size. Paired whole blood for flow cytometry analysis was collected simultaneously in sodium heparin-
coated vacutainers and kept on gentle agitation until processing. All blood was processed on the
day of collection. Patients were scored for COVID-19 disease severity through review of electronic
medical records (EMR) at each longitudinal time point. For all patients, days from symptom
onset were estimated as follows: (1) highest priority was given to explicit onset dates provided by
patients; (2) next highest priority was given to the earliest reported symptom by a patient; and
(3) in the absence of direct information regarding symptom onset, we estimated a date through
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manual assessment of the electronic medical record (EMRs) by an independent clinician. The
clinical data were collected using EPIC EHR and REDCap 9.3.6 software. At the time of sample
acquisition and processing, investigators were unaware of the patients’ conditions. Blood acquisition
was performed and recorded by a separate team. Information about patients’ conditions was not
available until after processing and analysis of raw data by flow cytometry and ELISA. A clinical
team, separate from the experimental team, performed chart reviews to determine relevant statistics.
Flow cytometry analyses were performed blinded. Patients’ clinical information and clinical score
coding were revealed only after data collection.

5.2.3 Isolation of PBMCs

PBMCs were isolated from heparinized whole blood using Histopaque (Sigma-Aldrich, #10771-
500ML) density gradient centrifugation in a biosafety level 2+ facility. After isolation of undiluted
serum, blood was diluted 1:1 in room temperature PBS, layered over Histopaque in a SepMate
tube (StemCell Technologies; #85460) and centrifuged for 10 min at 1,200g. The PBMC layer was
isolated according to the manufacturer’s instructions. Cells were washed twice with PBS before
counting. Pelleted cells were briefly treated with ACK lysis buffer for 2 min and then counted.
Percentage viability was estimated using standard Trypan blue staining and an automated cell
counter (Thermo-Fisher, #AMQAX1000).

5.2.4 Flow cytometry

In brief, freshly isolated PBMCs were plated at 1–2 × 106 cells per well in a 96-well U-bottom plate.
Cells were resuspended in Live/Dead Fixable Aqua (ThermoFisher) for 20 min at 4 °C. Following
a wash, cells were blocked with Human TruStain FcX (BioLegend) for 10 min at RT. Cocktails of
desired staining antibodies were added directly to this mixture for 30 min at RT. For secondary stains,
cells were first washed and supernatant aspirated; then to each cell pellet a cocktail of secondary
markers was added for 30 min at 4 °C. Prior to analysis, cells were washed and resuspended in 100µL
of 4% PFA for 30 min at 4 °C. For intracellular cytokine staining following stimulation, cells were
resuspended in 200µL cRPMI (RPMI-1640 supplemented with 10% FBS, 2 mM l-glutamine, 100
U/ml penicillin, and 100 ug/ml streptomycin, 1 mM sodium pyruvate, and 50µM 2-mercaptoethanol)
and stored at 4 °C overnight. Subsequently, these cells were washed and stimulated with 1× Cell
Stimulation Cocktail (eBioscience) in 200 µL cRPMI for 1 h at 37 °C. 50µL of 5x Stimulation Cocktail
(plus protein transport inhibitor) (eBioscience) was added for an additional 4 h of incubation at 37
°C. Following stimulation, cells were washed and resuspended in 100 µL of 4% PFA for 30 min at 4
°C. To quantify intracellular cytokines, these samples were permeabilized with 1× permeabilization
buffer from the FOXP3/Transcription Factor Staining Buffer Set (eBioscience) for 10 min at 4 °C.
All subsequent staining cocktails were made in this buffer. Permeabilized cells were then washed and
resuspended in a cocktail containing Human TruStain FcX (BioLegend) for 10 min at 4 °C. Finally,
intracellular staining cocktails were added directly to each sample for 1 h at 4 °C. Following this
incubation, cells were washed and prepared for analysis on an Attune NXT (ThermoFisher). Data
were analysed using FlowJo software version 10.6 software (Tree Star).

5.2.5 Acquisition of Clinical Data for Flow Cytometry analysis and Patient Manifold

Longitudinal patient data was extracted from the electronic medical record (Epic, Verona, WI) for
only the hospitalized patients included in the repository. Time-varying data, specifically vital signs as
well as laboratory studies, were extracted specifically 24 hours before and after the collection of blood
specimens for flow cytometry as described above. This ensured that the measurements correlated
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with the patient state at the time of flow cytometry measurements. Laboratory values reflecting
clinical evaluation of general inflammatory states (white blood cell count, high sensitivity c-reactive
protein) were extracted. The values for the laboratory measurements were then consolidated by
taking the most abnormal value (e.g. highest ferritin) in the 72 hour period and overlaid onto the
patient manifolds.

5.2.6 Acquisition of Clinical Data for Clinical Manifold

For patients who did not undergo flow cytometry analysis, the time varying clinical, laboratory, and
treatment data was extracted for the first 24 hours from admission with consolidation by the most
abnormal value as described before. Otherwise, the consolidated data temporally correlating to flow
cytometry measurements were extracted as described above.
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9 Extended Data Figures

Extended Data Figure 1: Condensing on Manifold and updating visualization.

a. Visualization of toy swiss roll dataset after several iterations of fast diffusion condensation, running in
both feature space and in manifold space as computed by Diffusion Potential.
b. Pipeline for identifying cellular populations enriched based on clinical variables with Multiscale PHATE
and MELD.
c. Comparing run time across visualization techniques on increasingly high dimensional flow cytometry data.
d. Visualization of reproduciblity of Multiscale PHATE across two different runs of PBMCs measured by
scRNAseq. Each run was initialized with a different random seed.
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Extended Data Figure 2: Visualization of differing high dimensional biological data types.

Visualization comparison across a range of data types: 22 million PBMCs measured by flow cytometry [14],
49,942 PBMCs by scRNAseq [10], 2,135 patients admitted to YNHH by demographic and lab clinical variables,
25,528 cells from a diverse set of mouse tissues measured by scATACseq [91], 1,010,964 PBMCs measured by
CyTOF [92] and 50,000 TCRs from COVID-19 infected patients and healthy controls [93,94].
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Extended Data Figure 3: Comparison of Multiscale PHATE with other Clustering techniques.

a. Schematic of the hierarchical stochastic block model we generated for multigranular cluster comparisons.
For each method, increasing amounts of random Gaussian values were added to the adjacency matrix of
stochastic block model to simulate increasing amounts of noise.
b. Computed Adjusted Rand Index (ARI) between each algorithm’s predicted clusters and the known clusters
across coarse and fine granularities of 2 layer stochastic block model.
c. Computed Adjusted Rand Index (ARI) between each algorithm’s predicted clusters and the known clusters
across coarse and fine granularities of 3 layer stochastic block model.
d. Comparison of multiple clustering approaches on flow cytometry data where cell types and subtypes have
been identified through gating analysis. Clusters identified by different approaches were compared to gated
populations using ARI.
e. Comparison of multiple clustering techniques at identifying regions with uniform MELD likelihood scores
across a range of comparable granularities.
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Extended Data Figure 4: Multiscale PHATE identifies subsets of monocytes and B cells en-

riched in patients who died from COVID-19.

a. Zoom in of monocyte population identifies subsets based on expression of markers.
b. Visualization of mortality likelihood score in monocytes identifies subsets enriched in patients who die
from COVID-19. Key associations between markers and mortality likelihood score computed by DREMI and
visualized with DREVI.
c. Visualization of B cells panel identifies a range of subsets based on expression of known markers.
d. Visualization of mortality likelihood score identifies B cell subsets enriched in patients who die from
COVID-19.
e. Comparison of mortality likelihood score across panels reveals that granulocytes and monocytes are broadly
the most enriched cell types in patients who die from COVID-19.
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Extended Data Figure 5: Multiscale PHATE analysis identifies subsets of CD8+ T cells en-

riched in patients with poor COVID-19 outcomes.

a. Zoom in of CD8+ T cells identifies subsets based on expression of markers.
b. Visualization of mortality likelihood score in CD8+ T cells identifies subsets enriched in patients who die
from COVID-19. Key associations between GranzymeB and mortality likelihood computed by DREMI and
visualized with DREVI.
c. Multiscale PHATE visualization of T cell focused surface marker panel with broad T cell subtypes identified.
d. Zoom in of CD8+ T cells identifies subsets based on expression of known markers.
e. Visualization of mortality likelihood score in CD8+ T cells identifies subsets enriched in patients who
die from COVID-19. Key associations between markers and mortality likelihood computed by DREMI and
visualized with DREVI.
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Extended Data Figure 6: Visualization of patient manifold and correlation with clinical fea-

tures

a. Visualizing clinical trends on patient manifold.
b. DREMI and DREVI association analysis between clinical features and mortality as well as cellular
populations.
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Extended Data Figure 7: Visualization of multiscale clinical manifold and correlation with

patient clinical features.

a. Visualizing clinical trends on clinical manifold. Darker color indicates higher normalized numerical values.
b. DREMI and DREVI association analysis between clinical features and patient hospitalization outcome.
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Figures

Figure 1

Overview of Multiscale PHATE algorithm a. Multiscale PHATE process involves four successive steps.
The �rst step (i) learns the manifold geometry via diffusion potential calculation. The second step (ii)
iteratively coarse grains the manifold construction through a fast diffusion condensation process to learn
data topology. The third step (iii) involves the selection of salient granularities via gradient analysis
before �nally visualizing and clustering the manifold in the fourth step (iv). b. Gradient analysis identi�es
a range of scales for visualization. c. Multiscale PHATE allows for high level summarizations of data as
well as �ner grain zoom ins of data subsets for additional detail. d. Multiscale PHATE abstractions of
data are amenable to downstream analyses with algorithms like MELD [15] and DREMI [16].



Figure 2

Comparison of Multiscale PHATE with other dimensionality reduction tools a. Visual comparison of
Multiscale PHATE with other multiscale dimensionality reduction tools on synthetic single cell data with
either path or cluster structure. b. Quantitative study comparing embeddings produced by Multiscale
PHATE and visualization strategies which either employ community based or topologically based
abstractions of data. Comparisons were evaluated using DeMAP with increasing levels of 2 different
types of biological noise, drop out and variation, as well as on data with different structures, clusters and
paths. Shading represents standard deviation around mean DeMAP score for each comparison. c.
Quantitative study comparing embeddings produced by Multiscale PHATE and visualization strategies
which visualize condensation based abstractions of data. Comparisons were evaluated using DeMAP
with increasing levels of 2 different types of biological noise, drop out and variation, as well as on data
with different structures, clusters and paths. Shading represents standard deviation around mean DeMAP
score for each comparison.



Figure 3

CD16hiCD66blo Neutrophil subset enriched in patients who die from COVID-19. a. Multiscale PHATE
visualization of PBMCs identi�es all major cell types based on cell type speci�c markers. b. Visualization
of mortality likelihood score computed by MELD. c. Visualization of mortality likelihood score organized
by cell type reveals enrichment of granulocytes, monocytes and B cells in patients who die from COVID-
19. d. Zoom in of granulocyte population identi�es subsets of neutrophils and eosinophils based on
expression of known markers. e. Visualization of mortality likelihood score in granulocyte population
identi�es CD16hi neutrophils enriched in patients with worse outcomes. Key associations between
markers and mortality likelihood scores in neutrophils computed by DREMI and visualized with DREVI.



Figure 4

Multiscale PHATE identi�es Th17 subset enriched in patients who die from COVID- 19 a. Multiscale
PHATE visualization of T cell focused cytokine panel identi�es broad T cell subtypes. b. Zoom in of CD4+
T helper cells identi�es subsets based on expression of functional markers. c. Visualization of mortality
likelihood score identi�es IFNg+GranzymeB+ Th17 cell enrichment in patients with poor outcomes. Key
associations between markers and mortality likelihood scores are computed by DREMI and visualized
with DREVI.



Figure 5

Patient manifold corroborates cellular states associated with of disease pathogenesis. a. Visualization of
patient manifold via PHATE and mortality likelihood score based on patient outcomes computed via
MELD. b. Visualization of key cell population enrichment trends over the manifold with associations
computed by DREMI and visualized with DREVI. c. Tracing three patients’ hospital courses over patient
manifold. Patients 19 and 63 were discharged while patient 54 died. d. Comparing predictability of
patient mortality using random forest classi�er on Multiscale PHATE identi�ed populations and �ow
cytometry identi�ed populations. Most predictive Multiscale PHATE clusters are ranked through feature
importance analysis.



Figure 6

Multiscale manifold of patient clinical features identi�es cell types associated with extended COVID-19
recovery phase a. Visualization of Multiscale PHATE clinical manifold constructed on patient clinical
features. Embedding is colored by likelihood scores based on patient outcomes computed via MELD. b.
Zoom in on transition point between high extended recovery likelihood score and high survival likelihood
score. c. Patient clinical features and �ow cytometry identi�ed cell populations associated with patient
outcomes using DREMI and visualized with DREVI.
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