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Abstract

In this paper, we consider a system of two degenerate wave equations coupled

through the velocities, only one of them being controlled. We assume that the coupling

parameter is sufficiently small and we focus on null controllability problem. To this

aim, using multiplier techniques and careful energy estimates, we first establish an in-

direct observability estimate for the corresponding adjoint system. Then, by applying

the Hilbert Uniqueness Method, we show that the indirect boundary controllability of

the original system holds for a sufficiently large time.
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1 Introduction

Controllability problems for scalar nondegenerate hyperbolic equations have always been
mainstream topics over the past several years, and numerous achievements have been made.
We refer, for example, to [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] and the articles citing them.

In the last decades, there has been a growing interest in the control of coupled hyperbolic
systems. From the control theory point of view, it is important for practical applications
and for cost reasons to control these systems by a reduced number of controls. This is called
indirect controllability.

For such type of challenging indirect controllability issues, there is an extensive bibliog-
raphy devoted to nondegenerate systems. See, in particular [13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23] and the references therein.
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Recently, several controllability results have also been obtained for scalar degenerate
equations, see for example [24, 25, 26, 27, 28, 29, 30, 31, 32, 33]. However, in the more
complex situation of coupled degenerate hyperbolic equations, not many things are known.
For this reason, we believe that it is natural to examine the exact controllability of coupled
hyperbolic systems governed by linear one dimensional wave equations with degenerate
variable coefficients.

More precisely, the question we deal with concerns the study of the indirect boundary
controllability problem for the following degenerate hyperbolic system:





ztt − (a(x)zx)x + byt = 0, in (0, T )× (0, 1),

ytt − (a(x)yx)x − bzt = 0, in (0, T )× (0, 1),

Bz(t, 0) = By(t, 0) = 0, on (0, T ),

z(t, 1) = 0, on (0, T ),

y(t, 1) = f(t), on (0, T ),

z(0, x) = z0(x), zt(0, x) = z1(x), in (0, 1),

y(0, x) = y0(x), yt(0, x) = y1(x), in (0, 1),

(1.1)

where a ∈ C([0, 1]) ∩ C1((0, 1]) is positive on ]0, 1] but vanishes at zero, (z, zt, y, yt) is the
state variable, (z0, z1, y0, y1) is regarded as being the initial value, T > 0 stands for the
length of the time-horizon, b > 0 is the coupling parameter and f ∈ L2(0, T ) is the control
function.

Further,

Bz(t, x) :=

{
z(t, x), in the case, 0 < µa < 1,
(a(x)zx) (t, x), in the case, 1 ≤ µa < 2.

The main novelty of this paper is that only one of the two components of the unknown is
only controlled. The question is to determine if it is possible to control the full vector state
solution of the coupled hyperbolic system (1.1) for nonzero values of the coupling parameter
b by means of one boundary control. Because of the linearity and the time reversibility of the
system (1.1), exact controllability is equivalent to null controllability, see [34, Proposition
3.1].

Hence, in the sequel, we shall focus on the following problem: For given T > 0 (sufficiently
large) and initial data (z0, z1, y0, y1), does there exists a suitable control f that brings
back the solution of the controlled system (1.1) to equilibrium at time T , that is such the
corresponding solution of the system (1.1) satisfies

z(T, ·) = zt(T, ·) = y(T, ·) = yt(T, ·) = 0 on (0, 1).

Via some suitable estimates on the total energy of the associated homogeneous adjoint
problem, we will give a positive answer to the above question under a smallness assumption
on the coupling coefficient, for a time T > 0 sufficiently large.

To the best of our knowledge, the only paper in this framework, but for a certain class of
systems of degenerate wave equations coupled in displacements is given in [35]. The authors
established an interesting indirect exact controllability result with locally distributed control
for a sufficiently large time T , provided that the coupling parameter is sufficiently small.

The point of view of this paper differs from that of [35]. Indeed, here we consider a system
of two degenerate wave equations coupled through velocities with a boundary control acting
on only one equation. Moreover, we will treat a generalization of the system considered in
[35]: in place of the pure power xα for some α ∈ (0, 2), we consider a more general function
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a which satisfies the following assumptions:




(i) a(x) > 0 ∀x ∈]0, 1], a(0) = 0,

(ii) µa := sup
0<x≤1

x |a′(x)|
a(x)

< 2, and

( iii ) a ∈ C[µa]([0, 1]),

(1.2)

where [·] stands for the integer part.
The paper is organized as follows. In Section 2, we briefly recall the appropriate func-

tional spaces that are naturally associated with degenerate problems and prove the well-
posedness of the adjoint problem. In Section 3, we establish two fundamental inequalities
from below and from above on the total energy associated to the solution of the adjoint prob-
lem. In Section 4, thanks to these inequalities, we prove that the original control problem
has a unique solution by transposition, which is null controllable by one boundary control
force.

2 Functional setting and well-posedness of the homoge-

neous problem

Let a ∈ C([0, 1])∩C1(]0, 1]) be a function satisfying assumptions (1.2). In order to study the
well-posedness and controllability properties for (1.1), we shall need some basic properties
for solutions of problems of the form





vtt − (a(x)vx)x + but = 0, in (0, T )× (0, 1),

utt − (a(x)ux)x − bvt = 0, in (0, T )× (0, 1),

Bv(t, 0) = Bu(t, 0) = 0, on (0, T ),

v(t, 1) = u(t, 1) = 0, on (0, T ),

v(0, x) = v0(x), vt(0, x) = v1(x), in (0, 1),

u(0, x) = u0(x), ut(0, x) = u1(x), in (0, 1).

(2.1)

At first, as in [24], we introduce some weighted Sobolev spaces that are naturally associated
with degenerate operators. We denote by H1

a(0, 1) the space of all functions u ∈ L2(0, 1)
such that {

(i) u is locally absolutely continuous in ]0, 1], and
(ii)

√
aux ∈ L2(0, 1).

It is easy to see that H1
a(0, 1) is a Hilbert space with the scalar product

〈u, v〉H1
a
(0,1) =

∫ 1

0

(a(x)u′(x)v′(x) + u(x)v(x)) dx ∀u, v ∈ H1
a(0, 1)

and associated norm

‖u‖H1
a
(0,1) =

{∫ 1

0

(
a(x) |u′(x)|2 + |u(x)|2

)
dx

} 1

2

∀u ∈ H1
a(0, 1).

Next, we define
H2
a(0, 1) :=

{
u ∈ H1

a(0, 1) | au′ ∈ H1(0, 1)
}
.

Note that if u ∈ H2
a(0, 1), then au

′ is continuous on [0, 1].
In the following proposition, we collect useful properties of the above functional spaces

which will play an important role in order to evaluate several boundary terms, see [24,
Proposition 2.5].
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Proposition 2.1. Assume that a is a function satisfying (1.2). Then the following asser-
tions hold true:

1. For every u ∈ H1
a(0, 1)

lim
x↓0

x|u(x)|2 = 0. (2.2)

Moreover, if µa ∈ [0, 1[, then u is absolutely continuous in [0, 1].

2. For every u ∈ H2
a(0, 1)

lim
x↓0

xa(x)|u′(x)|2 = 0. (2.3)

3. For all u ∈ H2
a(0, 1) and for all v ∈ H1

a(0, 1)

lim
x↓0

a(x)u′(x)v(x) = 0, (2.4)

assuming, in addition,v(0) = 0 if µa ∈ [0, 1[.

4. If µa ∈ [1, 2[, for every u ∈ H2
a(0, 1)

lim
x↓0

a(x)u′(x) = 0. (2.5)

In view of Proposition 2.1, we see that the boundary conditions imposed at x = 0 make
sense for any classical solution of (2.1). Such conditions are of Dirichlet type if µa ∈ [0, 1[,
whereas they are of Neumann/Dirichlet type at x = 0 and x = 1, respectively, if µa ∈ [1, 2[.

In order to express the boundary conditions in functional settings, we define the space
H1
a,0(0, 1) depending on the value of µa, as follows:

(i) For 0 ≤ µa < 1, we define

H1
a,0(0, 1) :=

{
u ∈ H1

a(0, 1) | u(0) = u(1) = 0
}
.

(ii) For 1 ≤ µa < 2, we define

H1
a,0(0, 1) :=

{
u ∈ H1

a(0, 1) | u(1) = 0
}
.

Let us recall the following version of Poincaré’s inequality, which is proved in [24, Proposition
2.2].

Lemma 2.1. Assume (1.2) holds. Then

∫ 1

0

|u(x)|2 dx ≤ Ca

∫ 1

0

a(x) |u′(x)|2 dx, ∀u ∈ H1
a,0(0, 1), (2.6)

where

Ca =
1

a(1)
min

{
4,

1

2− µa

}
. (2.7)

Let us set

‖u‖H1

a,0
(0,1) :=

{∫ 1

0

a(x) |u′(x)|2 dx
} 1

2

∀u ∈ H1
a,0(0, 1).

which, thanks to Lemmma 2.1, defines a norm on H1
a,0(0, 1) that is equivalent to ‖ · ‖H1

a
(0,1).

Finally, we define
H2
a,0(0, 1) := H2

a(0, 1) ∩H1
a,0(0, 1).
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Observe that all functions u ∈ H2
a,0(0, 1) satisfy the above homogeneous boundary conditions

at both x = 0 and x = 1.
Now, we will prove the well-posedness result for problem (2.1) using semigroup theory.

For this purpose, we consider the following energy space associated to system (2.1):

Ha =
(
H1
a,0(0, 1)× L2(0, 1)

)2
, (2.8)

with the scalar product

〈U, Ũ〉Ha
=

∫ 1

0

(a(x)u1,xũ1,x + u2ũ2 + a(x)u3,xũ3,x + u4ũ4) dx,

for all U = (u1, u2, u3, u4), Ũ = (ũ1, ũ2, ũ3, ũ4) ∈ Ha.
Next, we define the linear unbounded operator Aa : D(Aa) ⊂ Ha → Ha by

{
D(Aa) =

(
H2
a,0(0, 1)×H1

a,0(0, 1)
)2
,

AaU = (u2, (a(x)u1,x)x − bu4, u4, (a(x)u3,x)x + bu2), ∀U = (u1, u2, u3, u4) ∈ D(Aa).

(2.9)
Using this operator, we rewrite the system (2.1) as an abstract Cauchy problem. Indeed,
setting U(t) = (v(t), vt(t), u(t), ut(t)), one has that (2.1) can be formulated as

{
U ′(t) = AaU(t) t ≥ 0,

U(0) = U0,
(2.10)

where U(0) = (v0, v1, u0, u1).
The existence and uniqueness result reads as follows.

Theorem 2.1. For any U0 = (v0, v1, u0, u1) ∈ Ha, there exists a unique solution U =
(v, vt, u, ut) ∈ C0([0,∞);Ha) of system (2.10). Moreover, if U0 = (v0, v1, u0, u1) ∈ D(Aa),
then

U ∈ C0([0,∞);D(Aa)) ∩ C1([0,∞);Ha).

Proof. We will prove that the operator Aa defined in (2.9) generates a contraction semi-
group on the Hilbert space Ha given by (2.8). To this end, we show that the unbounded
operatorAa is maximal dissipative onHa. According to [36, Proposition 2.2.6], it is sufficient
to prove that Aa : D(Aa) → Ha is dissipative and that I −Aa is surjective, where

I = diag(Id, Id, Id, Id).

Aa is dissipative. Take U = (v, vt, u, ut) ∈ D(Aa). Then, by integrating by parts, we
obtain

〈AaU,U〉Ha
= 〈

(
vt, (a(x)vx)x − but, ut, (a(x)ux)x + bvt

)
,
(
v, vt, u, ut

)
〉Ha

=

∫ 1

0

(
a(x)vt,xvx + (a(x)vx)xvt + a(x)ut,xux + (a(x)ux)xut

)
dx

= [avxvt]
1
0 + [auxut]

1
0.

Using the fact that U ∈ D(Aa) and (2.4), we get that

〈AaU,U〉Ha
= 0.

Therefore the operator Aa is dissipative.
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I −Aa surjective. Given F = (f1, f2, f3, f4) ∈ Ha, we seek U = (u1, u2, u3, u4) ∈ D(Aa)
such that

U −AaU = F ⇔





u1 − u2 = f1,

u2 − (a(x)u1,x)x + bu4 = f2,

u3 − u4 = f3,

u4 − (a(x)u3,x)x − bu2 = f4.

(2.11)

Eliminating u2 and u4, we get the following system
{
u1 − (a(x)u1,x)x + bu3 = f1 + f2 + bf3,

u3 − (a(x)u3,x)x − bu1 = −bf1 + f3 + f4.
(2.12)

Consider the bilinear form Γ :
(
H1
a,0(0, 1)×H1

a,0(0, 1)
)2 → R given by

Γ ((u1, u3) , (φ1, φ2)) =

∫ 1

0

(u1φ1 + a(x)u1,xφ1,x + u3φ2 + a(x)u3,xφ2,x)dx

+ b

∫ 1

0

(u3φ1 − u1φ2) dx

and the linear form L : H1
a,0(0, 1)×H1

a,0(0, 1) → R given by

L (φ1, φ2) =

∫ 1

0

(f1 + f2 + bf3)φ1 dx+

∫ 1

0

(−bf1 + f3 + f4)φ2 dx.

In view of Poincaré inequality (2.6), Γ is a continuous bilinear form on H1
a,0(0, 1)×H1

a,0(0, 1)
and L is a continuous linear functional onH1

a,0(0, 1)×H1
a,0(0, 1). Moreover, it is easy to check

that Γ is also coercive on H1
a,0(0, 1)×H1

a,0(0, 1). So applying the Lax–Milgram theorem, we
deduce that there exists a unique solution (u1, u3) ∈ H1

a,0(0, 1)×H1
a,0(0, 1) of

Γ ((u1, u3) , (φ1, φ2)) = L (φ1, φ2) for all (φ1, φ2) ∈ H1
a,0(0, 1)×H1

a,0(0, 1). (2.13)

Now, take (u2, u4) := (u1 − f1, u3 − f3); then (u2, u4) ∈
(
H1
a,0(0, 1)

)2
. It remains to prove

that (u1, u3) ∈
(
H2
a,0(0, 1)

)2
and solves (2.12). Since C∞

c (0, 1) ⊂ H1
a,0(0, 1), the equation

(2.13) holds for all (φ1, φ2) ∈ C∞
c (0, 1)× C∞

c (0, 1), namely
∫ 1

0

(u1 + bu3)φ1 dx+

∫ 1

0

a(x)u1,xφ1,x dx+

∫ 1

0

(u3 − bu1)φ2 dx+

∫ 1

0

a(x)u3,xφ2,x dx

=

∫ 1

0

(f1 + f2 + bf3)φ1 dx+

∫ 1

0

(−bf1 + f3 + f4)φ2 dx,

∀(φ1, φ2) ∈ C∞
c (0, 1)× C∞

c (0, 1).
(2.14)

Using the fact that, for all (φ1, φ2) ∈ C∞
c (0, 1)× C∞

c (0, 1), we have
∫ 1

0

(u1 + bu3)φ1 dx+

∫ 1

0

a(x)u1,xφ1,x dx =

∫ 1

0

(u1 − (a(x)u1,x)x + bu3)φ1 dx

∫ 1

0

(u3 − bu1)φ2 dx+

∫ 1

0

a(x)u3,xφ2,x dx =

∫ 1

0

(u3 − (a(x)u3,x)x − bu1)φ2 dx,

(2.15)

it follows that the integral representation (2.14) is equivalent to
∫ 1

0

(u1 − (a(x)u1,x)x + bu3)φ1 dx =

∫ 1

0

(f1 + f2 + bf3)φ1 dx, ∀φ1 ∈ C∞
c (0, 1)

∫ 1

0

(u3 − (a(x)u3,x)x − bu1)φ2 dx =

∫ 1

0

(−bf1 + f3 + f4)φ2 dx, ∀φ2 ∈ C∞
c (0, 1).

(2.16)
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Thus (u1, u3) ∈ H2
a,0(0, 1)×H2

a,0(0, 1) and

u1 − (a(x)u1,x)x + bu3 = f1 + f2 + bf3 a.e. in (0, 1)

u3 − (a(x)u3,x)x − bu1 = −bf1 + f3 + f4 a.e. in (0, 1).

So, we have found U = (u1, u2, u3, u4) ∈ D(Aa), which satisfies (2.11). Hence, the well-
posedness result follows from the Hille-Yosida theorem (see [37, Theorem 4.5.1] or [38,
Theorem A.11]).

For any regular solution of problem (2.1) we define the associated energy by:

Ev,u(t) =
1

2

∫ 1

0

{
v2t (t, x) + a(x)v2x(t, x) + u2t (t, x) + a(x)u2x(t, x)

}
dx, ∀t ≥ 0. (2.17)

Then, by a direct derivation, it is easy to show that the energy is conserved:

Ev,u(t) = Ev,u(0) =
1

2
‖U‖2Ha

∀t ≥ 0. (2.18)

3 Two key inequalities

In this section, by means of the so-called multiplier method [4, 39, 40], we prove some
estimates from above and below for the energy associated to the solution of the adjoint
system (2.1), which are crucial to prove that the control problem (1.1) has a unique solution
and this solution is null controllable.

3.1 Direct inequality

This subsection is devoted to prove the so-called direct inequality of the solutions of (2.1).
More precisely, we prove the following.

Lemma 3.1. Let T > 0 and assume (1.2) holds. Then there is a constant c1 = c1(a, b, T ) >
0 such that for every U0 = (v0, v1, u0, u1) ∈ Ha the solution of the homogeneous system (2.1)
satisfies the following direct inequality

∫ T

0

u2x(t, 1) dt ≤ c1Ev,u(0), (3.1)

where

c1 :=

[(
6 +

2b

min{1, a(1)}

)
T +

4

min{1, a(1)}

]
. (3.2)

Proof. Using multiplier technique, we establish the direct inequality (3.1) for a regular so-
lution U ∈ D(Aa), the case U ∈ Ha then follows by a density argument. Let U ∈ D(Aa) be
a function satisfying (2.1). We start by proving that the following identity holds true:

a(1)

∫ T

0

u2x(t, 1) dt =

∫ T

0

∫ 1

0

{
u2t (t, x) + (a(x)− xa′(x))u2x(t, x)

}
dx dt

+ 2

[∫ 1

0

xux(t, x)ut(t, x) dx

]t=T

t=0

− 2b

∫ T

0

∫ 1

0

xux(t, x)vt(t, x) dx dt.

(3.3)
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We multiply the second equation of (2.1) by xux and we integrate by parts over (0, T )×(0, 1)
as follows:

0 =

∫ T

0

∫ 1

0

xux(t, x)
(
utt(t, x)− (a(x)ux(t, x))x − bvt(t, x)

)
dx dt

=

[∫ 1

0

xux(t, x)ut(t, x) dx

]t=T

t=0

−
∫ T

0

∫ 1

0

xutx(t, x)ut(t, x) dx dt

−
∫ T

0

∫ 1

0

(
xa′(x)u2x(t, x) + xa(x)ux(t, x)uxx(t, x)

)
dx dt− b

∫ T

0

∫ 1

0

xux(t, x)vt(t, x) dx dt

=

[∫ 1

0

xux(t, x)ut(t, x) dx

]t=T

t=0

−
∫ T

0

∫ 1

0

xa′(x)u2x(t, x) dx dt

−
∫ T

0

∫ 1

0

(
x

(
u2t (t, x)

2

)

x

+ xa(x)

(
u2x(t, x)

2

)

x

)
dx dt− b

∫ T

0

∫ 1

0

xux(t, x)vt(t, x) dx dt.

(3.4)
On the other hand, by integrating by parts and owing to (2.2)-(2.3), we have

∫ T

0

∫ 1

0

x

(
u2t (t, x)

2

)

x

dx dt = −1

2

∫ T

0

∫ 1

0

u2t (t, x) dx dt,

∫ T

0

∫ 1

0

xa(x)

(
u2x(t, x)

2

)

x

dx dt =
1

2

∫ T

0

a(1)u2x(t, 1) dt−
1

2

∫ T

0

∫ 1

0

(xa(x))′u2x(t, x) dx dt.

(3.5)
Inserting (3.5) into (3.4), we get the desired identity (3.3).

Now, observe that condition (1.2) (ii) yields:

a(x) ≥ a(1)xµa ∀x ∈ [0, 1]. (3.6)

From Young ineqality and (3.6) together with the constancy of the energy, it follows that:

∣∣∣∣
∫ 1

0

xux(t, x)ut(t, x) dx

∣∣∣∣ ≤
1

2

∫ 1

0

{
u2t (t, x) + x2u2x(t, x)

}
dx

≤ Ev,u(0)

min{1, a(1)} ∀t ≥ 0,

∣∣∣∣∣b
∫ T

0

∫ 1

0

xux(t, x)vt(t, x) dx dt

∣∣∣∣∣ ≤
b

2

∫ T

0

∫ 1

0

{
v2t (t, x) + x2u2x(t, x)

}
dx dt

≤ b

min{1, a(1)}

∫ T

0

Ev,u(0) dt =
b

min{1, a(1)}TEv,u(0).
(3.7)

Finally, combining (3.3), (3.7) and the inequality x|a′(x)| < 2a(x), one obtains (3.1).

3.2 Inverse inequality

The aim of this subsection is to establish, under some further hypotheses, the inverse in-
equality of the direct inequality obtained in Lemma 3.1. Let us first introduce the following
notations

Ma,b = min

{
1− b

2
Ca,

1

2

(
1− 6− µa

2− µa
b

)
, 2

(
1− 4

(2− µa)a(1)
b

)}
, (3.8)

ba = min

{
2

Ca
,
2− µa

6− µa
,
(2− µa)a(1)

4

}
,
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and

Ta,b =

3(2−µa)
2b + 2

(
1 + 4

min{1,a(1)}

)
+ (2− µa)

√
Ca

(2− µa)Ma,b

. (3.9)

Remark 1. From condition (1.2) (ii) and assuming that 0 < b < ba, one can see that
Ma,b, Ta,b > 0.

Now, using the multiplier method, we are going to prove the following inverse inequality
result:

Theorem 3.1. Let T > Ta,b and assume (1.2) holds. Suppose that 0 < b < ba. Then there
is a constant c2 = c2(a, b, T ) > 0 such that for every U0 = (v0, v1, u0, u1) ∈ Ha the solution
of the homogeneous system (2.1) satisfies the following inverse inequality

Ev,u(0) ≤ c2

∫ T

0

u2x(t, 1) dt, (3.10)

where

c2 :=
2a(1)

(2− µa)Ma,bT −
(

3(2−µa)
2b + 2

(
1 + 4

min{1,a(1)}

)
+ (2− µa)

√
Ca

) . (3.11)

Proof. Once again we suppose U is a regular solution of (2.1). For simplicity, we divide the
proof into several steps.
Step 1. As a first step, let us prove that the following estimation holds true:

2− µa

2

∫ T

0

∫ 1

0

u2t (t, x) dx dt+

(
2− µa

2
− 2b

a(1)

)∫ T

0

∫ 1

0

a(x)u2x(t, x) dx dt

≤ a(1)

∫ T

0

u2x(t, 1) dt+
4

min{1, a(1)}Ev,u(0) +
b

2

∫ T

0

∫ 1

0

v2t (t, x) dx dt, ∀T > 0.

(3.12)
Multiplying the second equation of (2.1) by u, integrating by parts over (0, T ) × (0, 1), we
get

0 =

∫ T

0

∫ 1

0

u(t, x)
(
utt(t, x)− (a(x)ux(t, x))x − bvt(t, x)

)
dx dt

=

[∫ 1

0

ut(t, x)u(t, x) dx

]t=T

t=0

−
∫ T

0

∫ 1

0

u2t (t, x) dx dt−
∫ T

0

[a(x)ux(t, x)u(t, x)]
x=1
x=0 dt

+

∫ T

0

∫ 1

0

a(x)u2x(t, x) dx dt− b

∫ T

0

∫ 1

0

vt(t, x)u(t, x) dx dt.

Using the boundary conditions together with (2.4), this gives

∫ T

0

∫ 1

0

{
a(x)u2x(t, x)− u2t (t, x)

}
dx dt+

[∫ 1

0

ut(t, x)u(t, x) dx

]t=T

t=0

− b

∫ T

0

∫ 1

0

vt(t, x)u(t, x) dx dt = 0.

(3.13)
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By adding to the right-hand side of (3.3) the left side of (3.13) multiplied by µa

2 , we obtain

a(1)

∫ T

0

u2x(t, 1)dt =

∫ T

0

∫ 1

0

{
(1− µa

2
)u2t (t, x) +

[
(1 +

µa

2
)a(x)− xa′(x)

]
u2x(t, x)

}
dx dt

+

[∫ 1

0

ut(t, x)
(
2xux(t, x) +

µa

2
u(t, x)

)
dx

]T

0

− b

∫ T

0

∫ 1

0

vt(t, x)
(
2xux(t, x) +

µa

2
u(t, x)

)
dx dt

≥ 2− µa

2

∫ T

0

∫ 1

0

{
u2t (t, x) + a(x)u2x(t, x)

}
dx dt

+

[∫ 1

0

ut(t, x)
(
2xux(t, x) +

µa

2
u(t, x)

)
dx

]T

0

− b

∫ T

0

∫ 1

0

vt(t, x)
(
2xux(t, x) +

µa

2
u(t, x)

)
dx dt,

(3.14)
where we have used the inequality x|a′(x)| ≤ µaa(x).

We proceed to estimate the last two terms above. Using the Young inequality we have

∣∣∣∣
∫ 1

0

ut(t, x)
(
xux(t, x) +

µa

4
u(t, x)

)
dx

∣∣∣∣ ≤
1

2
‖ut‖2L2(0,1) +

1

2
‖xux +

µa

4
u‖2L2(0,1). (3.15)

Next, we compute:

‖xux +
µa

4
u‖2L2(0,1) =

∫ 1

0

x2u2x dx+
µa

4

∫ 1

0

x(u2)x dx+
µ2
a

16

∫ 1

0

u2 dx

=

∫ 1

0

x2u2x dx+
µa

4

[
xu2

]x=1

x=0
+
µa

4

(µa
4

− 1
)∫ 1

0

u2 dx

≤
∫ 1

0

x2u2x dx+
µa

4

[
xu2

]x=1

x=0
.

By using the boundary conditions, (2.2) and (3.6), we obtain that

‖xux +
µa

4
u‖2L2(0,1) ≤

∫ 1

0

x2u2x dx ≤ 1

a(1)

∫ 1

0

a(x)u2x dx. (3.16)

We combine (3.15) and (3.16) to get

∣∣∣∣
∫ 1

0

ut(t, x)
(
xux(t, x) +

µa

4
u(t, x)

)
dx

∣∣∣∣ ≤
1

min{1, a(1)}Ev,u(0).

Thus
∣∣∣∣∣

[∫ 1

0

ut(t, x)
(
2xux(t, x) +

µa

2
u(t, x)

)
dx

]T

0

∣∣∣∣∣ ≤
4

min{1, a(1)}Ev,u(0). (3.17)

By the same technique, we obtain
∣∣∣∣∣b
∫ T

0

∫ 1

0

vt(t, x)
(
2xux(t, x) +

µa

2
u(t, x)

)
dx dt

∣∣∣∣∣

≤ b

2

∫ T

0

∫ 1

0

v2t (t, x) dx dt+
2b

a(1)

∫ T

0

∫ 1

0

au2x(t, x) dx dt.

(3.18)
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Finally, combining (3.14) together with (3.17) and (3.18) one obtains the desired estimate
(3.12).
Step 2. In a second step, we prove that the following estimation holds true:

(
2− µa

2
− b

2

)∫ T

0

∫ 1

0

u2t (t, x) dx dt+

(
2− µa

2
− 2b

a(1)

)∫ T

0

∫ 1

0

a(x)u2x(t, x) dx dt

≤ a(1)

∫ T

0

u2x(t, 1) dt+

(
1 +

4

min{1, a(1)}

)
Ev,u(0), ∀T > 0.

(3.19)

To this purpose, we will first establish the following inequality:

b

∫ T

0

∫ 1

0

v2t (t, x) dx dt ≤ b

∫ T

0

∫ 1

0

u2t (t, x) dx dt+ 2Ev,u(0), ∀T > 0. (3.20)

Multiplying the second equation of (2.1) by vt, integrating by parts over (0, T )× (0, 1), we
get

0 =

∫ T

0

∫ 1

0

vt(t, x)
(
utt(t, x)− (a(x)ux(t, x))x − bvt(t, x)

)
dx dt

=

∫ T

0

∫ 1

0

vt(t, x)utt(t, x) dx dt−
∫ 1

0

[a(x)ux(t, x)vt(t, x)]
x=1
x=0 dt

+

∫ T

0

∫ 1

0

a(x)ux(t, x)vtx(t, x) dx dt− b

∫ T

0

∫ 1

0

v2t (t, x) dx dt

=

∫ T

0

∫ 1

0

vt(t, x)utt(t, x) dx dt+

∫ T

0

∫ 1

0

a(x)ux(t, x)vtx(t, x) dx dt− b

∫ T

0

∫ 1

0

v2t (t, x) dx dt,

because a(x)ux(t, x)vt(t, x) vanishes at x = 1 and, owing to (2.4), also at x = 0.
After integrating by parts on time, this gives

0 =

[∫ 1

0

vt(t, x)ut(t, x) dx

]T

0

−
∫ T

0

∫ 1

0

vtt(t, x)ut(t, x)dx dt+

[∫ 1

0

a(x)ux(t, x)vx(t, x) dx

]T

0

−
∫ T

0

∫ 1

0

a(x)vx(t, x)utx(t, x) dx dt− b

∫ T

0

∫ 1

0

v2t (t, x) dx dt.

(3.21)
Next, we multiply the first equation of (2.1) by ut and integrate the resulting equation over
(0, T )× (0, 1). This gives, after a suitable integration by parts,

0 =

∫ T

0

∫ 1

0

ut(t, x)vtt(t, x)dx dt+

∫ T

0

∫ 1

0

a(x)vx(t, x)utx(t, x) dx dt+ b

∫ T

0

∫ 1

0

u2t (t, x) dx dt.

(3.22)
Combining (3.21) and (3.22), we obtain

b

∫ T

0

∫ 1

0

v2t (t, x) dx dt− b

∫ T

0

∫ 1

0

u2t (t, x) dx dt

=

[∫ 1

0

vt(t, x)ut(t, x) dx

]T

0

+

[∫ 1

0

a(x)ux(t, x)vx(t, x) dx

]T

0

.

(3.23)

Moreover, taking into account the fact that

∣∣∣∣
∫ 1

0

vt(t, x)ut(t, x) dx

∣∣∣∣+
∣∣∣∣
∫ 1

0

a(x)ux(t, x)vx(t, x) dx

∣∣∣∣ ≤ Ev,u(t),
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and the constancy of the energy, it follows that

[∫ 1

0

vt(t, x)ut(t, x) dx

]T

0

+

[∫ 1

0

a(x)ux(t, x)vx(t, x) dx

]T

0

≤ 2Ev,u(0). (3.24)

Then, inserting (3.24) into (3.23), we get the required estimation (3.20). Finally, (3.19)
follows by inserting (3.20) into (3.12).
Step 3. In the third step, we are going to prove that the following estimation holds true:

−
∫ T

0

∫ 1

0

v2t (t, x) dx dt+

(
1− b

2
Ca

)∫ T

0

∫ 1

0

a(x)v2x(t, x) dx dt−
b

2

∫ T

0

∫ 1

0

u2t (t, x) dx dt

≤ 2
√
CaEv,u(0) ∀T > 0,

(3.25)
where Ca is defined in (2.6).

We multiply the first equation of (2.1) by v and integrate the resulting equation over
(0, T )× (0, 1). After suitable integrations by parts, this gives

0 =

[∫ 1

0

v(t, x)vt(t, x) dx

]T

0

−
∫ T

0

∫ 1

0

v2t (t, x) dx dt−
∫ T

0

[a(x)vx(t, x)v(t, x)]
x=1
x=0 dt

+

∫ T

0

∫ 1

0

a(x)v2x(t, x) dx dt+ b

∫ T

0

∫ 1

0

v(t, x)ut(t, x) dx dt.

Using the fact that a(x)vx(t, x)v(t, x) vanishes at x = 1 and, owing to (2.4) also at x = 0,
we get

−
∫ T

0

∫ 1

0

v2t (t, x) dx dt+

∫ T

0

∫ 1

0

a(x)v2x(t, x) dx dt

= −
[∫ 1

0

v(t, x)vt(t, x) dx

]T

0

− b

∫ T

0

∫ 1

0

v(t, x)ut(t, x) dx dt.

(3.26)

On the other hand, using Young’s inequality and the Poincaré inequality (2.6), we have

∣∣∣∣
∫ 1

0

v(t, x)vt(t, x) dx

∣∣∣∣ ≤
1

2

∫ 1

0

( 1√
Ca

v2(t, x) +
√
Cav

2
t (t, x)

)
dx

≤
√
Ca

2

∫ 1

0

(
a(x)v2x(t, x) + v2t (t, x)

)
dx

≤
√
CaEv,u(0).

Thus ∣∣∣∣∣

[∫ 1

0

v(t, x)vt(t, x) dx

]T

0

∣∣∣∣∣ ≤ 2
√
CaEv,u(0), (3.27)

One can show similarly that

∣∣∣∣∣b
∫ T

0

∫ 1

0

v(t, x)ut(t, x) dx dt

∣∣∣∣∣ ≤
b

2

∫ T

0

∫ 1

0

u2t (t, x) dx dt+
b

2
Ca

∫ T

0

∫ 1

0

a(x)v2x(t, x) dx dt.

(3.28)
Then, inserting (3.27) and (3.28) into (3.26), we arrive at the desired inequality (3.25).
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Step 4. The sum of 2−µa

2 ×(3.25) and 2×(3.19) gives that

− 2− µa

2

∫ T

0

∫ 1

0

v2t (t, x) dx dt+
2− µa

2

(
1− b

2
Ca

)∫ T

0

∫ 1

0

a(x)v2x(t, x) dx dt

− 2− µa

2

b

2

∫ T

0

∫ 1

0

u2t (t, x) dx dt+ 2

(
2− µa

2
− b

2

)∫ T

0

∫ 1

0

u2t (t, x) dx dt

+ 2

(
2− µa

2
− 2b

a(1)

)∫ T

0

∫ 1

0

a(x)u2x(t, x) dx dt

≤ (2− µa)
√
CaEv,u(0) + 2a(1)

∫ T

0

u2x(t, 1) dt+ 2

(
1 +

4

min{1, a(1)}

)
Ev,u(0),

which can be rewritten as

2− µa

2

(
1− b

2
Ca

)∫ T

0

∫ 1

0

a(x)v2x dx dt+ 2

(
2− µa

2
− 2b

a(1)

)∫ T

0

∫ 1

0

a(x)u2x dt dx

+
2− µa

4

∫ T

0

∫ 1

0

v2t dx dt+
2− µa

4

(
1− 6− µa

2− µa
b

)∫ T

0

∫ 1

0

u2t dx dt

+
3(2− µa)

4

∫ T

0

∫ 1

0

(
u2t − v2t

)
dx dt

≤ 2a(1)

∫ T

0

u2x(t, 1) dt+ (2− µa)
√
CaEv,u(0) + 2

(
1 +

4

min{1, a(1)}

)
Ev,u(0).

(3.29)

On the other hand, using (3.20), we can see that

3(2− µa)

4

∫ T

0

∫ 1

0

(
u2t − v2t

)
dx dt ≥ −3(2− µa)

2b
Ev,u(0). (3.30)

Inserting (3.30) into (3.29) and using the definition of Ma,b, then we have

(2− µa)Ma,b

∫ T

0

Ev,u(t) dt−
3(2− µa)

2b
Ev,u(0)

≤ 2a(1)

∫ T

0

u2x(t, 1) dt+ (2− µa)
√
CaEv,u(0) + 2

(
1 +

4

min{1, a(1)}

)
Ev,u(0).

Finally, using the constancy of the energy, we get

(
(2− µa)Ma,bT −

(
3(2− µa)

2b
+ 2

(
1 +

4

min{1, a(1)}

)
+ (2− µa)

√
Ca

))
Ev,u(0)

≤ 2a(1)

∫ T

0

u2x(t, 1) dt.

This leads to the inverse inequality (3.10). The proof is thus complete.

4 Boundary controllability

In this section, by using the Hilbert Uniqueness Method introduced by J.-L. Lions [40, 41],
we prove the null controllability of the degenerate hyperbolic system (1.1). At first, let us
study well-posedness and regularity results for a such boundary control system.
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4.1 Solutions by transposition

This subsection is devoted to preliminary results concerning the well-posedness of (1.1).
Thus, as usual when dealing with boundary controls, we need to define the solution of (1.1)
by applying the so called transposition method in the spirit of [40] (see also [42], Chapter 3,
Section 9). To this aim, we define H−1

a (0, 1) as the dual space of H1
a,0(0, 1) and we denote

the dual of Ha by H′
a.

Thanks to the direct inequality (3.1), the following definition in the sense of transposition
of solution of (1.1) makes sense:

Definition 4.1. Let f ∈ L2(0, T ) and (z0, z1, y0, y1) ∈ H′
a be given. We say that Z =

(z, zt, y, yt) ∈ C0 ([0, T ],H′
a) . is a solution of problem (1.1), in the sense of transposition, if

it satisfies the identity

∫ 1

0

(
zt(T )ψ

0
T + yt(T )ϕ

0
T − z(T )ψ1

T − y(T )ϕ1
T − bz(T )ϕ0

T + by(T )ψ0
T

)
dx

=

∫ 1

0

(
zt(0)ψ(0) + yt(0)ϕ(0)− z(0)ψt(0)− y(0)ϕt(0)− bz(0)ϕ(0) + by(0)ψ(0)

)
dx

− a(1)

∫ T

0

f(t)ϕx(t, 1) dt,

(4.1)

for all T > 0 and all
(
ψ0
T , ψ

1
T , ϕ

0
T , ϕ

1
T

)
∈ Ha, where (ψ, ϕ) is the solution of the backward

problem 



ψtt − (a(x)ψx)x + bϕt = 0, in (0, T )× (0, 1),

ϕtt − (a(x)ϕx)x − bψt = 0, in (0, T )× (0, 1),

Bψ(0) = Bϕ(0) = 0, on (0, T ),

ψ(t, 1) = ϕ(t, 1) = 0, on (0, T ),

ψ(T, x) = ψ0
T (x), ψt(T, x) = ψ1

T (x), on (0, 1)

ϕ(T, x) = ϕ0
T (x), ϕt(T, x) = ϕ1

T (x), on (0, 1).

(4.2)

Note that according to Theorem 2.1, the backward system (4.2) admits a unique solu-
tion Ψ = (ψ,ψt, ϕ, ϕt) ∈ C0([0, T ];Ha). Moreover, this solution depends continuously on(
ψ0
T , ψ

1
T , ϕ

0
T , ϕ

1
T

)
∈ Ha and the energy Eψ,ϕ of (ψ, ϕ) is conserved through time.

Let us consider the linear form L defined by

L
(
ψ0
T , ψ

1
T , ϕ

0
T , ϕ

1
T

)
= 〈(z1,−z0, y1,−y0) , (ψ(0), ψt(0), ϕ(0), ϕt(0))〉H′

a
,Ha

− a(1)

∫ T

0

f(t)ϕx(t, 1) dt,

for all T > 0, where

〈(z1,−z0, y1,−y0) , (ψ(0), ψt(0), ϕ(0), ϕt(0))〉H′

a
,Ha

=

∫ 1

0

(zt(0)ψ(0) + yt(0)ϕ(0)− z(0)ψt(0)− y(0)ϕt(0)− bz(0)ϕ(0) + by(0)ψ(0)) dx
(4.3)

In view of the direct inequality (3.1), for all T > 0, there exists a constant D > 0 such that

∫ T

0

f(t)ϕx(t, 1) dt ≤ DEψ,ϕ(0) = DEψ,ϕ(T ),

where

Eψ,ϕ(T ) =
1

2

[
‖ψ1

T ‖2L2 + ‖ψ0
T ‖2H1

a,0
(0,1) + ‖ϕ1

T ‖2L2 + ‖ϕ0
T ‖2H1

a,0
(0,1)

]
.
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Thus, the mapping L is a continuous linear form with respect to
(
ψ0
T , ψ

1
T , ϕ

0
T , ϕ

1
T

)
∈ Ha.

Therefore, we can use the Riesz Theorem obtaining that for any T > 0 there exists a unique
4-uplet

(
zT0 , z

T
1 , y

T
0 , y

T
1

)
∈ H′

a such that

L
(
ψ0
T , ψ

1
T , ϕ

0
T , ϕ

1
T

)

=
〈(
zT1 ,−zT0 , yT1 ,−yT0

)
,
(
ψ0
T , ψ

1
T , ϕ

0
T , ϕ

1
T

)〉
H′

a
,Ha

, ∀
(
ψ0
T , ψ

1
T , ϕ

0
T , ϕ

1
T

)
.

Hence, one can prove the following existence result (see [40, Theorem 4.2, page 46–54] for a
complete proof).

Theorem 4.1. Assume the hypotheses of Lemma 3.1. For each Z0 = (z0, z1, y0, y1) ∈ H′
a

and f ∈ L2(0, T ), system (1.1) has a unique solution

Z ∈ C0 ([0, T ],H′
a) .

4.2 Controllability result

The main result of this paper is the following.

Theorem 4.2. Assume (1.2) holds and suppose that 0 < b < ba. For all T > Ta,b and
all initial condition U0 ∈ H′

a, there exists a control f ∈ L2 (0, T ), such that the associated
solution Z = (z, zt, y, yt) of (1.1) (defined in the sense of transposition) satisfies

z(T, x) = zt(T, x) = y(T, x) = yt(T, x) = 0 ∀x ∈ (0, 1). (4.4)

Proof. Our approach consists in applying the Hilbert Uniqueness Method, introduced by
J.-L. Lions in [40]. Let (z0, z1, y0, y1) ∈ H′

a be given. Let us consider the bilinear form Λ on
Ha defined by

Λ
(
ΨT , Ψ̃T

)
:= a(1)

∫ T

0

ϕx(t, 1)ϕ̃x(t, 1) dt ∀ΨT , Ψ̃T ∈ Ha,

where ΨT = (ψ0
T , ψ

1
T , ϕ

0
T , ϕ

1
T ), Ψ̃

T = (ψ̃0
T , ψ̃

1
T , ϕ̃

0
T , ϕ̃

1
T ), and Ψ = (ψ, ψt, ϕ, ϕt) is the solution

of (4.2), and Ψ̃ = (ψ̃, ψ̃t, ϕ̃, ϕ̃t) is defined similarly by replacing the final condition ΨT =

(ψ0
T , ψ

1
T , ϕ

0
T , ϕ

1
T ) by Ψ̃T = (ψ̃0

T , ψ̃
1
T , ϕ̃

0
T , ϕ̃

1
T ).

From the direct inequality (3.1), it is clear that Λ is continuous on Ha. Moreover, thanks
to the observability inequality (3.10), Λ is coercive on Ha for T > Ta,b.

Next, we also define the continuous linear map

ℓ
(
Ψ̃T

)
:=

〈
(z1,−z0, y1,−y0) ,

(
ψ̃(0), ψ̃t(0), ϕ̃(0), ϕ̃t(0)

)〉
H′

a
,Ha

∀Ψ̃T ∈ Ha,

where 〈·, ·〉H′

a
,Ha

is defined by (4.3).
Since Λ is continuous and coercive on Ha, and ℓ is continuous on the Hilbert space Ha,

by the Lax-Milgram Theorem, there exists a unique Ψ̂T ∈ Ha such that

Λ
(
Ψ̂T , Ψ̃T

)
= ℓ

(
Ψ̃T

)
∀Ψ̃T ∈ Ha.

Set f := ϕ̂x(t, 1), where Ψ̂ = (ψ̂, ψ̂t, ϕ̂, ϕ̂t) is the unique solution of (4.2) associated to Ψ̂T .
Then we have

a(1)

∫ T

0

f(t)ϕ̃x(t, 1) dt

= a(1)

∫ T

0

ϕ̂x(t, 1)ϕ̃x(t, 1) dt

= Λ
(
Ψ̂T , Ψ̃T

)

=
〈
(z1,−z0, y1,−y0) ,

(
ψ̃(0), ψ̃t(0), ϕ̃(0), ϕ̃t(0)

)〉
H′

a
,Ha

, ∀Ψ̃T ∈ Ha.

(4.5)
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Finally, denote by Z = (z, zt, y, yt) the solution by transposition of (1.1) associated to the
function f introduced above. We have that

−a(1)
∫ T

0

f(t)ϕ̃x(t, 1) dt =
〈
(zt(T ),−z(T ), yt(T ),−y(T )) , Ψ̃T

〉
H′

a
,Ha

−
〈
(z1,−z0, y1,−y0) ,

(
ψ̃(0), ψ̃t(0), ϕ̃(0), ϕ̃t(0)

)〉
H′

a
,Ha

.

(4.6)

Combining (4.5) and (4.6), it follows that

〈
(zt(T ),−z(T ), yt(T ),−y(T )) , Ψ̃T

〉
H′

a
,Ha

= 0, ∀Ψ̃T ∈ Ha.

Thus, we have (4.4).
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