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Abstract
Hot stamping is an innovative technology that enables the production of high-strength automotive body
parts by heating the material to a high temperature and simultaneously forming and quenching it in-die.
The process results in parts with excellent strength-to-weight ratios, which are essential for the
automotive industry. The widely used 22MnB5 material is heated to temperatures above 900°C, and an
Al-Si coating is applied to prevent the formation of oxide scale on the sheet surface. The distinctive color
on the sheet surface after hot stamping is produced by the Al-Si coating. This phenomenon is attributed
to the formation of Al2O3 on the surface of the Al-Si coating layer and the diffusion of Fe from the
substrate into the Al-Si coating layer, both of which are signi�cantly in�uenced by the heating time and
temperature. In this study, the neural network was investigated to predict the hot stamping heating
temperature and time conditions based on the color exhibited on the sheet surface after the process.
Additionally, the neural network was combined with numerical models to predict the inter-diffusion layer
thickness in the Al-Si coating layer, which affects the weldability of the vehicle part, and the amount of
hydrogen uptake that directly in�uences hydrogen embrittlement.

1. Introduction
Recently, the application ratio of high-strength steel over 1 GPa has increased to reduce the vehicle body
weight and meet fuel e�ciency regulations [1, 2]. In addition, it is necessary to maintain the stability of
high-strength body parts of vehicles to meet strengthened crash requirements [3, 4]. This aims not only to
reduce vehicle body weight but also to ensure the safety of passengers in the event of a crash [1–4].
Although the application ratio is increasing to maximize the effect of applying an advanced high-strength
steel sheet to the vehicle body, it is di�cult to freely apply it to various parts due to the forming limit and
dimensional precision of high-strength sheet materials [5–10]. Hot stamping technology can easily
address these challenges [5, 6]. This is because the 22MnB5 can be heated at high temperatures to
ensure formability, and a strength of 1.5 GPa or more can be secured through in-die quenching [6–9]. In
addition, the application of hot stamping materials and related technologies has increased to the extent
that it serves their purpose in the transition to eco-friendly vehicles. This is because these technologies
are very effective not only in protecting passengers during a crash but also in achieving additional weight
reduction as weight increases due to increased battery capacity for long-distance driving and enhanced
functions that can prevent battery explosions [8, 9]. However, the above techniques have challenges in the
application of some engineering solutions such as deformation, heat properties, and phase
transformation at temperatures of 900 ℃ or higher; thus, a signi�cant amount of material information is
required in advance. Furthermore, existing research has di�culty capturing material behavior under hot
stamping conditions [5–12].

In the hot stamping process, a few coatings have been used to prevent oxide scale formation on the sheet
surface during austenitization in the furnace, with Al-Si coating being the most common protection [12,
13]. For Al-Si coating, the remaining phases vary in proportion to the target temperature, and the coated
layer structure can be controlled by analyzing the phase growth mechanism in Al-Si coated layers [13].
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After the austenite transformation temperature, the existing Al-Si coated layer structure is altered at the
target temperature, resulting in the formation of different cracks and voids in the Al-Si coated layer.

As shown in Fig. 1, the difference in surface color is due to light diffraction caused by the Al2O3 oxide �lm
and the diffusion of the Fe substrate into the Al-Si coated layer [13]. The Al-Si coated surface has an
individual color that occurred at high temperatures depending on the heating conditions in the
manufacturing �eld. This individual color can occasionally provide information about hot stamping
product performance in terms of weldability and hydrogen embrittlement. For example, the performance
has been deemed negative in cases of reddish-yellow color based on the individual colors of hot
stamping parts. This could be due to the phenomena of thickening inter-diffusion layers and an increased
number of voids that occur when the heating time and temperature exceed the standard; moreover, it is
di�cult to objectively analyze the degree of color difference by visibility. Furthermore, the reliability of
such analysis is insu�cient because the quality level is determined visually in comparison to other parts
that have a distinctive color difference.

Therefore, this study aims to objectify the color differences of hot stamping parts, spanning from bluish
to reddish hues, which were previously challenging to distinguish by human vision. To achieve this, a
machine learning (ML) approach using a neural network (NN) has been adopted. Additionally, essential
process information for predicting hot stamping performance was analyzed using the color difference
system.

2. Analysis of the prediction of individual color differences based on
neural networks
Neural networks (NN), a subset of arti�cial intelligence, are extensively applied for addressing
classi�cation and regression challenges across multiple domains. Key research areas in NN encompass
architecture and parameter search [14, 15]. Within convolutional neural networks (CNN), backpropagation,
a parameter search method, is crucial, exhibiting exceptional performance in �elds like natural language
processing, computer vision, and speech recognition [14–20]. CNNs are structured with fully connected
layers and employ a multi-layered neural network that includes an input layer, hidden layers, and an
output layer [14–18]. The input layer accepts raw data, and the output layer delivers the results, while the
intermediate layers act as hidden layers [17, 18]. Determining the optimal number of nodes for the hidden
layer is a challenging task, with an increase in nodes leading to a higher computational complexity [18].
Conversely, a smaller node count in the hidden layer may diminish learning capability [18, 19]. The
number of hidden nodes, represented by γ, can be calculated using the following equation:

γ= (α + β) 1/2 +l Eq. (1)

Here, α signi�es the number of input nodes, β the number of output nodes, and l is a constant ranging
from 1 to 10 [18]. The total number of nodes in a fully connected NN can be computed as:

𝑁 =α + γ + β Eq. (2)
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In this formula, N denotes the total number of nodes. The total number of weights and thresholds
requiring optimization can be determined as [18]:

H = γ (α + β) +γ + β Eq. (3)

In this equation, H denotes the total count of weights and thresholds that require optimization. The
number of thresholds in the hidden layer is represented by γ, while β indicates the number of thresholds in
the output layer [18]. To address problems that are intractable with a linear model, an activation function
is employed to introduce non-linear factors [14–18]. This method enabled the implementation of an
algorithm for analyzing color differences in hot stamping, facilitating the collection of consistent,
objective information following the hot stamping process, devoid of human visual bias. To evaluate the
generalizability of the newly trained NN, a set of test data, which was not part of the training phase, was
inputted [19, 20]. This process is crucial to ensure that the NN can reliably predict outputs for new inputs
if the discrepancy between the predicted and expected output values is su�ciently minimal, as shown in
Fig. 2 [18–20].

In this study, the color change mechanism during the heating process of the Al-Si coating layer and the
prediction of the hot stamping performance characteristics were analyzed. The color of the hot stamping
part was analyzed using the ML algorithm with individual color difference data sets obtained from
experiments. The initial input nodes were constructed by classifying the hot stamping color image into
speci�c feature pixel sizes and rows. The NN was trained using segmented row data to learn the color
information of the hot stamping part, as represented in Fig. 3. The backpropagation method was utilized
to predict the heating temperature and time of the hot stamping Al-Si coating layer based on the speci�c
color, and the obtained results were used to examine the technique of numerically deriving the inter-
diffusion layer thickness and hydrogen uptake of the hot stamping Al-Si coating layer.

3. Results and discussion
As mentioned earlier, when Al-Si coated hot stamping material (22MnB5) is heated above the Ac3
temperature, the speci�c color appears due to the formation of Al2O3 �lm and diffusion into the Al-Si
coating layer of Fe in the material [12, 13]. Figure 4 represents the surface colors of the hot stamping
material under various heating conditions ranging from 860 ℃ to 950 ℃ and 180 to 600 seconds by CIE-
Lab. It is de�ned by the International Commission on Illumination (CIE) and consists of three coordinates:
L*, a*, and b*. The L* coordinate represents the lightness of the color, where L* = 0 represents black and
L* = 100 represents white [21]. The a* coordinate represents the color's position between red and green,
with positive values indicating red and negative values indicating green [20, 21]. The b* coordinate
represents the color's position between yellow and blue, with positive values indicating yellow and
negative values indicating blue. The color difference will primarily be explained based on the a* and b*
coordinates [13, 21]
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As shown in Fig. 4, it can be observed that the color of the sheet changes towards reddish as the heating
temperature and time increase. To analyze colors, it was generally intended to represent them as 2-
dimensional arrays or matrices, with each component representing the point values of the data. The
related mathematical expression can be represented as follows: If X is a dataset consisting of p data
points and q dimensions; X can be represented as a p × q matrix [21].

    Eq. (4)

Each data point x{ij} is represented by a color, and its value is determined by normalization and the color
itself. In other words, the value of the data point x{ij} can be normalized using the following formula [18–
21]:

Eq. (5)

Where, min(X) represents the minimum value of X, max(X) represents the maximum value of X, and is
the normalized value of x{ij}. Each data point x{ij} can be indicated as the color in the following method
[18–21].

 Eq. (6)
The color(xi,j) represents the color corresponding to x{ij}, and this color representation allows for
visualization through data point values [18–21]. The colors resulting from variations in hot stamping
heating temperature and time were represented as a CIE-Lab based color map. Figure 5 (a) shows the
color changes obtained from experiments conducted at heating times of 180 to 600 seconds and the
heating temperature of 950 ℃, represented by the intensity of CIE-Lab. It can be observed that as the
heating time increases, the a* coordinate of CIE-Lab moves from negative to positive values, while the b*
coordinate changes from negative to positive values. The L* coordinate indicates the distribution of 35 ~ 
44. Figure 5 (b) represents the color changes observed in experiments conducted at the heating time of
300 seconds and heating temperatures ranging from 860 to 950 ℃, represented by the intensity of CIE-
Lab. It is noticed that the trend with increasing temperature is quite different from that observed with
varying heating times. As the temperature increases, the a* coordinate changes from positive to negative,
while the b* coordinate changes from positive to negative as well. The L* coordinate is observed to have
a distribution of 35 ~ 44. These relationships are expressed using Eq. (6); and each L*a*b* coordinate is
quanti�ed according to the heating temperature and time, as seen in Fig. 6. It is observed that the L* and
a* coordinates mainly react to changes in the heating temperature, while the L* and b* coordinates are
mainly affected by changes in the heating time. However, it can be observed that the a* coordinate is
mainly affected by the heating temperature and the b* coordinate is mainly affected by the heating time
when excluding the L* coordinate, which has a similar variation range obtained from the experimental
results.

X =

⎡
⎢ ⎢ ⎢
⎣

x11 ⋯ x1q

⋮ ⋱ ⋮
xp1 ⋯ xpq

⎤
⎥ ⎥ ⎥
⎦
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xij−min(X)

man(X)−min(X)

x̂i,j

color (xi,j) = C(x̂i,j)
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Based on the color difference by CIE-Lab, the aim was to predict the heating temperature and time, as well
as the inter-diffusion layer thickness that affects weldability and hydrogen uptake that affects hydrogen
embrittlement, using the color of the part image and the training algorithm.

1) Analysis of color difference by hot stamping conditions
To evaluate the surface color of hot stamping sheets, which have undergone the speci�c manufacturing
process, the colorimeter, and the NN model were utilized, and their results were compared. CIE-Lab
standard was employed to analyze the color of the hot stamping sheets, resulting in the average NN
model and colorimeter results being found to be similar. Based on this, the NN model was used to predict
the hot stamping heating conditions of 880 ℃ for 300 seconds for (a), 930 ℃ for 300 seconds for (b),
and 960 ℃ for 300 seconds for (c), as represented in Fig. 7. To validate this consistency across a wider
range, the results were analyzed in the CIE-Lab range of -10 to + 10. As shown in Fig. 8, it was con�rmed
that the statistical R2 trend between the obtained colors and the predicted values by the NN model was
about 0.99 or higher. While the colorimeter has the disadvantage of only analyzing the color in the limited
local area, making real-time analysis di�cult, the NN model has the advantage of being able to analyze a
wide range of colors in real-time using only image information. By integrating this image-based color
analysis technology with hot stamping manufacturing technology, it is expected that hot stamping
manufacturing monitoring and real-time analysis can be performed.

2) Inter-diffusion layer thickness prediction using color analysis
Evaluation of resistance spot welding characteristics has to be performed for the application of hot
stamping vehicle parts. The Al-Si coated 22MnB5 material changes the coating layer depending on the
heating temperature and time; typically there were 4 layers in the Al-Si coating [22]. In particular, the inter-
diffusion layer is formed at the boundary between the Al-Si coating and the Fe substrate, and it is known
that it is advantageous for resistance spot welding to have a thickness of 15 µm or less [22, 23]. Also,
depending on the heating conditions, voids are created and grown inside the inter-diffusion layer and on
the surface of the coating layer, which increases resistance and affects spot welding characteristics [22–
24]. Figure 9 shows optical microscopy analysis of cross-sections of coating layers after 300 seconds
and 600 seconds at the heating condition of 950 ℃; (a) is after 300 seconds and (b) is after 600
seconds. In the cross-section heated for 300 seconds, the inter-diffusion layer of about 11.3 µm was
formed, while in the cross-section heated for 600 seconds, the thickness of the inter-diffusion layer was
about 19.15 µm and many voids were created on the surface.

As heating time increases, the thickness of the inter-diffusion layer increases, and voids increase,
resulting in the deterioration of resistance spot welding characteristics [22]. To predict the inter-diffusion
layer thickness that affects resistance spot welding characteristics, the present study aims to verify the
FeAl intermetallic formation model [23, 24]. To predict the inter-diffusion layer thickness, the diffusion
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principle of phase transformation in solids was considered to predict the overall coating thickness and
the thickness of each layer of the coating generated by each phase [23].

    Eq. (7)

In this Eq. (7), IDY denotes the layer thickness, t represents the soaking time, and G stands for the growth
rate in units of µm/s2. It is also noteworthy that the growth rate, G, can be described by G = G0exp(-Q/RT),
where G0 is a constant, Q is the apparent activation energy, T is the soaking temperature measured in
Kelvin, and R is the gas constant [23]. Furthermore, because the inter-diffusion layer comprises α-Fe and
FeAl intermetallic, the model considering the properties of each phase is necessary [23, 24].

    Eq. (8)

The values were calculated using Qα-Fe of 182 KJ/mol and QFeAl of 250 KJ/mol [23], and the required
temperature (T) and time (t) were determined by applying the results obtained from image analysis based
on the NN model. To predict the inter-diffusion layer based on the aforementioned models, the center
pillar component with the initial Al-Si coating weight of approximately 85 g/m2 was used, as represented
in Fig. 10.

The �at surface color was analyzed with the NN model, which predicted CIE-Lab values of -0.76 for a*
coordinate and − 7.75 for b* coordinate, allowing for the prediction of the heating temperature of 970 ℃
and the time of 260 seconds. This was consistent with the real hot stamping heating conditions.
Furthermore, applying the obtained temperature (T) and time (t) to Eq. (8) allowed for the inter-diffusion
layer thickness analytical, which was predicted to be approximately 11.3 µm. This was found to be
similar to the experimental thickness of the inter-diffusion layer obtained from the vehicle part, which was
11.8 µm, as shown in Fig. 11. The models and approach presented suggest that it is possible to predict
the inter-diffusion layer thickness that affects the resistance spot welding characteristics using only
image color analysis without specimen extraction.

3) Hydrogen uptake prediction by using color analysis
The Al-Si coated 22MnB5 material may undergo a process of brittleness due to the absorption of
hydrogen when it is heated to achieve a higher strength [23–25]. The reason behind this is the diffusion
of hydrogen into the austenite microstructure during the heating phase [24, 25]. After the phase
transformation, the hydrogen is temporarily held within the internal microstructure, unable to exit through
the Al-Si surface coating at room temperature until a sudden fracture takes place under residual or
additional stress [25–29]. To avert the issue of hydrogen embrittlement, it is critical either to avert the
absorption of hydrogen or to integrate processes that will eliminate the absorbed hydrogen [25]. In order
to study these characteristics beforehand, the absorption of hydrogen was anticipated using the neural
network-based image color analysis [24–27].

IDY = G√t

IDY = [Gα−F eexp ( )+ GF eAlexp ( )]√t
Qα−Fe

RT

QFeAl

RT



Page 8/22

To predict hydrogen absorption, the well-known constant surface concentration diffusion model can be
adopted [24]. This model can be used to analyze one-dimensional diffusion. Assuming that hydrogen is
available for diffusion within the furnace, it is possible to calculate hydrogen absorption over time and
distance [24–25].

    Eq. (9)

Here, C0 represents the initial constant hydrogen concentration, x denotes the distance from the source of
hydrogen, T is the heating temperature and t is the heating time [24–26]. In this case, the heating time is
assumed as 1/3 of the total heating time, as the time spent at the austenite phase is signi�cant. The
diffusion coe�cient D is used (D = D0exp(-W/RT), where D0 is 4.4×10− 7 m/s2, W is the apparent activation
energy of 37 KJ/mol) at high temperatures [26–35]. Additionally, taking into account that hydrogen
diffuses for both sides of the 22MnB5 sheet, x is set to half of the sheet thickness, which is 1.6mm. The
temperature (T) and time (t) required for Eq. (9) was obtained from the color distribution in Fig. 10, as
mentioned earlier. To analyze the diffusible hydrogen, the model validation was evaluated using the
thermal desorption analysis (TDA) analysis [31, 32]. TDA analysis was conducted by heating the sheet at
approximately 20 ℃/min in the nitrogen atmosphere and analyzing the hydrogen desorption from the
sheet in ppm/s units [31–35]. Figure 12 represents the hydrogen uptake of approximately 0.47 ppm
based on the experimental center pillar vehicle part. With utilizing the diffusion model assuming the
surface concentration within the heating process, it was determined that the value was approximately
0.58 ppm by using the diffusion model. These approach methods can also be achieved using extended
constitutive models, such as hydrogen-assisted damage and others [31–33].

By employing the NN-based image color analysis, it was possible to predict the hot stamping heating
temperature and time using only the color information obtained from vehicle part images, and its
accuracy was considered to be high. In future work, hot stamping part performance will be investigated
using �nite element analysis in conjunction with constitutive models.

4. Conclusions
In this study, the main objective was to predict the heating temperature and time conditions and analyze
the factors that in�uence the performance of vehicle parts by examining the surface color generated after
the hot stamping process. To accomplish this, the image-based neural network was employed to obtain
information on the heating temperature and time of hot stamping. The neural network's predictions
enabled the estimation of the inter-diffusion layer thickness in the Al-Si coating layer and the hydrogen
uptake in the hot stamping part. Gaining insights into these factors allows for the optimization of the hot
stamping process, which in turn leads to improved performance and durability of the vehicle. The
application of an image-based neural network in this study demonstrates the solution of machine
learning in the �eld of materials science and manufacturing processes.

= erf ( )
Cs−C(x,t)

Cs−C0

x

2√Dt
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1) The neural network model was constructed using the dataset of color changes according to heating
temperature and time by CIE-Lab coordinate. It was found to exhibit a similar trend compared to the
conventional colorimeter. The statistical R2 value was con�rmed to be approximately 0.99 or higher.

2) By using the trained neural network model, it was possible to predict the heating temperature of 970 ℃
and time of 260 seconds obtained from the hot stamping color of the vehicle part, and it was con�rmed
to be consistent with the experimental conditions.

3) Through image analysis based on the NN model, the inter-diffusion layer thickness that affects the
resistance spot weldability was predicted using the heating temperature and time obtained from image
information. By considering the diffusion principle of phase transformation in solids, the value of
approximately 11.3 µm was predicted, which was con�rmed to be similar to the vehicle part analysis of
11.8 µm.

4) To predict the hydrogen uptake that affects the hot stamping hydrogen embrittlement, the constant
surface concentration diffusion model was applied under basic assumptions. The results obtained from
thermal desorption analysis were approximately 0.47 ppm, and the value predicted by re�ecting the
heating temperature and time obtained through image analysis based on the NN was con�rmed to be
approximately 0.58 ppm.

5) It was possible to predict the factors affecting weldability and hydrogen embrittlement with only image
information, without destructive analysis of materials, by using color analysis based on the NN model to
represent hot stamping heating temperature and time. This approach is considered a smart
manufacturing solution that enables real-time performance analysis by linking with monitoring of the hot
stamping manufacturing process.
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Figures

Figure 1

Comparison of hot stamping sheet color after the process.
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Figure 2

Schematic structure of back propagation neural network [18-20].
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Figure 3

Structure schematic of the fully connected multi-layered neural network.
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Figure 4

Dataset for training neural network on the hot stamping sheet color.
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Figure 5

Distribution of hot stamping sheet color according to heating temperature by CIE-Lab coordinate.
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Figure 6

Correlation analysis of hot stamping CIE-Lab coordinate with respect to the heating temperature and
time.



Page 18/22

Figure 7

Comparison of image analysis algorithm distribution in different heating conditions.

(a) 880 ℃ for 300 seconds, (b) 930 ℃ for 300 seconds, (c) 960 ℃ for 300 seconds.
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Figure 8

Comparison between the experimental and predicted hot stamping sheet color using the neural network.

Figure 9

Comparison of inter-diffusion layer thickness in the Al-Si layer under different heating time conditions: (a)
300 seconds at 950 ℃, (b) 600 seconds at 950 ℃.



Page 20/22

Figure 10

CIE-Lab coordinate analysis at the vehicle part region by neural network for predicting the heating
temperature and time.
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Figure 11

Measured inter-diffusion layer thickness and voids in Al-Si coating 4 layers structure on the vehicle part
region [22].



Page 22/22

Figure 12

Hydrogen desorption rate as a function of temperature.


