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Abstract In early 2020, the world is amid a significant pandemic due to the novel
coronavirus disease outbreak, commonly called the COVID-19. Coronavirus is a
lung infection disease caused by the Severe Acute Respiratory Syndrome Coron-
avirus 2 virus (SARS-CoV-2). Because of its high transmission rate, it is crucial to
detect cases as soon as possible to effectively control the spread of this pandemic
and treat patients in the early stages. RT-PCR-based kits are the current stan-
dard kits used for COVID-19 diagnosis, but these tests take much time despite
their high precision. A faster automated diagnostic tool is required for the effec-
tive screening of COVID-19. In this study, a new semi-supervised feature learning
technique is proposed to screen COVID-19 patients using chest CT Scans. The
model proposed in this study uses a three-step architecture, consisting of a Con-
volutional Autoencoder based unsupervised feature extractor, a Multi-Objective
Genetic Algorithm based feature selector, and a Bagging Ensemble of Support
Vector Machines(SVMs) based classifier. The Autoencoder generates a diverse set
of features from the images, and an optimal subset, free of redundant and irrele-
vant features, is selected by the evolutionary selector. The Ensemble of SVMs then
performs the binary classification of the features. The proposed architecture has
been designed to provide precise and robust diagnostics for binary classification
(COVID vs.nonCOVID). A Dataset of 1252 COVID-19 CT scan images, collected
from 60 patients, has been used to train and evaluate the model. The experimen-
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tal results prove the superiority of the proposed methodology in comparison to
existing methods.

Keywords Coronavirus (COVID-19) · Convolutional Autoencoder · Multi-
Objective Genetic Algorithm · Feature subset selection

1 Introduction

A chest infection disease affects the functioning of the lungs[1]. The common
lung infections are lung cancer, Chronic Obstructive Pulmonary Disease (COPD),
bronchitis, pneumonia and, asthma. Coronavirus disease (COVID-19) is a of lung
infection disease caused due to the novel discovered virus known as SARS- CoV-
2[2]. COVID-19 began with reports of unknown causes of pneumonia in Wuhan
City, China, around December 2019. The worldwide economy was impacted by
the unprecedented rise in COVID-19 cases and it has been declared a pandemic
by the WHO. [3].

On 18 June 2020, a total of 8,379,081 patients became infected with COVID-
19, and 215 countries listed 450,101 deaths [3]. The standard diagnostic test for
COVID-19 is the Reverse Transcriptase Polymerase Chain Reaction (RT- PCR)
[4]. Due to PCR’s high selectivity and sensitivity, it is prevalent. The limitations
of the PCR technique are 1) time consuming, 2) expensive, 3) shortage of kits, and
4) long production time [5]. A faster and cheaper testing mechanism is required to
tackle the alarming rates of spread of COVID-19. Radiological analysis like Chest
CT (Computed Tomography) scans and X-Rays produce high hit-rate in COVID-
19 diagnosis. [6] established a high correlation between radiological results and
RT-PCR. The above reasons encouraged developing a cheaper and faster COVID-
19 screening mechanism using a radiological approach [7].

From the comprehensive analysis of the COVID-19 diagnosis field, it is inferred
that the best alternative for COVID-19 detection to the RT-PCR test kits is chest
radiography (X-rays and CT scan)[8]. However, CT scan modality seems to be
more efficient than chest X-ray for the following reasons: 1) X-rays provide only
a 2D perspective whereas CT scan provides a detailed 3D view of the organ, 2)
in X-rays, ribs overlap the lungs and heart, whereas, the CT scan does not. A
deep-learning-based three-step model is proposed for CT-scan based screening,
consisting of a Convolutional Autoencoder based unsupervised feature extractor,
an evolutionary algorithm based feature subset selector, and a feature classifier.

A CNN-based dense Autoencoder has been used as the feature extractor be-
cause of CNN’s high representational power and the generality of unsupervised
learning from it. The Autoencoder ensures an accurate and diverse feature set,
while the feature selector removes all redundant and irrelevant features improving
the performance. After obtaining a reduced representation of raw data as a diverse
set of features, the evolutionary algorithm based feature subset selectors is used to
select optimal feature subsets. Finally, the Bagging Ensemble of Support Vector
Machines (SVM) is trained on the subsets chosen by the various selectors, and
their performance is compared.

2 Related Works

Table 1 consists of various state of the art techniques currently available in
the literature of COVID-19 diagnosis. Further, a detailed analysis of the review is
presented.
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Works from [10, 11, 13, 14] have used pre-trained CNN models for COVID-19
diagnosis. Transfer Learning techniques are useful when data is limited, but they
often fail to learn intricate features unique to the required dataset. Some authors
have performed fine-tuning, but retraining the last few layers might not change
the basic features extracted by the CNN.

Authors in [9, 12, 15, 16] have used random forest, peekaboo, and segmenta-
tion classification. They have not used explicit feature extractors, and since the
classification uses chest CT images, a deep feature extractor architecture like CNN
might perform significantly better in this case.

The authors in the literature have obtained quality results by focusing only on
feature extractors and classifiers. In our work, we propose to shift the attention
from feature extraction to feature selection as it is critical to remove the redundant
features in an unsupervised extractor and improve the performance of any standard
classifier.

The author in [17] obtained improved results using MO-DE[18] feature selec-
tor over Deep CNN models, thus showcasing the importance of proper feature
selection technique in medical image classification. We extend their work further
and try to analyze and compare various feature reduction and selection techniques
ranging from linear dimensionality reduction (PCA) to various Multi-Objective
Feature Selectors. We obtained state-of-the-art results, validating their results,
and obtaining an improved, robust model for COVID-19 screening.

Further, authors in [19] have found genetic selectors to outperform standard
results on the Flavia dataset. [20] uses an NSGA-II based MOGA for feature
selection and evaluates its performance on various datasets. [21] shows the use
of the GA based feature selector for network intrusion detection. [22] compares
GA based feature selectors on medical datasets focusing on diagnostic radiology.
Authors of [22] compare GA based feature selectors to other approaches. In the
stated studies, optimization of internal parameters of the MOGA has not been
explored. Further, there is no comparative analysis among MOGA and other multi-
objective evolutionary techniques for feature selection on medical images. Multi-
Objective Optimization using Evolutionary Algorithms has not been well explored
in its use as a feature selector.

We try to improve upon the previous works by analyzing the effects of opti-
mizing parameters of MOGA. We also studied and compared MOGA with other
multi-objective evolutionary techniques for feature selection on COVID-19 CT
Scan Image Dataset, not done previously by any works.

3 Theorotical Background

3.1 Autoencoder (AE) based Feature Extractor

Autoencoders [23] are unsupervised learning methods trained to reconstruct
their inputs, usually by going through a compressed representation of lower di-
mensionality [24]. Structurally an AE comprises two parts, namely an Encoder
and a Decoder. Figure 1 summarizes the structure of an AE.

The encoder (E) converts the input image (x) to an encoded representation (h),
which reflects the features of the image due to the constraint to reduce dimension-
ality. An encoder deterministically maps its input to a reduced representation
generally using an affine map:

h = E(W · x+ b) (1)
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Figure 1: Schema of basic Autoencoder

here W denotes the weights for the encoder part, b represents the bias, and h
represents the reduced representation. Similarly, the decoder (D) takes the reduced
representation (h) and outputs the reconstructed image (y). An Autoencoder is
trained to minimize the reconstruction error of its input. Hence, training of AE
can be seen as a minimization of the following cost function:

Cost =
1

N

∑

j

Loss[xi, yi] (2)

where N represents the number of images, xi and yi represent the ith input-
output image pair, and Loss is the reconstruction error between two images. Mean
Squared Error has been used as the reconstruction error. CAE combines convolu-
tional operations with the architecture of an AE. The authors of [25] have shown
that CAE shows high accuracy in finger vein identification. Since CNN can extract
a very detailed set of feature maps from images, convolutional AE has been used
as a feature extractor in this study.

3.2 Multi Objective Genetic Algorithm based Feature Selector

3.2.1 Multi Objective Genetic Algorithm (MOGA)

Multi-Objective Optimization is the process of simultaneously optimizing more
than one competing objective function. Two Objectives have been considered in
this work, namely, classification accuracy and size of feature subset. These are
competing objectives, and a single solution optimizing both might not exist. An
alternative is to generate a set known as the Pareto Optimal set of solutions. A
Pareto set is a set of solutions where no solution is dominated by any other solution
in the set. There is always a degradation in some objectives, required to improve
any objective in a Pareto set of solutions.

Consider a set of M objectives that have to be minimized.H = {h1, h2, . . . , hM}.
Consider x1, x1 ∈ {Pareto Set}, then x1 dominates x2 if:

∀i = 1, 2, . . . ,M, {hi(x1) ≤ hi(x2)} and

∃i = 1, 2, . . . ,M, {hi(x1) < hi(x2)} (3)

A solution is said to be Pareto Optimal if there exists no solution which dom-
inates it. All such Pareto Optimal solutions together form the Pareto Optimal
Set.
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There exist various algorithms for multi-objective Genetic Optimizations. NSGA-
II [26] is one such elitist principle-based algorithm much superior to classic gradient-
based approaches. NSGA-II has been used to carry out the multi-objective feature
subset selection in this study. Figure 2 summarizes the implementation of NSGA-
II.

Figure 2: The working of NSGA-II

3.2.2 Initial Population and Encoding

Solutions in the population (a.k.a chromosomes) are represented as binary strings.
The ith gene in a chromosome is one if the solution contains the ith feature of
the input set. For the initial population, random binary chromosomes have been
generated.

3.2.3 Crossover and Mutation

The creation of two new offspring chromosomes using the selected parent pair
is known as crossover. Single point crossover has been used in this work, where
each gene is randomly selected from one of the parents. Parents are selected using
tournament-based selection.

Mutation conserves population diversity. Mutation involves random modifi-
cations in the value of the chromosomes. Random bit flip has been used as the
mutation operator in this study.
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3.2.4 Termination

The MOGA based selector terminates when either the maximum number of gen-
erations or the stall generation limit has been reached. After termination, the
selector returns the final population with objective scores and front rankings.

3.3 Ensemble SVM based Classification

The SVM ensemble with Bagging is used in classification as SVM is a weak
learner[27]. Using many small classifiers can increase robustness and produce low
error. Bagging [28], uses randomized training sets for creating different models. A
single classifier’s training set is randomly generated by drawing N random data
points (N is the size of the original training set) from the original training set
with replacement. Figure 3 illustrates the structure of the bagging ensemble-based
SVM.

Figure 3: A general architecture of SVM ensemble with an aggregation step

As described above, bootstrap builds K duplicate training datasets from the
given training data set (TR) { TRk | k = 1, 2, ...,K} using random re-sampling
with replacement.

After training, the independently trained SVMs are aggregated. Thus, majority
voting has been used in the study because it uses upper layer SVM to combine
several lower layer SVMs (double layer hierarchical combining).

4 Proposed Method

A 3-step architecture is proposed for the screening of COVID-19 chest CT
Scans. The proposed architecture consists of a feature extractor, a feature selector,
and a classifier. Flowchart summarizing the proposed architecture is depicted in
Figure 5
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Figure 4: Proposed architecture of Convolution Auto-encoder

Figure 5: Flowchart summarizing the proposed architecture

An autoencoder based unsupervised learning approach is used to generate fea-
tures from the CT scan images automatically. This gives us a diverse feature set,
essential for this classification.

Though diverse, the features extracted by the Autoencoder have very high
dimensionality and suffer from a redundancy of features. To remove the extra
features, a MOGA based feature selector is proposed to select an optimal set of
features.

Finally, for classification, a bagging based ensemble of support vector machines
is used to carry out the binary classification of the feature sets into COVID-19
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and non-COVID classes. A brief outline of the various methods is highlighted in
the subsequent study.

4.1 Auto Encoder Structure and Training
The input image of size 128 x 128 x 3, is fed into the CNN, which contains

convolutional layers (kernel size 3) and max-pooling layers (downscaling factor of
2). ReLu activation is applied after every convolution. The encoder layers have 32,
16, and 8 filters (output channels), respectively. A decoder follows the encoder to
reconstruct the image using deconvolution and up-sampling layers. The output of
the encoder has the shape 14 x 14 x 16. This is flattened to generate a feature vector
of length 2048 per CT Scan image. The CNN architecture has been summarized
in Figure 4.

The Auto Encoder is trained using the training set with the validation set for
validation, as explained in section 4.1. Adam optimizer has been used for training
the AE, with Mean Squared Error (MSE) as the loss function. The AE has been
trained for two hundred epochs with a batch size of 10 per epoch. Figure 6 shows
a reconstruction of test set images by AE.

Figure 6: Original and Reconstructed (from Convolution Autoencoder) Chest CT
Images from validation set

4.2 Feature Selector
The feature extractor extracts 2048 features from an input image of 128 x 128

x 3. MOGA has been applied for selecting a superlative set from the extracted
features using two fitness criteria:

C1 =
1

S
C2 = Accuracy(F)

where S is the cardinality of F and F is the subset of features selected, and
Accuracy is classification accuracy on the test set. Reducing the number of fea-
tures ensures that there are no redundant or irrelevant features in the dataset.
Classification accuracy is measured on the test set using an SVM.

Instead of constant Crossover and mutation rates, linear crossover and muta-
tion rates have been used in this study. This ensures a high initial mutation rate
preventing premature convergence and a low mutation rate when MOGA is close
to the Pareto front. Similarly, the crossover rate is initially low to maintain diver-
sity and gradually increases. Figure 8 shows the plot of the crossover and mutation
rates against generations for the MOGA.

The summary of GA Parameters is given in Table 3. For evaluation, an average
of 100 runs has been considered. The run summary of the MOGA based selector
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Figure 7: The plot of highest accuracy vs the maximum number of features)

Figure 8: Crossover and Mutation Rates of MOGA vs Generations Plot

showing the min., max., avg., and std. dev. of the number features and highest
accuracy for the given generation (using SVM as a classifier) is shown in Table 2.
The plot of highest accuracy vs. No of features selected by MOGA is shown in
Figure 7

4.3 Feature Classifier

An Ensemble of Support Vector Machines (SVM) is used to classify the se-
lected features. The bagging technique is used to construct the SVM ensemble.
For classification, the dataset is randomly divided into ten parts, and the indi-
vidual SVMs are trained independently(bootstrap techniques). These individual
models are then aggregated by the deterministic averaging process to make a joint
decision. Each SVM has an RBF kernel with C and Gamma tuned values using the
Genetic Algorithm-based Hyperparameter Optimizer. The classifier’s performance,
evaluated using the test set, and the number of features is stated in Table 8.

5 Data and Validation

5.1 Dataset

The images of CT Scans used in this study are taken from the public database
of COVID-19 CT Scans by the name of ”SARS-COV-2 Ct-Scan Dataset” published
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and maintained by Soares et Al. [29] The dataset consists of 2482 images of chest
CT Scans, out of which 1252 are from patients infected with COVID-19. The
remaining 1230 images are from patients of other non-COVID pulmonary Diseases.
The presence of other non-COVID respiratory diseases allows the model to learn
COVID specific features.

The patients considered in the compilation of the dataset mentioned above are
from various hospitals in Sao Paulo, Brazil. The COVID-19 CT Scan images are
collected from 60 patients (32 males and 28 females). The non-COVID CT Scan
images were also collected from 60 patients (30 males and 30 females).

The dataset has been split into three sets, namely training (0.6), validation
(0.2), and testing (0.2). The splitting is random, and an average of 5 splits is
stated for all evaluations. The summary of the dataset after splitting is stated in
Table 4.

5.2 Evaluation Metrics

The screening performance of the model was assessed by Accuracy (ACC),
Precision (PRE), Area under ROC Curve (AUC), Recall/Sensitivity (REC), and
F1 Score (F1). Precision is the number of true positives over total positive predic-
tions. Recall is defined as the number of true positives over the number of correct
classifications. F1 score is simply the harmonic mean of precision and sensitivity
of the model. AUC is the total area contained under a ROC Curve, and it shows
the usefulness of tests on the model.

5.3 Experimentation

5.3.1 Comparison of AE Depths

Depth of any Neural Network directly affects its performance, and an optimal
depth ensures an accurate and robust model. The reconstruction Structural Sim-
ilarity Index (SSIM) and Mean Squared Error (MSE) has been used to compare
various autoencoders. Three different autoencoders have been considered for this
with 2, 3, and 4 convolution layers, respectively, in the encoder. The exact struc-
ture of the autoencoders is given below:

– 2-Layers: Two Convolution layers of kernel 3x3 with 32 and 64 filters, respec-
tively. Each layer is followed by a max-pooling layer of 2x2.

– 3-Layers (Proposed) : Three Convolution layers of kernel 3x3 with 16, 32,
and 64 filters, respectively. Each layer is followed by a max-pooling layer of
2x2.

– 4-Layers: Four Convolution layers of kernel 3x3 with 8, 16, 32, and 64 filters,
respectively. Each layer is followed by a max-pooling layer of 2x2.

The analysis is summarized in Table 5. The AE has been trained on the train
set and tested on the validation set for this analysis. The size of images used is
128x128, and the pixel values have been scaled to lie between 0 and 1.

5.3.2 Effect of Bagging Estimators on Performance

Bagging Ensemble uses several estimators instead of a single estimator for pre-
diction. This improves performance since a single estimator may have high test
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error, but it is overcome by using many small estimators. A different number of
estimators are compared based on their accuracy on the validation set, and the
box plot of the accuracy vs. the number of estimators is shown in Figure 9. It can
be seen that the accuracy improves till 20 estimators, then it saturates.

Figure 9: Box Plot of Validation Set Accuracy vs Number of Bagging Estimators

5.3.3 Comparing Different Population Sizes

Optimal population size is obtained by applying the proposed MOGA based se-
lector on the validation set. For obtaining the accuracy values, multiple runs were
conducted, and an average of these was recorded. The graphs show the accuracy
against the population size of MOGA, which is varied between 50 to 300 in incre-
ments of 50. The plot shows that the performance improves up to size 200, after
which it stabilizes. Figure 10 shows the plot of the accuracy vs. population size.

Figure 10: The plot of Population size vs validation accuracy for MOGA Selector

5.3.4 Comparing Generation size of MOGA

Improvement of Pareto fronts with generation is studied in this section. The fronts
are plotted using 5 points from each generation, with the parameters for MOGA
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being as stated in Table 3. Y-axis represents the selected subset’s accuracy on the
validation set, while the X-axis represents the inverse of the number of features
selected. It can be seen that the fronts improve till 150 generations and then the
front stabilizes. This is also observed in the overlap of the fronts in generation 150
and 200. Figure 11 shows the generation wise Pareto fronts.

Figure 11: The plot of various Pareto Fronts w.r.t. Generations, for the proposed
MOGA. Five points are chosen from each generation for plotting this graph

5.3.5 Comparison with Simple GA, PCA and No-Selector

This section compares the MOGA based selector, PCA, and Simple GA. Accu-
racy on the validation set is taken as the comparison metric. PCA, a popular
dimensionality reduction technique, is applied with a variance set to 0.95. Simple
GA tries to find the optimal feature set using validation accuracy as the fitness
function. Direct classification with all the extracted features without any feature
selection has also been performed. The results obtained are summarized in Table 6.
Directly using the features without selection results in poor performance of the
model. The proposed model outperforms all the techniques in terms of accuracy.
In terms of the number of features, it can be seen that MOGA selects considerably
fewer features than simple GA.

5.3.6 Comparison of Crossover and Mutation Rates

Crossover and mutation rates are the parameters that control the convergence of
the MOGA selector. A non-constant linear crossover rate has been used in this
study to improve the selector’s ability to find the optimal front. The proposed
selector is compared with constant crossover and mutation rate based MOGA.
Accuracy on the validation set averaged over multiple runs is used for this com-
parison. The result of the analysis is summarized in Table 7.
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Figure 12: ROC characteristics curve for the proposed methodology (Convolutional
Autoencoder + MOGA + Bagging Ensemble with SVM)

5.3.7 Comparison of Feature Selectors

Multiple feature selection techniques, namely Multi-Objective Particle Swarm Op-
timization (MOPSO) [30], Multi-Objective Differential Evolution (MODE) [18]
and MOGA are compared in this study. The standard implementations of these
techniques (except the proposed method) are used for this analysis. Table 8 shows
the evaluation results on different selectors. For evaluation, features are extracted
using the proposed AE architecture, selected using different selectors, and finally
classified using SVM Ensemble. For more effective comparison, the test set, which
is unseen by the selectors, is used for the evaluation. The details of the train-test
split are provided in section 4-A. The results obtained show that the proposed
model outperforms other multi-objective feature selection techniques. Figure 13
shows the confusion matrices obtained for different feature selectors on the test
set.

Figure 13: Confusion matrices of the proposed methodology with different multi
objective feature selectors on the Test set
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6 Results and Analysis

For evaluation, the dataset is split according to Table 4. The proposed method
has been evaluated using the test set, composed of 260 COVID-19 chest CT images
and 237 non-COVID chest CT Images. The performance is measured based on the
evaluation metrics discussed in Section-IV-B. The features are extracted using the
AE encoder defined in III-A and selected using MOGA as described in III B.
Finally, the features are classified using a Bagging Ensemble of SVM classifiers,
described in III C.

The proposed methodology is implemented on python software, running on a
CPU. The system architecture uses an Intel Core i7 processor with a 4 GB graphic
card, running at 1.80 GHz, a 64-bit operating system, and 16 GB RAM.

The proposed architecture achieves an Accuracy(ACC) of 98.79%, Precision(PRE)
of 98.47%, Sensitivity(SEN) of 99.23%, F1 Score(F1) of 98.85%, Specificity(SPE)
of 98.31%, Net Positive Rate(NPV) of 99.14% and Area under ROC Curve(AUC)
of 99.8%. The prediction time on the system used is 127 ms per image. The pro-
posed model outperforms the current state of the art COVID-19 diagnostic tech-
niques in terms of speed and accuracy.

The Receiver Operator Characteristic Curve on the proposed model’s test set
is depicted in Figure 12. The area obtained under the ROC Curve (AUC) is 0.998.
A high value of AUC shows the robustness of the proposed model. Table 8 sum-
marizes the evaluation results of the proposed architecture. Confusion matrices for
different feature selectors on the test set are shown in Figure 13.

The proposed study (MOGA) outperforms other multi-objective feature selec-
tors. A decrease in ACC is expected in GA with an increase in the number of
variables. As the number of variables for optimizing the selection are less, MOGA
outperforms MODE and MOPSO.

7 Conclusion and Future Works

An unsupervised learning-based approach is proposed for feature generation
because of the higher feature diversity obtained from such an approach. Various
Evolutionary and non Evolutionary feature selectors are compared in this study,
and finally, a MOGA based selector is proposed. An Ensemble of SVMs is used for
the final classification. The bagging technique is used in the ensemble as it works
well with complex feature maps.

The model achieves better results than state of the art techniques for all per-
formance metrics. With such high-performance results and a little prediction time
compared to Physical RT-PCR tests, the proposed model can be an effective and
efficient COVID-19 Chest CT Scan screening Technique. The study further finds
many insights in feature extraction, feature selection, and classification, which are
listed below.

– Unsupervised learning-based feature extractors can provide detailed and accu-
rate feature maps for medical image classification.

– Evolutionary Feature Selectors remove data redundancy better than standard
techniques like PCA in terms of accuracy and number of features. Not using a
feature selector results in inferior performance

– Optimizing the number of features and accuracy forces the model to learn
from a smaller feature set, resulting in a more robust model since only the
most productive features are retained.
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– MOGA outperforms MOPSA and MODE in medical image classification be-
cause of the large number of parameters that need to be optimized for MOPSA
and MODE.

– Variable Crossover and Mutation rates for MOGA can significantly improve
performance in medical image classification.

– Bagging improves a classifier’s performance, as a large number of classifiers
produce a lower test error than a single classifier. This is because diversity
compensates for bias.

An efficient and effective system for COVID-19 diagnostic using Chest CT
Scan images has been proposed in this work. Future work will be to localize the
infection regions, map them in the images, and track the degree of infection.
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Table 1: Related Work results analysis on COVID-19 screening

Ref Technique Key Findings

[9] infection Size
Aware Random
Forest method
(iSARF)

The accuracy of 87.9%, a sensitivity of
90.7%, and a specificity of 83.3% are
achieved on chest CT scan.

[10] ResNet-18
(CNN model)

The performance parameters are: •

specificity: 92.2%, • sensitivity: 98.2%
and, • AUC: 0.996.

[11] Pre-trained
CheXNet and
DenseNet

An accuracy of 90.5%, a sensitiv-
ity of 100% is achieved using 5323
(COVID19-115, normal - 1341, and
pneumonia-3867) Chest XRay images.

[12] Joint Classi-
fication and
Segmentation
(JCS)

Used a dataset of 400 COVID-19 pa-
tients (144,167 images) and 350 Non-
COVID patients. The model achieves a
dice score of 78.3%, sensitivity of 95%
and a specificity of 93% for the seg-
mentation task.

[13] Domain Exten.
Transfer Learn-
ing (DETL)
with Gradient
Class Acti-
vation Map
(Grad-CAM)

The Data A - Binary classes disease (13
diseases) and normal. Data B - Four
classes (normal, pneumonia, other dis-
eases, and Covid19). An accuracy of
95.3% using X-ray scans.

[14] AlexNet,
VGG16,
VGG19,
GoogleNet,
and ResNet50

Pre-trained models used to train
CNN on 742 chest CT scans for
two binary classes (COVID and non-
COVID). The highest accuracy of
82.91% is achieved with the ResNet50
pre-trained CNN model.

[15] 3-Dimensional
deep learning

The specificity of 92.2%, a sensitivity
of 98.2%, and AUC of 0.996 is achieved
by the 3-D CNN model.

[16] Detail-
Oriented
Capsule Nets
+ Peekaboo
(patch crop
and drop
strategy)

A recall of 91.5%, accuracy of 87.6%,
precision of 84.3%, and AUC of
96.1 is achieved on chest CT scan
dataset for classification to binary
classes(COVID-19 and Non-COVID).

[17] Multi-
Objective
Differential
Evolution
(MODE) deep
learning

The performance parameters of
MODE outperforms by 1.927% of
Kappa statistics, 1.68% of specificity,
1.82% of sensitivity and, 2.09% of
F-measure in comparison to authentic
CNN models.
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Table 2: Summary of the run for MOGA selector

Table 3: Summary of the hyperparameters used for MOGA

Parameter Value

Population Size 200

No. of Generations 200

Mutation Probability linear increase from 0.5 to 0.9

Crossover Probability linear decrease from 0.5 to 0.1

Selection Procedure Tournament Based

Mating Pool Size 50

Table 4: The brief details of the dataset for CT scans

Set of Images Training Set Validation Set Test Set Total

COVID-19 756 236 260 1252

non-COVID 732 261 237 1230

Total 1488 497 497 2482
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Table 5: Comparison of AE Depth on the basis of reconstruction

Auto-Encoder SSIM Score MSE Score

2-Layer 0.76 0.0014

3-Layer 0.91 0.0004

4-Layer 0.89 0.0007

Table 6: Validation accuracies with MOGA, PCA and GA as feature
selector

Feature Selector Accuracy No. of Features

MOGA 0.991 244

Simple GA 0.961 316

PCA 0.947 207

No Selector 0.893 2048

Table 7: Validation accuracy of MOGA selector using different crossover
and mutation rates

Crossover Rate Mutation Rate Accuracy

Linear increase
from 0.5 to 0.9

Linear decrease
from 0.5 to 0.1

0.991

0.9 0.1 0.973

0.8 0.2 0.977
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Table 8: Comparative Assessment of various feature selectors on the test set

Feature Selector Number of
features Se-
lected

Classification Summary Evaluation Metric

TP TN FP FN ACC PRE SEN F1 SPE NPV AOC

Multi Objective
Differential Evolu-
tion

252 256 231 6 4 0.9798 0.9770 0.9846 0.9808 0.9746 0.9829 0.991

Multi Objective
Particle Swarm
Optimization

227 256 232 5 4 0.9839 0.9809 0.9884 0.9846 0.9789 0.9872 0.994

Multi Objective
Genetic Algorithm
(Proposed
Study)

244 258 233 4 2 0.9879 0.9847 0.9923 0.9885 0.9831 0.9914 0.998



Figures

Figure 1

Schema of basic Autoencoder

Figure 2

The working of NSGA-II

Figure 3

A general architecture of SVM ensemble with an aggregation step

Figure 4

A general architecture of SVM ensemble with an aggregation step

Figure 5

Flowchart summarizing the proposed architecture

Figure 6

Original and Reconstructed (from Convolution Autoencoder) Chest CT Images from validation set

Figure 7

The plot of highest accuracy vs the maximum number of features)

Figure 8

Crossover and Mutation Rates of MOGA vs Generations Plot



Figure 9

Box Plot of Validation Set Accuracy vs Number of Bagging Estimators

Figure 10

The plot of Population size vs validation accuracy for MOGA Selector

Figure 11

The plot of various Pareto Fronts w.r.t. Generations, for the proposed MOGA. Five points are chosen from
each generation for plotting this graph

Figure 12

ROC characteristics curve for the proposed methodology (Convolutional Autoencoder + MOGA + Bagging
Ensemble with SVM)

Figure 13

Confusion matrices of the proposed methodology with different multi objective feature selectors on the
Test set
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