Transmission Dynamics of COVID-19 in Bangladesh- A Compartmental Modeling Approach
The coronavirus disease (COVID-19) was first identified in Bangldesh, on March 8, 2020. As of May 15, there are 20065 confirmed COVID-19 cases, including 3882 patients who have recovered and 298 related deaths. The objective of this study is to examine the transmission dynamics of COVID-19 and predict the growth of the infection in Bangladesh using the publicly available data though a mathematical model. The suscected-exposed-infectious-recoverd-dead (SEIRD) model is employed to describe the dynamics based on the kinematic parameters fitted on the data for the outbreak in Bangladesh up to May 15. The expression of basic reproduction number using the next generating matrix is derived and estimated. The kinematic parameters that describe transmission rate (0.045), recovery rate (0.03) and death rate (0.01) seems to be lower, respective of other countries. Based on the official counts for confirmed cases, the simulations suggest that the cumulative number of active infected follows an exponential trend. The mean reproduction number 2.25 (95% CI: 1.90-2.40) and transmission trends clearly indicates the outbreak of COVID-19 in Bangladesh. There is now breakneck concern regarding the capacity to respond to needs of infected patients effectively and to prevent this pandemic from further spreading in Bangladesh, one of the densest countries in the world.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Due to technical limitations, full-text HTML conversion of this manuscript could not be completed. However, the manuscript can be downloaded and accessed as a PDF.
Posted 26 May, 2020
Transmission Dynamics of COVID-19 in Bangladesh- A Compartmental Modeling Approach
Posted 26 May, 2020
The coronavirus disease (COVID-19) was first identified in Bangldesh, on March 8, 2020. As of May 15, there are 20065 confirmed COVID-19 cases, including 3882 patients who have recovered and 298 related deaths. The objective of this study is to examine the transmission dynamics of COVID-19 and predict the growth of the infection in Bangladesh using the publicly available data though a mathematical model. The suscected-exposed-infectious-recoverd-dead (SEIRD) model is employed to describe the dynamics based on the kinematic parameters fitted on the data for the outbreak in Bangladesh up to May 15. The expression of basic reproduction number using the next generating matrix is derived and estimated. The kinematic parameters that describe transmission rate (0.045), recovery rate (0.03) and death rate (0.01) seems to be lower, respective of other countries. Based on the official counts for confirmed cases, the simulations suggest that the cumulative number of active infected follows an exponential trend. The mean reproduction number 2.25 (95% CI: 1.90-2.40) and transmission trends clearly indicates the outbreak of COVID-19 in Bangladesh. There is now breakneck concern regarding the capacity to respond to needs of infected patients effectively and to prevent this pandemic from further spreading in Bangladesh, one of the densest countries in the world.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Due to technical limitations, full-text HTML conversion of this manuscript could not be completed. However, the manuscript can be downloaded and accessed as a PDF.