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Abstract 24 

Economically and agriculturally important fungal species have various lifestyles, and they may shift from 25 

mutualistic or saprobic to pathogenic depending on the habitat, host tolerance, and resource availability. 26 

Traditionally, the determination of fungal lifestyles has been based on observation at a particular host or habitat. 27 

Therefore, potential fungal pathogens have been neglected until they cause devastating impacts on human health, 28 

food security, and ecosystem stability. This study focused on the class Sordariomycetes to explore the genomic 29 

traits that could be used to determine the lifestyles of fungi and the possibility of predicting fungal lifestyles using 30 

machine learning algorithms. A total of 638 representative genomes covering five subclasses, 17 orders and 50 31 

families were selected and annotated. Through an extensive literature survey, the lifestyles of 555 genomes were 32 

determined, including plant pathogens, saprotrophs, entomopathogens, mycoparasites, endophytes, human 33 

pathogens and nematophagous fungi. We evaluated the influence of sequencing technologies and concluded that 34 

second sequencing technologies have no influence on genome completeness but tend to generate a reduced size 35 

of transposable elements. We constructed three numerical matrices: a basic genomic feature matrix including 25 36 

features; a functional protein matrix including 24 features; and a combined matrix. The most comprehensively 37 

comparative analysis to date across multiple lifestyles was conducted based on these matrices. Results indicate 38 

that basic genomic features reflect more on phylogeny rather than lifestyle, but the abundance of functional 39 

proteins displays relatively high discrimination not only in differentiating taxonomic groups at the higher levels 40 

but also in differentiating lifestyles. Genome size, GC content and gene number showed powerful discrimination 41 

for differentiating higher ranks, especially at the subclass level. Plant pathogens have the largest secretome; 42 

whereas entomopathogens have the smallest secretome; and the abundance of secretomes is a useful indicator to 43 

clearly differentiate plant pathogens from entomopathogens, mycoparasites, saprotrophs and entomopathogens, 44 
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and as well as differentiate entophytes from entomopathogens. Effectors have long been considered as disease 45 

determinants, and we did observe that plant pathogens have more effectors than saprotrophs and entomopathogens. 46 

However, we also observed a similar abundance of effectors in endophytes, suggesting that effectors maybe not a 47 

reliable indicator for pathogenic fungi. Single functional protein could not differentiate all lifestyles, but 48 

combinations of multiple numerical features of functional proteins result in accurate differentiation for most 49 

lifestyles. Furthermore, models of six machine learning algorithms were trained, optimized and evaluated, and the 50 

best-performance model was used to predict the lifestyle of 83 unlabeled genomes. Although the accuracy of the 51 

best machine learning model was limited by the inadequate genome number of several lifestyles and the inaccurate 52 

lifestyle assignments for some genomes, the predictive model still obtained a high degree of accuracy in 53 

differentiating plant pathogens. The predictive model can be further optimized with more sequenced genomes in 54 

the future, and provide a more reliable prediction. This can be used as an early warning system to identify 55 

potentially devastating fungi and take appropriate measures to prevent their spread. 56 

 57 

Keywords: FCWDEs, Genomics, machine learning, PCWDEs, secretome, TEs  58 

59 
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Introduction 60 

The class Sordariomycetes, established by Eriksson and Winka (Eriksson OE 1997), is the second-largest class of 61 

the phylum Ascomycota (Hyde et al. 2020). Based on the latest outline of Wijayawardene et al. (2022), it 62 

comprises 7 subclasses, 46 orders and 172 families. The perithecial ascomata and inoperculate unitunicate asci 63 

are the main diagnostic features for distinguishing Sordariomycetes from other classes (Maharachchikumbura et 64 

al. 2015). Most Sordariomycete species have been introduced based solely on either the anamorph or teleomorph, 65 

and only a small number of them were characterized based on both anamorph and teleomorph (Wingfield et al. 66 

2012; Maharachchikumbura et al. 2015; Réblová et al. 2016). Sordariomycete species are distributed worldwide 67 

and have been found in almost every ecosystem (Wang et al. 2018; Luo et al. 2019; Kwon et al. 2021; 68 

Maharachchikumbura et al. 2021). Although most Sordariomyetes are saprobic on organic matter from various 69 

plants, the class also includes several notorious plant pathogens. For instance, Pyricularia oryzae (syn. 70 

Magnaporthe oryzae; Magnaporthales, Pyriculariaceae), Fusarium graminearum, F. oxysporum (Hypocreales, 71 

Nectriaceae), and Colletotrichum species (Glomerellales, Glomerellaceae), are listed in the top 10 fungal plant 72 

pathogens (Dean et al. 2012). Moreover, several species, such as Pyricularia grisea and Ophiostoma spp, were 73 

recognized as invasive plant pathogens, which altered the local natural ecosystems (Anderson et al. 2004; Solla 74 

et al. 2005). Some species are related to human and animal diseases (Barros et al. 2011; Troy et al. 2013; Tortorano 75 

et al. 2014; Řehulka et al. 2016; Jenks et al. 2018), while other species are of great importance to medicine, 76 

agriculture, and industry (Crawford et al. 1952; Kaewchai et al. 2009; Xu et al. 2014).  77 

 78 

Diverse lifestyles, including saprotrophic, necrotrophic, hemibiotrophic and biotrophic are present in 79 

Sordariomycetes, all of which represent distinct survival strategies evolved by fungi during their interactions with 80 

their hosts, companions and associated environments (Presti et al. 2015; Boddy 2016; Rai and Agarkar 2016). 81 

Saprotrophs live and feed on non-living organic matter from other organisms, contributing to the global carbon 82 

cycle by breaking down complex organic matter into simpler substances (Hobbie and Horton 2007; Mäkelä et al. 83 

2014). Fungi of necrotrophic, hemibiotrophic or biotrophic lifestyles are important plant pathogens that pose a 84 

serious threat to economically important crops and are responsible for serious losses in quality and yield 85 

(Mapuranga et al. 2022). Necrotrophic fungi have a broad host range, and commonly produce diverse toxic 86 

molecules (e.g., lytic enzymes, metabolites) to kill host cells and subsequently derive nutrients from dead or dying 87 

tissues for growth (van Kan 2006; Mengiste 2012; Singh et al. 2014; Ismaiel and Papenbrock 2015; Newman and 88 

Derbyshire 2020). Biotrophic fungi are obligate parasites, which are completely dependent on the living host to 89 

complete their life cycles and therefore have to maintain host viability (Glazebrook 2005; Delaye et al. 2013). 90 

Hemibiotrophic fungi begin with an early biotrophic phase with their hosts, switching to a necrotrophic lifestyle 91 

after killing the host cells (Mendgen and Hahn 2002; Lee and Rose 2010). Endophytic fungi absorb nutrients from 92 

plant cells without causing visible symptoms of disease, sometimes in return benefiting plant growth via 93 

enhancing the plant’s tolerance to abiotic (e.g., drought and salt) and biotic stresses (e.g., insects and other fungal 94 

pathogens) (Jia et al. 2016; Phurailatpam and Mishra 2020; Fontana et al. 2021; Wu et al. 2021). In accordance 95 

with differences in hosts and substrates, Sordariomycetes are also characterized as plant pathogens, animal 96 

pathogens, insect pathogens and mycoparasites. Some fungi are capable of switching between lifestyles. 97 

Transitions from the endophytic lifestyle to the pathogenic lifestyle and vice versa have been observed in some 98 

important fungal plant pathogens (O'Connell et al. 2012; Rai and Agarkar 2016; Liu et al. 2022).  99 

 100 

Lifestyle-associated genomic traits are a particularly interesting area of research, as pathogenic transitions are 101 

highly relevant to gene gain and loss (Friesen et al. 2006; Spanu et al. 2010). Pyrenophora tritici-repentis 102 

(Pleosporaceae, Pleosporales, Dothideomycetes) becomes highly pathogenic on wheat (Triticum aestivum) by 103 
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obtaining the proteinaceous host-specific toxin ToxA from Stagonospora nodorum (Phaeosphaeriaceae, 104 

Pleosporales, Dothideomycetes), demonstrating that the transfer of the virulence gene is an essential source for 105 

the emergence of new pathogens (Friesen et al. 2006). An exclusively biotrophic lifestyle is related to gene losses 106 

of primary and secondary metabolic enzymes (Spanu et al. 2010). The convergent losses of decay-related genes 107 

and the expansion of symbiosis-related genes are the genetic bases for the evolution of mycorrhizal habits (Kohler 108 

et al. 2015). Transposable elements (TEs), also known as “jumping genes,” are crucial genetic factors in both 109 

eukaryotic and prokaryotic genomes that shape the evolution of fungal genomes by altering genome plasticity and 110 

architecture, interrupting functional genes, generating novel genes or mediating horizontal gene transfer (Lorrain 111 

et al. 2021). TEs are critical contributors to fungal pathogenicity by facilitating the diversification of effector genes 112 

and even generating novel effector genes (Fouché et al. 2019). In addition, plant symbionts tend to have more TEs 113 

than animal parasites (Muszewska et al. 2017a). 114 

  115 

To survive inside a host or a specific environment, fungi must be equipped with the necessary functional proteins 116 

to absorb nutrients or to overcome physical and chemical barriers posed by hosts (de Jonge et al. 2011; McCotter 117 

et al. 2016; Zeng et al. 2018). The term secretome refers to the complete secretory proteins of an organism, which 118 

are released outside the cells to decay substrates and interact with microbes, plants, animals, insects, and other 119 

fungi (Eastwood et al. 2011; Frey-Klett et al. 2011; Shang et al. 2015). The fungal secretome comprises various 120 

functional groups of protein, including carbohydrate-active enzymes (CAZymes), proteases, lipases, small-121 

secreted proteins (SSPs) and other secretory proteins of unknown functions (Alfaro et al. 2014). Many 122 

comparative genomic studies have focused on fungal CAZymes, searching for possible connections between 123 

compositions of CAZymes and fungal lifestyles (Kubicek et al. 2014; Pellegrin et al. 2015; Kim et al. 2016; Knapp 124 

et al. 2018; Chang et al. 2022). CAZymes include many plant cell wall-degrading enzymes (PCWDEs), and their 125 

composition and abundance are often linked to a saprotrophic lifestyle, while this view has been challenged on 126 

the grounds that the highest number of CAZymes have been observed in plant pathogenic fungi (Zhao et al. 2013; 127 

Kubicek et al. 2014). Fungal effectors, also called virulence factors encoded by avirulence genes, are potent 128 

weapons used by fungal pathogens against plant and animal immunity (Stergiopoulos and Wit 2009; Kale and 129 

Tyler 2011). Most effectors are secreting cysteine-rich proteins and play an essential role in host-fungal 130 

interactions by suppressing host defense responses for promoting host colonization (Lu and Edwards 2016; Wang 131 

et al. 2020; Dasari et al. 2018). Some effectors are essential genetic factors in determining host species specificity, 132 

which help identify potential pathogenic fungi to certain plants (Li et al. 2020). Effector repositories have been 133 

considered to be potential markers for differentiating pathogenic and endophytic strains in the Fusarium 134 

oxysporum species complex (Czislowski et al. 2021).  135 

   136 

Machine learning is a branch of artificial intelligence that is commonly subclassified into unsupervised and 137 

supervised methods (Deo 2015). The former is used to find naturally occurring connections or groupings within 138 

observations based on little knowledge or even no background information regarding the outcome of the results 139 

(Camacho et al. 2018). This is contrasted with the supervised method, which is the construction and optimization 140 

of model-based and well-constructed training data with observations and corresponding results (Bzdok et al. 2018). 141 

The model is then utilized to predict results of future instances. Both methods have been widely used for 142 

unearthing hidden information in big data or complex biological data (Ma et al. 2014; Xu and Jackson 2019). 143 

There are many applications of machine learning in species delimitation, such as in, successfully using 144 

unsupervised machine learning methods to assign arachnid taxa into species (Derkarabetian et al. 2019), 145 

developing a machine learning species identifier for the genus Hebeloma (Bartlett et al. 2022) and predicting 146 

fungal lifestyles of Dothideomycetes (Haridas et al. 2020). Moreover, machine learning has been used to 147 
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characterize and classify images of clinically and agriculturally important fungi, which avoids potentially 148 

subjective differences, reduces identification time, and lowers the costs (Zieliński et al. 2020; Tongcham et al. 149 

2020).  150 

 151 

To mine the association patterns of genomic traits and phylogeny and lifestyles, and further determine whether it 152 

is possible to predict lifestyles using machine learning approaches, we carried out a systematic bioinformatic 153 

analysis based on 638 Sordariomycete genomes. Firstly, we determined whether the sequencing technologies 154 

significantly influence genome assemblies and TE abundance, which exists theoretically and practically but has 155 

never been discussed in previous studies. Secondly, based on the study of Fijarczyk et al. (2022), we not only 156 

compared the basic genomic traits across multiple lifestyles but also the functional protein groups. Furthermore, 157 

we took the influence from phylogeny into account, and compared the difference of numerical genomic traits at 158 

different taxonomic levels for determining lifestyle and phylogeny, which is the most important determinant in 159 

shaping genomic traits. It is also an answer to resolve the long-standing controversy: whether differences in the 160 

secreted proteins reflect phylogeny or pathogenicity (Pellegrin et al. 2015). Finally, we explored whether it is 161 

possible to predict fungal lifestyles using machine learning algorithms. 162 

 163 

Materials and Methods 164 

 165 

Genome collection 166 

 167 

The taxonomic scheme of the class Sordariomycetes has been updated continuously (Maharachchikumbura et al. 168 

2015; Hyde et al. 2020; Wijayawardene et al. 2022), whereas the NCBI taxonomy database 169 

(https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=147550) does not keep up with the updates, 170 

and some genomes were assigned incorrect lineage information (Shen et al. 2020; Liu et al. 2022). To ensure the 171 

correctness of the taxonomic positions of selected genomes, a taxonomic framework table composed of all generic 172 

names in Sordariomycetes and the parent lineage information, was prepared according to the taxonomic outline 173 

(Wijayawardene et al. 2022), and some changes were added in keeping with the latest literature (Crous et al. 2021; 174 

Sun et al. 2021, Magyar et al. 2022, Sugita & Tanaka 2022). We used the “Ascomycota” as the search term in 175 

NCBI’s Genome Browser (https://www.ncbi.nlm.nih.gov/data-hub/genome/?taxon=4890, 12 August 2022) to 176 

obtain all records of Ascomycota genomes, and then a table, including assembly accession, organism name, strain 177 

identifiers, assemble level, and release date, was downloaded. Only records of the Sordariomycetes genome were 178 

retained according to the generic names, and the lineage information of the genus was also integrated into the 179 

table. These genomes were downloaded via NCBI command line tool datasets. Besides, we collected several 180 

genomes from JGI MycoCosm (Grigoriev et al. 2013) with written permission. More details, such as lifestyles, 181 

sources, and publication records, were determined by tracing the original literature, the sample details, and the 182 

description of the corresponding BioProject records. Strains isolated from soil were marked as saprotrophs. If the 183 

strains have two observed lifestyles, only one lifestyle was used as the training data, and the other lifestyle was 184 

used to check the predictions. For a small number of strains from certain habits or undetermined sources, we noted 185 

them according to the submitter’s description or as “Undetermined” in Allantophomopsis lycopodina ATCC 66958 186 

(Leotiomycetes) was selected as the outgroup.  187 

 188 

Assessment of genome completeness 189 

 190 

Assessment of genome quality is the primary step in genomic studies, which is important to recognize potential 191 
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issues in subsequent analysis (Smits 2019). Benchmarking Universal Single-Copy Orthologs (BUSCO) is an ideal 192 

dataset for quantifying genome completeness (Simão et al. 2015) and conducting genome-scale phylogenetic 193 

inference (Shen et al. 2018; Shen et al. 2020; Manni et al. 2021). Here, we used BUSCO version 5.2.2 (Manni et 194 

al. 2021) with the ascomycota_odb10 database comprising 1,706 reference genes to assess the completeness of 195 

the genome assemblies. Only genomes with BUSCO gene content larger than 80% were retained for subsequent 196 

analyses. 197 

 198 

Phylogenetic inference 199 

 200 

The corresponding protein sequences of single-copy orthologs resulting from the BUSCO analysis were extracted 201 

and assembled into a single-locus dataset to conduct phylogenetic analysis. Each locus dataset was aligned using 202 

MAFFT version 7.310 (Katoh et al. 2002) with options “--auto --maxiterate 1000” that allow the program 203 

automatically to determine the approximate refinement strategy and conduct iterative refinement at most 1,000 204 

times. Poorly aligned regions were removed using trimAl version 1.4 with the option “-gappyout”, and the 205 

alignments with a length shorter than 100 were deleted. ModelFinder (Kalyaanamoorthy et al. 2017) implemented 206 

in IQ-TREE2 (Minh et al. 2020) was used to choose the best-fit evolution model of each alignment based on the 207 

Bayesian Information Criterion (BIC). All single-locus alignments were concatenated into a supermatrix using an 208 

in-house python script. A single evolution model was determined by the occurrence and used in concatenation-209 

based phylogenetic analyses. Maximum-likelihood analysis was conducted using IQ-TREE2 with 1000 bootstrap 210 

replicates of the SH-like approximate likelihood ratio test (SH-aLRT) (Guindon et al. 2010) and 1000 bootstrap 211 

replicates of ultrafast bootstrap approximation (UFBoot) (Hoang et al. 2017) to estimate the reliability of each 212 

internal branch. The strain Allantophomopsis lycopodina ATCC 66958 served as an outgroup to root the phylogeny. 213 

 214 

Identification and analysis of repetitive elements 215 

 216 

A de novo library of repeat consensus sequences was generated for each genome using RepeatModeler version 217 

2.0.2 with search engine NCBI-RMBLAST version 2.11.0+. Next, repetitive sequences in genomes were 218 

identified and soft-masked using RepeatMasker version 4.1.2 based on three repeat libraries including the de novo 219 

library, Dfam 2.0 (Hubley et al. 2015), and the Repbase-derived library (20181026) (Bao et al. 2015). The 220 

abundance of transposable element (TE) categories was summarized using an in-house python script, and further 221 

visualized using the package ggplot2 in R. 222 

 223 

Recognition the influence of sequencing strategies 224 

 225 

In this study, the selected genomes mainly were generated from second- and third-generation sequencing 226 

technologies. Given their differences in sequencing read length, we had to consider the impact of sequencing 227 

technology on the genome, especially in the genome completeness and TE sizes. Therefore, we first excluded the 228 

only one genome generated from the first-generation sequencing technology (Sanger sequencing), and divided 229 

the other genomes into two groups according their sequencing strategies. If the genome was generated using only 230 

the second-generation sequencing technologies, or with Sanger sequencing for improvement, we marked the 231 

sequencing strategy of the genome as second-generation sequencing strategy. If the genome was generated using 232 

only the third-generation sequencing technologies (Single-molecule real-time sequencing or Nanopore 233 

sequencing), or with second-generation sequencing for improvement, we marked the sequencing strategy of the 234 

genome as third-generation sequencing strategy. Comparative analyses of the completeness, continuity and TE 235 
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sizes of genomes generated from both different sequencing strategies, were conducted to figure out whether 236 

sequencing strategies impact the number of genes and the abundance of TEs. We also took the taxonomic position 237 

of the compared groups into consideration, to decrease the influence of phylogeny to the comparative results. 238 

 239 

Gene prediction and functional annotation 240 

 241 

Transfer RNA (tRNA) genes in each soft-masked genome were annotated using tRNAscan-SE version 2.0.9 with 242 

default parameters (Chan et al. 2021). Models of protein-coding genes were predicted using the BRAKER2 243 

pipeline (Brůna et al. 2021), which combines robust features of GeneMark-EP+ (Brůna et al. 2020) and 244 

AUGUSTUS (Stanke et al. 2008). To improve gene prediction accuracy, fungal proteins with annotation scores 245 

above 3 in UniProtKB (Consortium 2020) were downloaded and further reduced by removing redundant protein 246 

sequences using CD-HIT version 4.8.1 (Fu et al. 2012). Sequence identity and alignment coverage were set to 0.8 247 

to retain the representative sequences. Finally, a total of 95,251 protein sequences were used as external evidence 248 

for gene structure prediction. Protein hints of homologous regions in each genome were produced using ProtHint 249 

version 2.6.0 (Brůna et al. 2020) and further used in the BRAKER2 pipeline. Functional annotation, orthology 250 

assignments and domain prediction of all predicted proteins were conducted using eggNOG-mapper version 2.1.3 251 

(Cantalapiedra et al. 2021). 252 

 253 

Identification of secreted proteins and effectors 254 

 255 

Secreted proteins were identified using a widely used pipeline described previously (Pellegrin et al. 2015; 256 

Miyauchi et al. 2020; Mesny et al. 2021). In brief, proteins with signal peptides were identified as candidate-257 

secreted proteins using SignalP version 4.1 with default parameters (Petersen et al. 2011). Then, membrane 258 

proteins were removed using TMHMM version 2.0 (Melén et al. 2003) by detecting the presence of the 259 

transmembrane helix. Glycosylphosphatidylinositol (GPI)-anchored proteins were removed using NetGPI version 260 

1.1 (Gíslason et al. 2021) online by detecting GPI-anchoring signals, and proteins residing in the endoplasmic 261 

reticulum lumen were removed using PS-SCAN (Nielsen et al. 1997) by detecting KDEL motif (Lys-Asp-Glu-262 

Leu) in the C-terminal region. Two subcellular localization prediction tools, WoLF PSORT (Horton et al. 2007) 263 

and TargetP version 2.0 (Emanuelsson et al. 2007), were used to confirm that only proteins assigned extracellular 264 

tags were identified as secreted proteins.  265 

 266 

Secreted CAZymes including auxiliary redox (AA) enzyme families were identified using run_dbCAN version 267 

3.0.7 (Zhang et al. 2018). Proteases and lipases were identified by querying the MEROPS database (Rawlings et 268 

al. 2017) and LED database release 3.0 (http://www.led.uni-stuttgart.de), respectively, using BLASTp with a cut-269 

off e-value of 1e-5. Other secreted proteins shorter than 300 amino acids were identified as SSPs and the remaining 270 

secreted proteins were marked as OTHER. Secreted effectors were identified using EffectorP version 3.0 271 

(Sperschneider and Dodds 2022) with the option of fungal mode. There was no intersection between each group. 272 

Furthermore, we followed the grouping criteria in the study of Mesny et al. (2021), and further classified secreted 273 

CAZymes into the plant cell wall-degrading enzymes (PCWDEs), fungal cell wall-degrading enzymes (FCWDEs), 274 

Cellulose, Hemicellulose, Lignin, Pectin, Peptidoglycan, Mannan, Glucan and Sucrose.  275 

 276 

Analyses of numerical traits 277 

 278 
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To explore which of the basic components of the genomes and the functional proteins determine the lifestyle, we 279 

classified the numerical traits of genome assemblies into two categories and constructed two numerical matrices: 280 

basic genomic features and functional protein features. The former includes 25 numerical features: genome size 281 

with TEs, genome size without TEs, TE size, GC content of genomes, GC content of genome without TE, GC 282 

content of TE, the number of genes, the number of tRNAs, the number of exons, the number of introns, the average 283 

length of genes, the average length of tRNAs, the average length of exons, the average length of introns, the 284 

average length of intergenic regions, the minimum length of genes, the minimum length of tRNAs, the minimum 285 

length of exons, the minimum length of introns, the minimum length of intergenic regions, the maximum length 286 

of genes, the maximum length of tRNAs, the maximum length of exons, the maximum of introns and the 287 

maximum length of intergenic regions. The latter includes 24 numerical features: total secreted proteins, the 288 

effectors, proteases, lipases, SSPs, CAZymes, GHs, GTs, PLs, CEs, AAs, CBMs, PCWDEs, FCWDEs, cellulose-, 289 

hemicellulose-, lignin-, pectin-, peptidoglycan-, mannan-, glucan-, chitin-, sucrose-degrading enzymes and other 290 

functional proteins. The numbers of these features were summarized using in-house python scripts.  291 

 292 

Correlations were calculated for the two main categories, and details were characterized in the captions of the 293 

corresponding figures. To make the comparative analysis more reliable, we excluded the groups with fewer than 294 

10 genomes. Overall comparisons were conducted to detect changes in these numerical traits across taxonomic 295 

ranks and lifestyles. Post hoc pairwise multiple comparisons were performed to discover how many pairwise 296 

comparisons were significantly different based on different grouping criteria and to explore which features were 297 

useful in differentiating taxonomic groups and lifestyles. 298 

 299 

Predicting lifestyles using machine learning algorithms 300 

 301 

Six commonly used machine learning algorithms for multi-class classification implemented in the python library 302 

scikit-learn (https://scikit-learn.org): Random Forests (abbreviated as RF), Decision Tree (DT), Naive Bayes 303 

(Bayes), Support Vector Machine (SVM), Logistic Regression (LR) and K-Nearest Neighbors (KNN). These 304 

algorithms were used to predict fungal lifestyles, and the predictive accuracies of these algorithms were compared 305 

to determine the best classifier. Three matrices including the basic genomic features (25 numerical traits), 306 

functional protein groups (24 numerical traits), and combined dataset of them (49 numerical traits) were used 307 

during the training and prediction stages for selecting the most suitable dataset. The genomes with undetermined 308 

lifestyles were excluded from the datasets. First, we standardized the values of features using the function 309 

StandardScaler. Next, features with low variances were detected and removed using the function 310 

VarianceThreshold with default parameters. Then, the dataset was split into the train (70%) and test subsets (30%) 311 

using the function train_test_split, and parameters of the best suitable estimator were determined using the 312 

function GridSearchCV. The performance of the estimator was evaluated using the function cross_val_score with 313 

5 duplicates based on the test subset. Finally, we used the best estimator to predict the lifestyles of unlabeled 314 

genomes. 315 

 316 

Results 317 

 318 

Genome information 319 

 320 

A total of 638 representative genomes from 5 subclasses, 17 orders, 50 families, 147 genera and 614 species, were 321 

selected in this study. More detailed information is described in Supporting Information Table S1. The most 322 
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numerous subclass is Hypocreomycetidae, which occupies 73.20% (n=467) of the total genomes (Table S2: sheet 323 

subclass-count). The 10 most-numerous orders are Hypocreales, Glomerellales, Miccroascales, Ophiostomatales, 324 

Diaporthales, Xylariales, Sordariales, Amphisphaeriales, Magnaporthales, and Coniochaetales in descending 325 

order, the number of which range from 3 to 363 (Fig. 1, Table S2: sheet order-count). The other six orders contain 326 

only one genome except for three genomes that have not yet been classified in any of the established orders with 327 

certainty. Through a comprehensive survey of scientific literature and related databases, we indirectly obtained 328 

lifestyle descriptions of most strains (86.99%, n=555) and further classified these strains into eight groups by their 329 

host and tropic mode (Table S2: sheet lifestyle-count). We marked the strains isolated from diseased plant tissues 330 

as plant pathogens, from decaying woods as saprobes, from insects as entomopathogens, from fungi as 331 

mycoparasite, from plant tissues without disease symptoms as endophytes and from diseased human tissues as 332 

human pathogens. Moreover, four carnivorous fungi that feed on nematodes were marked as nematophagous fungi, 333 

and other genomes that lacked descriptive information regarding lifestyle were marked as “Undetermined”. The 334 

most common lifestyle is plant pathogen, which occupies 58.31% (n=372) of the total genomes, followed by 335 

saprotrophs at 12.38% (n=79), entomopathogens at 6.27% (n=40), mycoparasites at 3.61% (n=23), endophytes of 336 

3.29% (n=21), human pathogens of 2.51% (n=16) and nematophagous fungi of 0.63% (n=4). The remaining 83 337 

genomes were temporarily marked as “Undetermined”. We also traced the sequencing technologies of these 338 

genomes (Fig. 1, Table S2: sheet wgs-count), and summarized that 74.92% (n=478) of them were sequenced using 339 

second-generation sequencing technologies, 24.92% (n=159) were sequenced using third-generation sequencing 340 

technologies and only one genome was sequenced using Sanger sequencing technology.  341 

 342 

Lifestyle occurrences in Sordariomycetes groups 343 

 344 

Based on the genome data in this study, seven kinds of lifestyles, viz. plant pathogens, saprotrophs, 345 

entomopathogens, mycoparasites, endophytes, human pathogens and nematophagous fungi determined across 555 346 

Sordariomycete genomes but with different occurrences at the subclass, order and family levels (Fig. 1, Table S2: 347 

sheet subclass-lifestyle). More diverse lifestyle modes were observed in the more fully sampled groups. For 348 

instance, the most-sampled subclasses Hypocreomycetidae and the subordinate order Hypocreales comprise all 349 

seven lifestyles, whereas the subclass Sordariomycetidae and Xylariomycetidae only comprise four and three 350 

kinds of lifestyles, respectively. At the order level (Table S2: sheet order-lifestyle), the order Ophiostomatales 351 

comprise five kinds of lifestyles only inferior to the Hypocreales that includes seven lifestyles. We further compare 352 

the occurrence of lifestyles in these two orders at the family level. The family Ophiostomataceae (Ophiostomatales) 353 

features with pant pathogens; the family Nectriaceae (Hypocreales) features with plant pathogens; the family 354 

Hypocreaceae features with saprotrophs; the family Ophiocordycipitaceae and the family Clavicipitaceae feature 355 

with entomopathogens. We compared the distribution of lifestyles at different taxonomic levels (Table S2: sheets 356 

lifestyle-subclass, lifestyle-order and lifestyle-family). Endophytes, saprotrophs and plant pathogens are present 357 

in four subclasses, followed by human pathogens, present in three subclasses, and entomopathogens and 358 

mycoparasites, present in two subclasses. The insufficient sampling lifestyle of nematophagous fungi is only 359 

present in the subclass Hypocreomycetidae. At the order and family level, plant pathogen is the most common 360 

lifestyle in 11 orders and 29 families, followed by saprotrophs in 9 orders and 19 families, endophytes and in 5 361 

orders and 11 families, and human pathogens in 5 orders and 5 families. 362 

 363 
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 364 

Fig. 1. Maximum likelihood (ML) phylogeny of 638 taxa in the class Sordariomycetes. The concatenation-365 

based ML phylogeny (lnL = − 134,234,602.321) was reconstructed based on an amino acid dataset of 1,124 366 

BUSCO genes (total of 884,972 sites) under the LG + G4 evolution model. The sequencing strategies are shown 367 

in different shapes (when multiple sequencing strategies were conducted for generating the genomes, we just 368 

marked the sequencing strategy by the most advanced technology). Lifestyles are indicated using different fill 369 

colors. Guanine-cytosine (GC) content of the genome and genome without transposable elements (TEs) are 370 

indicated by a line chart. Genome size and TE sizes are indicated using stacked bar charts. This figure was plotted 371 

using the packages ggtree version 3.4.4 (Yu et al. 2017) and ggtreeeExtra version 1.6.1 (Xu et al. 2021) in R (R 372 

Core Team 2022), with the dataset provided in Table S1. 373 

 374 

Influence of sequencing technologies on TE size 375 

 376 
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The genomes were generated from first-generation, second-generation, and third-generation sequencing platforms, 377 

which account for 0.16% (n=1), 74.92% (n=478), and 24.92% (n=159) of the total number of genomes. To 378 

recognize the potential influences of sequencing technologies on subsequent numerical analysis, we compared the 379 

completeness, continuity, and TE sizes of genomes generated from second- and third-generation sequencing 380 

technologies (Table S3).There is no significant difference (p = 0.08) in BUSCO completeness (Fig. 2a), however, 381 

we observed significant differences in the number of contig/scaffold (Fig. 2b, p < 2.2e-16) and the N50 value (Fig. 382 

2c, p < 2.2e-16), which suggests that the genomes generated from third-generation technologies are better in 383 

genomic continuity than that generated second-generation sequencing technologies. We also investigated whether 384 

the sequencing technologies influence the TE size, and found that the genomes generated from third-generation 385 

sequencing technologies have a larger size of TEs than second-generation sequencing technologies (Fig. 2d). We 386 

compared TE size between the two well-sampled families and the significant differences were also observed in 387 

Glomerellaceae genomes (Fig. 2e, p = 0.0019) and Nectriaceae genomes (Fig. 2f, p =6.1e-06). Due to the non-388 

negligible impact of sequencing technology on TE size, we did not explore further the relationships between 389 

lifestyles and the abundance of TEs. The abundance of TEs is provided in Table S1 and visualized in Fig. S1.         390 

 391 

 392 

Fig. 2 Comparative analyses of genome completeness, continuities, and TE sizes of genomes generated by 393 

second- (2nd) and third-generation (3rd) sequencing strategies. a Bar plot of BUSCO completeness to 394 

represent the genome completeness; b, c Bar plots of the number of contigs/scaffolds and the value of N50 to 395 

represent the continuities. N50 is the shortest contig length that needs to be included for covering 50% of the 396 

genome, which is a measure to indicate the quality of assembled genomes that are fragmented in contigs of 397 

different lengths. The larger number of contigs/scaffolds means a more fragmented genome. The larger N50 value 398 

means a more contiguous genome. d–f Bar plots of TE size at the class and family levels to present the influence 399 

of sequencing technologies on TE size. Shapiro-Wilk test was conducted using the function shapiro.test (the 400 
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package stats) to check whether the compared datasets follow a normal distribution, and the results suggested that 401 

these datasets are not normally distributed. Thus, Wilcoxon Rank Sum and Signed Rank Tests were conducted 402 

using the function stat_compare_means (the package ggpubr) to test whether the compared datasets are 403 

significantly different (p≤ 0.05). All bar plots were plotted using the package ggpubr. For visualization, a small 404 

number of data points above 2,000 in subfigure b, data points above 8 Mb in subfigure c, and data points above 405 

10 Mb in subfigure d and e, are not displayed. The input dataset is given in Table S1, and all resulting tables are 406 

given in Table S3. Statistical analyses and visualization were done in R (R Core Team 2022). 407 

 408 

Variations of basic genomic features 409 

 410 

We counted a total of 25 basic genomic features, which are summarized in Table S1. Results of correlation 411 

analyses among these features suggested that some features are highly correlated (Fig. 3, Table S4). Genome size 412 

is positively correlated with TE size with a Pearson’s correlation coefficient of 0.63, which is smaller than its 413 

correlation coefficient with the genome size without TEs (r = 0.86), suggesting that the TEs can increase the 414 

genome size but not the dominant factor. GC content is positively correlated to the GC content without TEs (r = 415 

0.85) but negatively related to the TE size (r = -0.46). In addition, GC content with TEs or without TEs is 416 

influenced by TE size, the larger TE size caused the larger difference between them, suggesting that TEs decrease 417 

the GC content of genomes. Genome size without TE is positively correlated to the number of genes (r = 0.91), 418 

the number of exons (r = 0.90), and the number of introns (r = 0.88). The latter two features, exons, and introns 419 

are important structural components of genes, the numbers of which reasonably displayed high correlations with 420 

the number of genes (r = 0.97; r = 0.93). The average length of genes is correlated to the average length of introns 421 

(r = 0.78) and the exons (r = 0.48), indicating that changes in intron length are the main cause of the variation of 422 

gene length compared to the exon. TE size is positively correlated to the average and maximum lengths of 423 

intergenic regions (r = 0.60; r = 0.47), but not displays significant correlations with gene structures including gene 424 

length, exon length, and intron length, suggesting that TEs are the main factor to change the distance between 425 

genes without significant influence on the gene structures. The minimum and maximum length of multiple features 426 

(genes, intergenic regions, introns, exons) exhibit relatively low correlation with other features, or correlations are 427 

not significant, except for the maximum length and the average length of intergenic regions (r = 0.70), the 428 

maximum length and the average length of introns (r = 0.6) and the minimum length of introns and genes (r = 429 

0.7). Overall, most basic genomic features display a low correlation with each other, suggesting some of which 430 

are stable and independent in evolution.  431 

 432 

We also compared the group means of these 25 genomic features over all groups of different taxonomic ranks and 433 

lifestyles (Table S5). We observed overall statistically significant differences in most genomic features (22/25) at 434 

the subclass level, excluding the minimum length of exons, TE sizes, and the minimum length of tRNAs (Table 435 

S5: sheet subclass). The minimum length of exons is the only feature that does not show a significant difference 436 

at the order level (Table S5: sheet order). And at the family, all features display significant differences (Table S5: 437 

sheet family). Considering the groups with different lifestyles, there are 6 genomic features without significant 438 

difference (Table S5: sheet lifestyle), which are the minimum length of exons, the average length of intergenic 439 

regions, the minimum length of intergenic regions, the size of TEs, the GC content of TEs and the maximum 440 

length of tRNAs. In paired comparison analysis (Fig. 4), we included 4 subclasses Diaporthomycetidae, 441 

Hypocreomycetidae, Sordariomycetidae and Xylariomycetidae, which formed 6 pairwise comparisons, 5 of which 442 

are significantly different in most of the features (Table S5: sheet pairwise-subclass). Specially, the number of 443 

genes and the number of exons display the most powerful resolution to differentiating the taxonomic groups at 444 
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the subclass level. At the order level (36 pairwise comparisons in total) and family level (91 pairwise comparisons 445 

in total), we observed a clear downward trend of significant differences, suggesting that all features lack 446 

resolutions at lower taxonomic levels (Table S5: sheets pairwise-order and pairwise-family). However, fairly low 447 

proportions of significantly different comparisons (15 pairwise comparisons in total) were observed across all 448 

features in the groups with different lifestyles (Table S5: sheet pairwise-lifestyle). Moreover, clustering analysis 449 

shows that several features (TE size, the minimum length of tRNAs, the minimum length of exon, and the 450 

minimum length of gene) display little usefulness in distinguishing different taxonomic groups, and most features 451 

are useless in differentiating different lifestyles. 452 

 453 

 454 

Fig. 3 Correlation analysis of 25 basic genomic features. Ladder heatmap of Pearson correlation coefficients 455 

of all pairwise genomic features. The colors and values in small squares indicate the degree of positive correlation 456 

(red) or negative correlation (blue). No significant correlated comparisons (p > 0.05) were displayed in white and 457 

blank squares. Pearson correlation coefficients were calculated using the function cor (the package stats), and the 458 

significance test was conducted using the function cor.mtest (the package corrplot). The figure was plotted using 459 

the package corrplot with the resulting datasets in Table S4. Values of these 25 features are provided in Table S1. 460 

 461 
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Although, not all features show strong discrimination in distinguishing one group from the other groups, a high 462 

proportion of significant differences of some genomic features was observed in specified comparisons. For 463 

instance, at the subclass level (Table S5: sheet class-class), there are 18, 17, 15, 15 and 15 significantly different 464 

features present in the pairwise comparisons of Hypocreomycetidae-Xylariomycetidae, Hypocreomycetidae-465 

Sordariomycetidae, Diaporthomycetidae-Hypocreomycetidae, Diaporthomycetidae-Xylariomycetidae and 466 

Sordariomycetidae-Xylariomycetidae. Likewise, a high proportion of some features also were observed at the 467 

Order and Family levels (Table S5: sheets order-order and family-family). These results suggest that some features 468 

are useful in differentiating specified taxonomic groups, especially in phylogenetic distant comparisons. As for 469 

lifestyles, the largest difference in genomic features was only observed in the comparisons of entomopathogens-470 

plant pathogens (14/25), followed by entomopathogens-endophytes (10/25), and the rest of comparisons display 471 

no difference or very small differences, especially in the comparisons of endophytes-saprotrophs (0/25, 472 

entomopathogens-mycoparasites (0/25), mycoparasites-saprotrophs (0/25), endophytes-mycoparasites (1/25), 473 

human pathogens-mycoparasites (1/25), endophytes-saprotrophs, human pathogens-plant pathogens (1/25), and 474 

human pathogens-saprotrophs (1/25) (Table S4: sheet lifestyle-lifestyle). It suggests that based on these basic 475 

genomic features it is difficult to differentiate compared lifestyles. In another word, we could not correctly assign 476 

a lifestyle label to a new taxon with very similar genomic features, to endophytes, saprotrophs, mycoparasites and 477 

entomopathogens. 478 

 479 

 480 

Fig. 4 Resolution powers of 25 basic genomic features in differentiating different taxonomic groups and 481 

lifestyles. Stacked bar plots of the number of significantly (orange; p <= 0.05) and non-significantly (green; p > 482 

0.05) different comparisons across all features based on their taxonomic ranks and lifestyles. The cluster analysis 483 

was performed using the function dist (the package stats) with the dataset in Table S4 sheet: clustering-matrix to 484 
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obtain a Euclidean distance matrix, then using the function hclust (the package stats) to cluster these features with 485 

the “complete” agglomeration method. All datasets are given in corresponding sheets in Table S5. 486 

 487 

Overview of functional protein groups 488 

 489 

A total of 24 functional protein groups were summarized in Table S1 and visualized in Fig. S2. To explore the 490 

correlation between the number of the proteome and the number of each functional protein group we include the 491 

feature of proteomes, which is equivalent to the number of protein-coding genes in the last part during correlation 492 

analysis (Fig. 5; Table S6). The result shows that 66.67% (16/24) of protein groups are highly positively correlated 493 

(r > 0.6) with the total number of the proteome. The main subgroups of the secretome, the number of CAZymes, 494 

protease, lipase, SSPs, secreted effectors and other functional proteins are highly positively correlated with the 495 

total number of secretomes with the Pearson correlation coefficient of 0.95, 0.93, 0.86, 0.87, 0.96 and 0.97, 496 

respectively. The six subgroups of CAZymes display varying degrees of correlation with the total number of 497 

CAZymes. The numbers of AAs, GHs, CEs and PLs display high correlation with the Pearson correlation 498 

coefficient of 0.97, 0.97, 0.88 and 0.88, respectively. The number of CBMs displays a relatively high correlation 499 

(r = 0.57) with CAZymes, whereas the GTs display a low correlation (r = 0.29) with CAZymes. As for the more 500 

specified functional subgroups of CAZymes, the numbers of PCWDEs, pectin-degrading enzymes, hemicellulose-501 

degrading enzymes, and cellulose-degrading enzymes, are highly correlated with the total number of CAZymes 502 

with the Pearson correlation coefficients of 0.97, 0.90, 0.89 and 0.87, respectively, followed by lignin-degrading 503 

enzymes and glucan-degrading enzymes with relatively high correlation coefficients of 0.54 and 0.51. The 504 

numbers of FCWDEs, chitin-degrading enzymes and mannan-degrading enzymes display relatively low 505 

correlation with CAZymes, the correlation coefficients of which are 0.41, 0.31 and 0.22 respectively, and no 506 

significant correlation was observed between peptidoglycan-degrading enzymes and CAZymes. We also noticed 507 

the high correlations between several specified functional subgroups of CAZymes, such as FCWDEs and chitin-508 

degrading enzymes with correlation coefficients of 0.9, FCWDEs and glucan-degrading enzymes with correlation 509 

coefficients of 0.82, which are mainly due to the overlapping functional proteins (Table S6). Compared with the 510 

correlation matrix of genomic features (Fig. 3), most functional proteins are more stable in number, showing a 511 

trend of co-evolution except for mannan-degrading enzymes, GTs, and peptidoglycan-degrading enzymes.  512 

 513 

The discrimination of these 24 functional protein groups was visualized by comparing the numbers of significantly 514 

different pairwise comparisons and not significantly different pairwise comparisons (Fig. 6, Table S7). Compared 515 

with the discrimination of 25 basic genomic features, clear increases in functional protein groups are observed at 516 

the taxonomic levels and lifestyles. At the subclass level, more than half (15/24) of these protein groups are 517 

powerful in differentiating subclasses (n > 3, TableS7: sheet cluster-matrix), especially the number of CBMs and 518 

mannan-degrading enzymes with 100% resolution (Table S7: sheet pairwise-subclass). However, CEs, 519 

hemicellulose-degrading enzymes and PCWDEs display very poor resolution, especially the latter two. At the 520 

order and family levels (Table S7: sheets pairwise-order and pairwise-family), the numbers of significantly 521 

different pairwise comparisons increase with the total number of pairwise comparisons, but the proportion of 522 

significantly different pairwise comparisons for each protein group decreases, most notably in CBMs and mannan-523 

degrading enzymes. Although the numbers of PCWDEs and hemicellulose-degrading enzymes are useless in 524 

differentiating subclasses, we notice that PCWDEs can distinguish more than half of the pairwise comparisons at 525 

the order level (23/36) and the family level (48/91), and hemicellulose-degrading enzymes can distinguish more 526 

than half of the pairwise comparisons at the order level (19/36) and nearly half at the family level (39/91). On the 527 

subject of lifestyles (Table S7: sheet pairwise-lifestyle), we observed clear drops in the proportion of significantly 528 
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different pairwise comparisons for some protein groups, and also noticed some increased proportions, such as the 529 

glucan-, cellulose- and hemicellulose-degrading enzymes. 530 

 531 

 532 

Fig. 5 Correlation analysis of 24 functional protein groups and proteomes. Ladder heatmap of Pearson 533 

correlation coefficients of all pairwise genomic features. The colors and values in small squares indicate the degree 534 

of positive correlation (red) or negative correlation (blue). No significant correlated comparisons (p > 0.05) were 535 

displayed in white and blank squares. Pearson correlation coefficients were calculated using the function cor (the 536 

package stats), and the significance test was conducted using the function cor.mtest (the package corrplot). The 537 

figure was plotted using the package corrplot with the resulting datasets in Table S6. Values of these 24 functional 538 

protein groups and the total number of proteomes are provided in Table S1. 539 

 540 

We also counted the number of significantly different protein groups in each pairwise comparison. At the class 541 

level (Table S7: sheets subclass-subclass), the most notable subclass is Xylariomycetidae, which has 17 542 

significantly different protein groups with Diaporthomycetidae, 16 with Hypocreomycetidae and 543 

Sordariomycetidae. The smallest difference is observed in the pairwise comparison of Diaporthomycetidae and 544 
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Sordariomycetidae with 12 significantly different protein groups. In other words, Xylariomycetidae is the easest 545 

to distinguish from other subclasses. At the order level (Table S7: sheet order-order), the most notable order is 546 

Ophiostomatales, which has 22 significantly different protein groups with Glomerellales and Hypocreales, 21 with 547 

Amphisphaeriales, 20 with Diaporthales, 19 with Magnaporthales. The smallest differences are observed in the 548 

pairwise comparisons of Magnaporthales-Amphisphaeriales, and Magnaporthales-Diaporthales. Moreover, 549 

Magnaporthales has only 2 significantly different protein groups with Glomerellales, 4 with Hypocreales and 550 

Xylariales, indicating that it is not easy to distinguish Magnaporthales from the compared orders based on most 551 

functional protein groups. At the family level (Table S7: sheet family-family), the largest number of significantly 552 

different protein groups is 23, which is observed in three pairwise comparisons of Ceratocystidaceae-Nectriaceae, 553 

Glomerellaceae-Ophiostomataceae and Nectriaceae-Ophiostomataceae. Inversely, the smallest number is 1, 554 

which is observed in two pairwise comparisons of Bionectriaceae-Nectriaceae and Clavicipitaceae- 555 

Ophiocordycipitaceae. For lifestyles (Table S7: sheet lifestyle-lifestyle), plant pathogens are the easiest lifestyle 556 

to distinguish from saprotrophs, entomopathogens and mycoparasites, and they have 21, 20, and 17 significantly 557 

different protein groups respectively. At the same time, it is also the most difficult to distinguish from endophytes 558 

because that they only significant difference in the abundance of PCWDEs and peptidoglycan-degrading enzymes. 559 

No significantly different protein group is present in the comparison of endophytes-saprotrophs, indicating that 560 

we cannot differentiate them based on the number of functional protein groups. 561 

 562 

 563 

Fig. 6 Contributions of 24 functional protein groups in differentiating different taxonomic groups and 564 

lifestyles. Stacked bar plots of the number of significantly (orange; p <= 0.05) and non-significantly (green; p > 565 

0.05) different comparisons across all features based on their taxonomic ranks and lifestyles. The cluster analysis 566 
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was performed using the function dist (the package stats) with the dataset in Table S7 sheet: cluster-matrix, to 567 

obtain a Euclidean distance matrix, then using the function hclust (the package stats) to cluster these features with 568 

the “complete” agglomeration method. All datasets are given in corresponding sheets in Table S7. 569 

 570 

Predicting lifestyles using machine learning approaches 571 

 572 

Predictive models of six commonly used machine learning algorithms were trained and optimized based on the 573 

training subsets of three different datasets, and accuracies in predicting fungal lifestyles were compared and 574 

visualized in Fig. 7 (Tables S8). For the dataset of basic genomic features, RF is the best classifier with an average 575 

accuracy of 0.7844, followed by KNN (0.7766), SVM (0.7272), DT (0.6675) and Bayes (0.5688); LR is the worst 576 

with an average accuracy of 0.5221. For the dataset of the functional protein groups, SVM is the best classifier 577 

with an average accuracy of 0.8286, followed by KNN (0.8208), RF (0.8156), DT (0.7065) and Bayes (0.6156); 578 

LR is the worst with an average accuracy of 0.5662. For the combined dataset including a total of 49 numerical 579 

features, KNN is the best classifier with an average accuracy of 0.8260, followed by RF (0.8234), SVM (0.8026), 580 

DT (0.6909) and LR (0.6753); Bayes is the worst with an average accuracy of 0.5766. In terms of machine learning 581 

algorithms, KNN, SVM and RF perform better than LR, Bayes and DT in predictive accuracies across the three 582 

datasets (Fig. 7 a, c, e). Bayes, DT, RF and SVM obtained the highest-average accuracies based on the functional 583 

protein groups, and the other two methods, KNN and LR, were based on the combined datasets. We noticed that 584 

all classifiers obtained the worst-average accuracies based on the basic genomic feature alone, and increased 585 

accuracies were observed based solely on a functional protein dataset or combined dataset (Fig. S3), indicating 586 

that numerical traits of functional protein groups are more useful than basic genomic features for predicting fungal 587 

lifestyles. 588 

 589 

Based on the test subsets, we tested the performance of the three best classifiers, RF for the dataset of basic 590 

genomic features and combined dataset and SVM for the functional protein groups. For the dataset of basic 591 

genomic features (Fig. 7b), we noticed that 99.13% of plant pathogens were assigned the correct lifestyles, 592 

suggesting that RF is reliable for distinguishing plant pathogens from other lifestyles. However, it performed 593 

worse in differentiating endophytes, human pathogens and mycoparasites from other lifestyles. Predictive results 594 

of all endophytes, human pathogens and mycoparasites did not match the assigned lifestyles that we determined 595 

by a literature survey or the genomic descriptions. About half of endophytes (44.44%) were incorrectly predicted 596 

as plant pathogens, and some other genomes were incorrectly recognized as saprotrophs and mycoparasites. Of 597 

mycoparasites, 75% were incorrectly predicted as human pathogens and 25% as saprotrophs. Of human pathogens, 598 

all of them were incorrectly predicted as plant pathogens. As for the other three lifestyles, RF obtained an increased 599 

accuracy. Of entomopathogens, 37.5% were correctly classified, and 50% were incorrectly predicted as plant 600 

pathogens and 12.5% as saprotrophs. Of plant pathogens, 99.13% were correctly classified, and the rest were 601 

incorrectly predicted as saprotrophs (0.87%). Of saprotrophs, 46.15% were correctly predicted as saprotrophs, 602 

42.13 % were incorrectly predicted as plant pathogens, 7.69% as entomopathogens, 3.85% asmycoparasites. 603 

Concerning the dataset of function protein groups (Fig. 7d), we used the SVM algorithm and observed a clear 604 

improvement in differentiating entomopathogens (37.50% to 62.50%), human pathogens (0 to 25%), 605 

mycoparasites (0 to 50%) and saprotrophs (46.15% to 57.69%) from other lifestyles. Compared with RF 606 

predication based on the dataset of genomic features, SVM resulted in the same incorrect results in differentiating 607 

human pathogens, with a similar result for endophytes and slightly decreased accuracy in predicting saprotrophs. 608 

As for the combined dataset (Fig. 7f), the KNN algorithm was used to predict lifestyles, and we observed a clear 609 

improvement in predictive accuracies for endophytes, entomopathogens and human pathogens. 610 
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 611 

Based on the combined dataset, we obtained the highest average accuracy of 0.7325 for the six algorithms. It was 612 

seen that KNN was the best classifier with an average accuracy of 0.8260. Therefore, we used KNN to conduct 613 

the prediction of 83 Sordariomycetes genomes with undetermined lifestyles, and the predicted lifestyles with 614 

probabilities were listed in Table S9. KNN classified these 83 genomes into 5 lifestyles, 1 endophyte, 4 human 615 

pathogens, 4 entomopathogens, 6 saprotrophs, and 68 plant pathogens. We further checked the taxonomic 616 

positions of strains, and only one endophyte is distributed in the family Bionectriaceae; 4 human pathogens in 617 

Sordariaceae;4 entomopathogens in Ophiocordycipitaceae, Ophiostomataceae, Clavicipitaceae and 618 

Cordycipitaceae; 6 saprotrophs in Bionectriaceae, Diatrypaceae, Sordariaceae and Hypoxylaceae; and 68 plant 619 

pathogens in 20 families. We traced the lifestyles of phylogenetically closed groups with predicted genomes, and 620 

most of the observed lifestyles were consistent with our predictions. 621 

 622 

 623 

Fig. 7 Lifestyle predictions using machine learning methods. a Boxplots of predictive accuracies usi624 

ng six machine learning algorithms for predicting fungal lifestyles based on the train subset of the basi625 
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c genomic features. b Confusion matrix, a performance matrix, to evaluate the performance of the best 626 

classifier (RF, average accuracy = 0.7844) in predicting fungal lifestyles based on the test subset of th627 

e basic genomic features. c Predictive accuracies of the six commonly used machine learning algorithm628 

s based on the train subset of the functional protein features. d Confusion matrix of the best classifier 629 

(SVM, average accuracy = 0.8286) in predicting fungal lifestyles based on the test subset of the functi630 

onal protein groups. e Predictive accuracies of the six commonly used machine learning algorithms bas631 

ed on the combined datasets. f Confusion matrix of the best classifier (KNN, average accuracy = 0.82632 

60) in predicting fungal lifestyles based on the test subset of the functional protein groups. For the co633 

nfusion matrix, the diagonal elements show the proportion of correctly classified genomes, while the of634 

f-diagonal elements show the number of misclassified genomes.  635 

 636 

Discussion 637 

 638 

Diverse lifestyles but unbalanced whole genome sequencing  639 

 640 

Sordariomycetes has a large number of available genome sequences for an ascomycetes class in public databases; 641 

however, many of these genomes are restricted to economically important groups such as plant pathogens 642 

(Fusarium, Diaporthe, Calonectria, Claviceps, Collectotrichum), entomopathogens (Cordyceps, Metarhizium, 643 

Ophiocordyceps, Tolypocladium), mycoparasites (Clonostachys), human pathogens (Sporothrix, Sarocladium, 644 

Scedosporium) model organism (Neurospora), and biocontrol and secondary metabolites producers (Trichoderma, 645 

Daldinia, Xylaria). For instance, Hypocreomycetidae includes plant pathogens, entomopathogens, mycoparasites, 646 

human pathogens and biocontrol agents and is responsible for 73.20% of the total Sordariomycete genome used 647 

in this study. However, the Sordariomycetes include other ecologically important saprotrophs, epiphyllous, 648 

hypophyllous, facultative lichenised, fungicolous and extreme inhibiting groups primarily overlooked due to their 649 

economically insignificance. Therefore, the current genomic data are largely incomplete and cannot be used to 650 

make reliable conclusions about the overall lifestyle of Sordariomycetes fungi. Saprobes are the most common 651 

type of fungi, and Sordariomycetes now comprises 195 families, and 171 have a saprobic lifestyle. This is true as 652 

many of these fungi can degrade polymers of varying complexity by releasing extracellular enzymes that break 653 

down plant and animal debris. We suspect that saprobic Sordariomycete families will likely be more than this as 654 

the remaining families are poorly sampled or monotypic. Plant pathogens are the second most abundant lifestyle 655 

in Sordariomycetes, distributed over 93 families. The five largest Sordariomycetes orders, Diaporthales, 656 

Glomerellales, Hypocreales, Microascales and Ophiostomatales, each contain a large number of highly destructive 657 

plant pathogens. These include some of the most important diseases of the cereal (rice, wheat, barley and maize) 658 

ornamental, fruit, vegetable and wild crops (Chang et al. 2018; Talhinhas and Baroncelli 2021; Liu et al. 2022; 659 

Han et al. 2023). Endophytes are distributed over 40 families of Sordariomycetes. There is publishable evidence 660 

that fungal endophytes can switch lifestyles to saprotrophs and pathogens and vice versa (Promputtha et al. 2007; 661 

Promputtha et al. 2010). Human pathogens, entomopathogens, mycoparasites and nematophagous fungi are 662 

distributed over 17, 11, 5 and 2 families of Sordariomycetes, respectively. The least distributed nematophagous 663 

fungi are only present in Hypocreales families Clavicipitaceae and Ophiocordycipitaceae. Their diverse lifestyles 664 

and ability to switch to other life modes and inhibit diverse ecological niches that include extreme environmental 665 

constraints allow Sordariomycetes to adapt and distributed over all ecosystems on earth and to be the second 666 

largest ascomycetes class. 667 

 668 

Influence of sequencing technologies on genome assemblies 669 
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 670 

High-quality genome assemblies are fundamental for genomic studies. Therefore, when we used genomes from 671 

public databases, we were meticulous in checking their quality that was inevitably affected by the methods of 672 

DNA extraction (Nouws et al. 2020), sequencing technologies (Lang et al. 2020; Murigneux et al. 2020) and 673 

assembly algorithms (Miller et al. 2010; Meng et al. 2022). As a user of public genomes, although we cannot 674 

improve genome assemblies by optimizing these steps, recognizing the inaccuracies of genome assemblies 675 

reduces the possibility of drawing incorrect conclusions. Repetitive DNA sequences present technical challenges 676 

for assembly algorithms by bringing in ambiguous alignment during genome assemblies, leading to biases and 677 

errors in final assembly results (Treangen and Salzberg 2012; Tørresen et al. 2019). For instance, fungal ribosomal 678 

RNA genes (rDNA) as multiple-copy segments organized in tandem arrays exist in genomes (Cooper 2000). Each 679 

repeat unit (18S rRNA-internal transcribed spacer 1-5.8S rRNA-internal transcribed spacer 2-28S rRNA-680 

intergenic spacer) is approximately 9kb in length (SONE et al. 2000; Salim et al. 2017), which far exceeds the 681 

read length limit of second-generation sequencing, and the reads generated from second-generation sequencers 682 

cannot span this kind of long repetitive sequence (Treangen and Salzberg 2012). Assembly algorithms, such as 683 

the Greedy strategy, Overlap-Layout-Consensus strategy, and de Bruijn graph strategy, tend to assemble these 684 

highly similar or identical sequences into single, collapsed contig (Treangen and Salzberg 2012). Although third-685 

generation sequencing technologies, also called long-read sequencing technologies, can overcome the read length 686 

limit by producing 20–200 kb reads (Goodwin et al. 2016), the high cost per genome hinders its widespread 687 

application, especially in some fungal species that lack of direct economic interest. Furthermore, our previous 688 

study (Chen et al. 2022) found that second-generation sequencing technologies can provide reliable genome 689 

assemblies for phylogenomic analyses, which focus on protein-coding genes rather than repetitive sequences. In 690 

this study, we included 638 genomes, most of which were generated using second-generation sequencing 691 

technologies (n=478, 74.92%). We set the completeness threshold at 80% to remove the unreliable genomes, and 692 

confirmed that each group included at least 10 genomes during statistical analyses. Hence, we believe that 693 

sequencing strategies did not influence the numerical traits meaningfully.  694 

 695 

TEs are mobile genetic elements that are composed of diverse members, including short interspersed nuclear 696 

elements (SINEs), Helitrons, Alus, endogenous retroviruses (ERVs), DNA transposons and retrotransposons 697 

(Wicker et al. 2007). The ability to move and their repetitive nature make TEs key drivers of genome evolution 698 

(Dhillon et al. 2019; Senft and Macfarlan 2021). Many studies have shown that the expansion of TEs resulted in 699 

a significantly expanded genome in fungal species, such as in Cenococcum geophilum (Peter et al. 2016), 700 

Zymoseptoria tritici (Oggenfuss et al. 2021) and Lactarius species (Lebreton et al. 2022). Large-scale genomic 701 

location analysis of TEs has indicated that most TEs are evolutionarily neutral, but animal-related and pathogenic 702 

fungi include more TEs inserted in genes compared to fungi with other lifestyles (Muszewska et al. 2019). 703 

Kirkland et al. (2018) reported that hAT or Gypsy TEs located within 1kb of protein-coding genes can decrease 704 

the expression of related genes. LTR retrotransposons, a class I transposable element, inserted in the MFS1 705 

promoter region, resulted in MFS1 overexpression and the presence of multidrug resistance phenotype in the 706 

wheat pathogen Zymoseptoria tritici (Omrane et al. 2017). TEs are important and biologically functional repetitive 707 

sequences, the abundance of which in genomes is inevitably affected by sequencing technologies, especially by 708 

second-generation sequencing technologies. In this study, we recognized that TE sizes in the genomes generated 709 

from second-generation sequencing technologies are significantly smaller than those from third-generation 710 

sequencing technologies. We also discovered the GC content of TEs is significantly lower than other regions in 711 

the genomes, and that TE sizes are negatively correlated with the overall GC content of fungal genomes. Hu et al. 712 

(2022) showed that GC content is positively correlated with growth temperature in prokaryotes, and Šmarda et al. 713 
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(2014) reported that increased GC content helps plants adapt to seasonally cold and/or dry climates. Considering 714 

the clear influence of sequencing technologies, the true abundance of TEs in most genomes has been 715 

underestimated in previous studies and in this study. Therefore, instead of providing a more in-depth analysis, we 716 

only compared the abundance of TEs in multiple groups and displayed their diversity in Table S1 and Fig. S2. We 717 

did not observe a significant difference in TE sizes between lifestyles; thus, the underestimated abundance in this 718 

study did not affect our statistical and predicted results. However, future studies related to TEs should take into 719 

account the influence of sequencing technologies. 720 

 721 

Effectors are not a reliable indicator for disease-related fungi but are useful for differentiating specific 722 

lifestyles 723 

 724 

Effectors, important virulence factors secreted by bacteria (Yu et al. 2020), fungi (Stergiopoulos and Wit 2009), 725 

and Oomycetes (Birch et al. 2006), either function in the interaction space between hyphae and host cells or are 726 

transferred into host cells to subvert host immunity. A successful fungal infection with significant disease 727 

symptoms is a complicated process that depends on the result of the battle between the pathogen and its host (GS 728 

1996). When pathogens start to invade a host, the innate immune system is activated by recognizing microbial 729 

invariant molecular patterns (also known as pathogen-associated molecular patterns, PAMPs) (Akira et al. 2006). 730 

In fungi, chitin, the important cell wall component, is one of the main PAMPs, which is recognized by pattern-731 

recognition receptors (PRRs) located in the host membrane (Boller 1995), and further activates important 732 

chemical pathways and specific gene expressions to eliminate pathogens (Macho and Zipfel 2014). The PAMP-733 

triggered immunity (PTI) is the frontline of the plant host’s immune system; if fungi seek to successfully colonize 734 

the host, they must avoid inducing PTI or suppress it. Effectors can suppress PTI, but they also can be captured 735 

by effector-triggered immunity (ETI). Therefore, linking the disease symptoms and effectors or elucidating their 736 

relationships remains a significantly challenging task. We hypothesize that this is why we did not observe a 737 

significantly different abundance in the average number of effectors between plant pathogens (the average number 738 

= 216) and endophytes (the average number = 207) in our analysis. There is limited capacity to validate the 739 

function of effectors in pathogen-host interactions experimentally; accordingly, only a small part of effectors are 740 

well studied in model fungi and economically important fungi (Stergiopoulos and Wit 2009), and many effectors 741 

have been identified in newly sequenced non-model fungal genomes or not economically important genomes 742 

using bioinformatic approaches (Jones et al. 2018). PgtSR1, a novel fungal effector identified by Yin et al. (2019) 743 

from the wheat rust pathogen Puccinia graminis, decreases the abundance of small RNAs by suppressing RNA 744 

silencing in plant cells, and further obstructs small RNA-regulated host immune reactions. Czislowski et al. (2021) 745 

showed that endophytic Fusarium oxysporum strains display different SIX gene profiles (a family of effector genes 746 

secreted in xylem) with pathogenic strains. However, a larger-scale study of fusarioid fungi did not find a 747 

significant difference in the number of effectors (Hill et al. 2022). In this study, we observed that plant pathogens 748 

(the average number = 216) include more effectors (p < 0.05) than saprotrophs (the average number = 162) and 749 

entomopathogens (the average number = 142). The abundance of effectors in endophytes (the average number = 750 

207) is significantly higher (p < 0.05) than that found in entomopathogens. To explain these differences, we 751 

speculate that the pathogenic F. oxysporum isolates and non-pathogenic isolates might have similar numbers of 752 

effectors that differ in composition. Compared to results from Hill et al. (2022), we include more genomes with 753 

lifestyle information (n = 555 VS n = 61), which provides more numerical information for conducting statistical 754 

analysis. Moreover, we believe that our dataset includes more reliable lifestyle information. For instance, 755 

entomopathogens are mainly from the families Cordycipitaceae, Clavicipitaceae and Ophiocordycipitaceae; 756 

species in these families are more specifically parasitic on insects than species from the family Nectriaceae 757 
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(fusarioid fungi) (Simmons et al. 2015; Luangsa-ard et al. 2017; Araújo et al. 2018). We confirmed that the 758 

abundance of effectors is significantly different between several compared lifestyles, and future extended studies 759 

should focus on the composition to verify whether it is a possible indicator for differentiating lifestyles.  760 

 761 

Basic genomic features are generally consistent with higher taxonomic ranks rather than lifestyles 762 

 763 

In the genomic era, the rapid development of sequencing technologies and affordable cost of WGS have brought 764 

new insights to taxonomy. Genome Taxonomy Database (GTDB) exemplifies the important contribution of 765 

genomes in bacterial and archaeal taxonomy (Parks et al. 2018; Rinke et al. 2021). In fungal taxonomy, Gostinčar 766 

(2020) first tried to use the genomic distance to delineate fungal species, and obtained a relatively high degree of 767 

accuracy in delineating species according to the assumed threshold of genomic distances. However, the proposed 768 

criteria have not been widely utilized. Compared with the multilocus phylogenetic taxonomy, huge computational 769 

resource requirements, higher sequencing cost, more complicated analytic methods and lower accuracy at higher 770 

taxonomic ranks render it useless. In this study, we initially planned to differentiate lifestyles based on the basic 771 

numerical features of genomes and exclude the influence of phylogenetic signals. However, we unexpectedly 772 

discovered that some basic numerical features, such as genome size, GC content, and gene number, easily accessed 773 

from public databases, display powerful resolution for differentiating genomes at the higher levels, especially at 774 

the subclass. Inversely, most of these basic genomic features are useless only using the two features tRNA number 775 

and genome size without TEs displaying a certain degree of resolving power. To some extent, our discovery agrees 776 

with the conclusion of Li et al. (2021), in which fungal genome divergence is broadly consistent with the current 777 

taxonomic scheme at higher ranks, even using different genomic information. Fijarczyk et al. (2022) reported that 778 

pathogenic fungi include a higher number of protein-coding genes, tRNA genes, and larger genome sizes without 779 

repeats than non-pathogenic fungi. Compared with insect-unrelated fungi, they also found that insect-related fungi 780 

have smaller genome sizes, gene numbers and exon numbers but increased exon length. In this study, we divided 781 

638 genomes into more specific lifestyles instead of only marking them as pathogenic or non-pathogenic, and our 782 

results are partially consistent with the previous discoveries by Fijarczyk et al. (2022). More specifically, we 783 

observed that plant pathogens have the largest average gene number of 11858, which is significantly larger than 784 

the average gene number of saprotrophs (the average number = 10581) and entomopathogens (the average number 785 

= 8821). However, entomopathogens have the smallest average gene number, which is significantly smaller than 786 

that of endophytes (the average number = 11577). As for genome size and tRNA number, we observed a similar 787 

pattern when we compared both features across lifestyles. In aggregate, although several basic genomic features 788 

display a certain degree of discrimination for differentiating lifestyles, we prefer to conclude that differences 789 

across these basic genomic features reflect taxonomic ranks rather than lifestyles. 790 

 791 

Functional proteins are useful for differentiating lifestyles 792 

 793 

Compared with basic genomic features, numerous studies have demonstrated that functional proteins, responsible 794 

for degrading substrates, invading host cells and obtaining nutrition are biologically more convincing in 795 

differentiating lifestyles (Feldman et al. 2017; Muszewska et al. 2017b; Seong and Krasileva 2023). In the present 796 

study, we divided the functional proteins into multiple groups and discovered that these functional proteins 797 

generally display relatively high discrimination for differentiating taxonomic groups at different ranks and slightly 798 

reduced for distinguishing lifestyles.  799 

  800 
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Secretome, a collective term representing all secreted proteins of an organism, is assumed to be related to fungal 801 

lifestyles. Krijger et al. (2014) reported that plant pathogens and saprotrophs include larger secretomes than animal 802 

pathogens, also indicated that differences in fungal secretome size reflects more on the phylogenetic relationships 803 

and less on lifestyle differences. Alfaro et al. (2014) believed that lifestyle is correlated to the composition of the 804 

secretome rather than its size. Recently, Chang et al. (2022) reported that the secretome size is mainly determined 805 

by phylogeny and lifestyle plays an important auxiliary role. Our results (Table S5: sheet pairwise-lifestyle) reveal 806 

that plant pathogens have the largest secretomes (the average number = 847), whereas entomopathogens have the 807 

smallest secretomes (the average number = 513). Based on the average number, we can clearly differentiate (p < 808 

0.05) plant pathogens from entomopathogens, mycoparasites (the average number = 671), saprotrophs (the 809 

average number = 667) and entomopathogens, as well as differentiate entophytes (the average number = 828) 810 

from entomopathogens. With respect to the main protein groups, including CAZymes, lipases and SSPs, they 811 

display similar or higher discrimination than secretome, but lipases display lower discrimination.  812 

 813 

PCWDEs play key roles in obtaining nutrients and degrading the main structural components of the plant cell 814 

wall, i.e., cellulose, hemicellulose and pectin. Lichenized fungi live as symbionts of green algae or cyanobacteria, 815 

obtaining diverse nutrients from their partners; therefore, they have fewer PCWDEs than non-lichenized fungi 816 

(Song et al. 2022). The reduction of PCWDEs is a prevailing trend in ectomycorrhizal Russulaceae (Looney et al. 817 

2022), but they retain a certain degree of diversity in components (Kohler et al. 2015). The reduced abundance of 818 

PCWDEs in fungi might help in facilitating symbiosis by decreasing the expression of PCWDEs to reduce plant 819 

immune responses (Plett and Martin 2011). As for other kinds of lifestyles, the compositions of PCWDEs are 820 

different between saprophytic and plant-pathogenic fungi (Zhao et al. 2013; Kubicek et al. 2014). To the best of 821 

our knowledge, the present study is the first to conduct a comprehensively comparative analysis on the abundance 822 

of PCWDEs across multiple lifestyles. Plant-related fungi including endophytes (the average number = 75), plant 823 

pathogens (the average number = 81) and saprotrophs (the average number = 62) have a significantly larger 824 

repository of PCWDEs compared with entomopathogens (the average number = 12). For the plant-unrelated fungi, 825 

entomopathogens feature the smallest repository of PCWDEs. However, interestingly, human pathogens feature 826 

relatively high abundance of PCWDEs (the average number = 72). We investigated the lifestyles of these human 827 

pathogens, which belong to Scedosporium (Kaur et al. 2019), Phialemoniopsis (Alvarez Martinez et al. 2021), 828 

Lomentospora (Ramirez-Garcia et al. 2018), Fusarium (Zhang et al. 2020), Sporothrix (Rodrigues et al. 2016), 829 

and Madurella (Ahmed et al. 2004), also confirmed that these groups are indeed associated with human diseases. 830 

However, we did not receive any clues to help explain the high abundance of PCWDEs in human pathogens. We 831 

speculate that these species mainly exist as non-human pathogens, but they rarely infect humans as opportunistic 832 

pathogens. Therefore, the contraction of PCWDEs has not yet occurred or is in an early evolutionary stage, while 833 

still featuring a large number of PCWDEs. More in-depth studies should be carried out to trace changes of 834 

PCWDEs in human pathogens. 835 

 836 

FCWDEs are critical for degrading the cell wall of fungal hosts during mycoparasitism. Mycoparasitic species 837 

tend to have an expanded repository of FCWDEs (Gruber and Seidl-Seiboth 2012). Our results show that 838 

mycoparasites have the largest repository of FCWDEs (the average number = 41), which is significantly larger 839 

than entomopathogens (the average number = 28), human pathogens (the average number = 24), and plant 840 

pathogens (the average number = 27). To date, there are few studies that investigate the relationship between 841 

FCWDEs and fungal lifestyles. Results in the present study represent an important addition to this field. 842 

 843 

The promising but limited potential of machine learning for lifestyle prediction 844 
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 845 

Machine learning algorithms heavily rely on massive amounts of data, the accuracy of which dramatically depends 846 

on not only the correctness of the training data and test data but also the quantity of input data (Raudys and Jain 847 

1991; Sordo and Zeng 2005; Read et al. 2011). In classification tasks, inaccurately labeled datasets and inadequate 848 

sampling can lead to incorrect predictions. In the present study, there were two main challenges: inadequate 849 

sampling in several lifestyles and inaccurate lifestyle labels for some genomes. Unbalanced lifestyle distribution 850 

of genomes from public databases is common and unavoidable. Distribution largely depends on economic and 851 

medical importance, as well as the availability of samples. In our dataset, we include enough genomes of plant 852 

pathogens (n = 372), but fewer genomes of mycoparasites (n = 23), human pathogens (n = 16), and nematophagous 853 

fungi (n = 4). We excluded nematophagous fungi during analysis, but the relatively small sample sizes for multiple 854 

lifestyles affected the predictive accuracies to some extent, as shown in Fig. 7. Another challenge is assigning 855 

lifestyle labels to each genome. We attempted to determine the lifestyle of each genome, but for most genomes, 856 

the lifestyle is determined based on published literature or the submitter’s description. Moreover, most studies 857 

directly characterize fungi isolated from diseased plants as plant pathogens, which does not follow Koch's 858 

postulates (van Wyk et al. 2012; Oberti et al. 2020; Telenko et al. 2020). Our predictive models display a high 859 

degree of accuracy in differentiating plant pathogens from other lifestyles, and adequate sampling reduced the 860 

error caused by inaccurate labeling. In predicting the lifestyle of unlabeled genomes, we further compared the 861 

predicted lifestyles and observed lifestyles in phylogenetically closed groups, and most of our predicted lifestyles 862 

are consistent with the observed lifestyles. Taken together, we suggest that using machine learning algorithms to 863 

predict fungal lifestyles is promising and can be improved with more sequenced genomes in the future.  864 

 865 

Predicting potentially adverse fungal lifestyle 866 

 867 

Fungi provide food and important medical and industrial secondary metabolites, as well as promote the global 868 

carbon cycle (Hyde et al. 2019; Lücking et al. 2021; Maharachchikumbura et al. 2021). However, the past two 869 

decades have witnessed the occurrence of new and emerging disease-causing fungi that infect plants, animals and 870 

humans (Fisher et al. 2012). Human activities have largely expanded fungal distribution and brought pathogenic 871 

fungal species accidentally to new ecosystems (Santini et al. 2013). Pseudogymnoascus destructans, an emerging 872 

fungal pathogen causing white-nose syndrome in bats, was initially detected in a commercial tourist cave, and it 873 

was speculated that the species was brought to external environments by tourist movements and further spread 874 

across North America, resulting in widespread mortality of hibernating bats (Blehert et al. 2009; Frick et al. 2015; 875 

Langwig et al. 2016). During the long-term interaction between fungal pathogens and hosts, both the fungi and 876 

the host have developed mechanisms to counteract each other's actions. Therefore, the hosts do not develop disease 877 

symptoms even if the fungi express abundant virulent factors. However, the fungi are introduced to new habitats 878 

and colonize new hosts, disease-causing interactions do develop (Parker and Gilbert 2004). Phytophthora 879 

ramorum, an alien plant pathogen to California and Oregon, causes a disease known as sudden oak death, that led 880 

to the death of a large number of trees, seriously threatening the local forest ecosystem (Rizzo and Garbelotto 881 

2003). In addition, some fungal species or strains have multiple lifestyles, including non-pathogenic and 882 

pathogenic. Cannon et al. (2012) and Liu et al. (2022) demonstrated that endophytic fungi can switch to pathogenic 883 

lifestyle and cause disease symptoms. Due to the lack of effective analytical methods, some potential fungal 884 

pathogens were neglected until they caused devastating impacts on human health, food security and ecosystem 885 

stability (Anderson et al. 2004; Fisher et al. 2012; McDonald and Stukenbrock 2016). In scientific investigations 886 

and daily practices, we only observe one specific lifestyle of a certain fungal isolate under the current condition.  887 

Therefore, the experimentally exploring the potential lifestyles is impractical. In the study, our machine learning 888 
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model determine the fungal lifestyles according the corresponding probabilities, the highest probability represents 889 

the final predictive results, and the secondary high but non-zero probabilities imply that the strain might have 890 

other kind of lifestyles. For instance, Arthrinium puccinioides CBS 549.89 was predicted as a plant pathogen with 891 

a probability of 0.6689, but it may also be an endophyte or saprotroph with a probability of 0.1683 and 0.1628 892 

respectively. Through a literature survey, we did observe endophytic and saprotrophic lifestyles in other species 893 

within the genus Arthrinium (Wang et al. 2018). With more fungal genomes sequenced and added to the dataset, 894 

the accuracy of our predictive model for determining fungal lifestyles using machine learning algorithms will 895 

become more reliable. The relatively high probability of harmful lifestyles can be used as an early warning of 896 

some devastating fungi. By identifying these harmful fungi early on, appropriate measures can be taken to prevent 897 

their spread and minimize their impact. 898 

 899 
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