
Page 1/21

Changes in Spatial Distribution of Bryophytes under
CMIP6 Future Projections on the Qinghai-Tibet
Plateau
Amin Wen 

Northwest Institute of Eco-Environment and Resources
Tonghua Wu  (  thuawu@lzb.ac.cn )

Cold and Arid Regions Environmental and Engineering Research Institute
Xiaofan Zhu 

Northwest Institute of Eco-Environment and Resources State Key Laboratory of Frozen Soil Engineering
Ren Li 

Northwest Institute of Eco-Environment and Resources
Xiaodong Wu 

Northwest Institute of Eco-Environment and Resources
Jie Chen 

Northwest Institute of Eco-Environment and Resources
Yongping Qiao 

Northwest Institute of Eco-Environment and Resources
Jie Ni 

Northwest Institute of Eco-Environment and Resources
Wensi Ma 

Northwest Institute of Eco-Environment and Resources
Xiangfei Li 

Northwest Institute of Eco-Environment and Resources
Chenpeng Shang 

Northwest Institute of Eco-Environment and Resources

Research Article

Keywords: climate change, Bryophytes, Maxent, habitat suitability, environmental variables

Posted Date: August 10th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-311954/v1

https://doi.org/10.21203/rs.3.rs-311954/v1
mailto:thuawu@lzb.ac.cn
https://doi.org/10.21203/rs.3.rs-311954/v1


Page 2/21

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

Version of Record: A version of this preprint was published at Environmental Earth Sciences on December
8th, 2021. See the published version at https://doi.org/10.1007/s12665-021-10122-w.

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s12665-021-10122-w


Page 3/21

Abstract
Bryophytes play important roles in ecosystem due to their extensive geographical coverage on the
Qinghai-Tibetan Plateau (QTP). While there are few studies attributing the potential distribution and
landscape changes on the QTP in response to climate change. Based on climate data averaged of nine
global climate models (GCMs) for shared socio-economic pathways SSP2-4.5 under current (the years
1970–2000) and future climate scenarios (the years 2021–2040, 2041–2060, 2061–2080, 2081–2100),
and other environmental variables, this study has applied the maximum entropy (MaxEnt) model to
assess the potential impact of climate change on the distribution of Bryophytes on the QTP. The key
environmental factors which determined Bryophytes’s habitats and range shifts were also examined. The
results showed that Bryophytes occupied about 9.12 × 105 km2 (35.43% of total QTP) at present, mainly
accumulating in non-permafrost regions of southeast (SE) QTP. Niche suitability of the Bryophytes was
dominated by soil moisture, ultraviolet-B radiation seasonality, temperature seasonality and precipitation
of the coldest quarter. The occupied habitats of Bryophytes under future climate scenarios generally
increased migrating towards Midwest and relatively higher elevation regions of QTP, where dedicated
overall surface air warming and moistening, solar dimming. Additionally, the confusion matrix showed
that most parts of the gained occupied habitats under future climate scenarios were low suitable
habitats, and small parts for high suitable habitats, however reduced for the medium suitable habitats.

1. Introduction
The Qinghai-Tibetan Plateau (QTP), also called as “The Third Pole of the world”, is particularly vulnerable
to climate change (IPCC 2019; Pepin et al., 2015; Thompson et al., 2018). Signi�cant changes gleaned
from long-term in-situ and satellite observations, and modeling results all have shown to happened,
including vegetation phenology, treeline, vegetation greening, permafrost degradation, solar radiation and
vegetation feedback with the climate warming over the QTP (Zhang et al., 2018; Yao et al., 2019; Kang et
al., 2019).

Bryophytes, a group of early nonvascular land plants (Kenrick and Crane, 1997), are used as an ideal bio-
indication of climate �uctuations as their speci�c eco-physiological and biological features (Tuba et al.,
2011; Porada et al., 2016b;Becker Scarpitta et al., 2017). Bryophytes likewise held a key position in terms
of carbon/nutrient cycling (Elbert et al., 2012; Lindo et al., 2013; Vicherová et al., 2020), grasslands
biodiversity conservation (Boch et al., 2018), forest renewal (Kiebacher et al., 2016; Jiang et al., 2018;
Ingerpuu et al., 2019), water and soil nutrients cycling and reserve (Soudzilovskaia et al., 2013) and
environment pollution monitoring (Meyer et al., 2012; Wang et al., 2015). However, recent studies dedicate
that changing climate would strongly affect ecosystem structure and function, biodiversity, species
richness of Bryophytes, resulting in niches and geographical distribution shifts (Alatalo et al., 2015; Wang
et al., 2019), and by the contrary, Bryophytes’ niches changes will also alter the key ecosystem functions
and sustainability processes (Lang et al., 2009; Hooper et al., 2012).
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Bryophytes are widely distributed on the QTP (Gao et al., 2016). Thus, understanding the spatial
distribution patterns and range shifts trends, and the key environmental factors, is helpful for protecting
QTP ecosystems diversity, monitoring vegetation and climate changes, and guiding future �eld surveys of
new Bryophytes species’ occurrences, especially in unexplored areas. However, we largely overlooked the
vast areas distribution of Bryophytes and the response of the spatial extent of their suitable habitats to
climate change (Wu et al., 2002b; Liu and Bao 2006, Ingerpuu et al., 2019). Both researches and the red
list of endangered Bryophytes in China approved that global warming will lead to diversity losses, or even
endangered for Bryophytes of QTP (Cao et al., 2006; He et al., 2016). But Wu et al (2001) issued that
despite the fact that a small part of Bryophytes disappeared with the uplift of QTP, in general, warming
climate prompted the development and geographical distribution range in Hengduan mountains during
past decades, although vast geophysical surveys and control experimental con�gurations about
Bryophytes had been conducted (Wu et al., 2003a), but these ways are extremely costly and only
available over relatively small areas.

The maximum entropy model (Maxent), an numerical tool that only combine limited species presence (or
occurrence) data and environmental variables (Elith et al., 2006; Phillips et al., 2009), has come into
particularly common used species distribution models (SDMs) (Elith et al., 2009) to gain species
ecological and distributional evolutionary insights under changing climate (Muir et al., 2015; You et al.,
2018; Zhang et al., 2018; Guo et al., 2019). Maxent modeling was also considered as a useful method for
mapping geographical distribution and response to climate change for Bryophytes on a large scale. For
example, Sérgio et al. (2007) compared three different approaches: genetic algorithm for rule-set
production (GARP), maximum entropy (Maxent) and ecological niche factor analysis (ENFA) to modeling
the potential distribution of Bryophytes, and the accuracy of Maxent dedicate the best; Désamoré et al.
(2012) investigated the distribution and genetic diversity of Bryophytes under past and present climates
conditions; Skowronek et al. (2018) mapped the distribution of Bryophytes combing with imaging
spectroscopy data in Germany and Belgium; Song (2015) predicted the potential distribution of
Pottiaceae in Tibet and explored the key ecological factors. However there are no reports to forecast the
potential geographical distribution and range shifts of Bryophytes on the whole QTP, especially in
clarifying the change of habitat suitability with climate change.

The objectives of this work were: (1) to explore the key environmental factors affecting the habitat
suitability of Bryophytes; (2) to delineate the potential distribution of Bryophytes under current and future
climatic scenarios; and (3) to identify the differential effects of climate warming on the potential
distribution and habitat suitability of Bryophytes.

2. Materials And Methods

2.1. Study regions and occurrence records
The occurrences of Bryophytes were shown in Fig. 1, which were collected from the Global Biodiversity
Information Facility (GBIF, www.gbif.org/). The occurrences for Bryophytes in GBIF were from of ten

http://www.gbif.org/
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datasets, such as EOD-eBird Observation Dataset, plant Specimens from PE Herbarium in China and
Chinese Institute of Biology etc. All the occurrences of Bryophytes had passed strict quality preprocesses
by deleting and �ltering spatially to ensure that there no duplicate point within 10 km × 10 km before
Maxent was begun. Finally, a total of 250 samples, representing all known Bryophytes natural habitats on
the QTP, saved as .csv �le format, were generated for further modeling.

2.2. Environmental variables
Given that the habitat distribution of Bryophytes was in�uenced by climate condition, topography, soil
properties, UV-B radiation and land cover. A database with 30 environmental variables was collected to
model the patterns of Bryophytes over four future time periods (the years of 2021–2040, 2041–2060,
2061–2080 and 2081–2100). 19 climate data and 2 topographical factors were downloaded and
generated from WorldClim database (https://www.worldclim.org/data/cmip6/) (Hijmans et al., 2005).
The average for eight global climate models (GCMs): BCC-CSM2-MR, CNRM-CM6-1, CNRM-ESM2-1,
CanESM5, IPSL-CM6A-LR, MIROC-ES2L, MIROC6, and MRI-ESM2-0 under shared socio-economic
pathway245 (SSP2-4.5) were used to modeling, which were released from the 6 Coupled Model
Intercomparison Project (CMIP6) and IPCC Accessment Report 6 (AR6). 4 UV-B radiation data from gIUV
database (www.ufz.de/gluv/) (Beckmann et al., 2014); 3 soil properties came from Center for
Sustainability and the Global Environment (www.sage.wisc.edu/atlas) (New et al., 2000); and 2
vegetation cover types were from EarthEnv (www.earthenv.org/ landcover) (Tuanmu et al., 2014).

Next, all above variables were resampling to a general spatial resolution of 30 s (ca. 1 km2). Then we
utilized Spearman's rank correlation to remove high spatially related bioclimatic variables based on
previous reports of the factors potentially affecting Bryophytes, to avoid model over-�tting lead by
multicollinearity of variables, (Graham, 2008), with which highly collinear variables were identi�ed, i.e., r>
|0.75| (Suppl. Table 1). Finally, 16 bioclimatic variables (Table 1) were used to model the habitat
distribution modeling.

Table.1 Contribution of 16 environmental variables in Maxent modeling

http://www.gbif.org/
http://www.gbif.org/
http://www.gbif.org/
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Variable Description Percent
contribution

Permutation
importance

sm Soil moisture 43.4 11.9

uvb2 UV-B seasonality 20.2 14.1

bio04 Temperature Seasonality (standard
deviation × 100)

6.0 29.0

bio19 Precipitation of Coldest Quarter 4.5 11.3

bio01 Annual Mean Temperature 4.2 1.6

bio14 Precipitation of Driest Month 3.3 5.2

bio05 Max Temperature of Warmest Month 2.4 3.8

herb Herbaceous vegetation 2.3 4.8

sph Soil pH 2.3 1.9

bio12 Annual Precipitation 2.1 2.1

bio11 Mean Temperature of Coldest Quarter 2.0 0.7

bio15 Precipitation Seasonality (Coe�cient of
Variation)

1.9 2.9

asp Aspect 1.6 2.4

shr Shrubs vegetation 1.4 2.0

ele Elevation 1.3 4.8

bio03 Isothermality (bio2/bio7) (× 100) 1.2 1.5

2.3. Species distribution modeling
MaxEnt software 3.4.0 k (available at www.cs.princeton.edu/*schapire/maxent) was used for habitat
suitability simulation (Elith et al., 2006; Phillips et al., 2009). It only requires species occurrence locations
and its related environmental variables. Of the 250 samples of Bryophytes, 75% were used for the model
training, and 25% for model testing. The Jacknife analysis was performed to assess the contribution of
each environmental variable for the potential habitat distribution.

The modeling output is a continuous habitat suitability index (HSI), ranging from 0 (unsuitable) to 1
(perfectly suitable). In order to accurately evaluate habitats, we de�ned unsuitable habitats (NSH) when
HIS < 0.35 according to equate entropy of thresholded and original distributions. Then, the occupied
habitats were reclassi�ed into three classes: (1) Low suitable habitats (LSH, 0.35 ≤ HSI < 0.5; (2) Medium
suitable habitats (MSH, 0.5 ≤ HSI < 0.65); and (3) High suitable habitats (HSH, HSI ≥ 0.65).

http://www.gbif.org/
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The performance of MaxEnt was evaluated by Area Under the receiver operating characteristics Curve
(AUC) value (Pearson et al., 2006). AUC value ranged from 0.5 (random) to 1.0 (perfect discrimination)
(Swets, 1988; Weber, 2011).

2.4. Land-Cover Transition Matrix
A land-cover transition matrix was generated in ArcGIS 10.0 software to re�ect the changes of four
suitable types of Bryophytes from one climate scenario to another (Wan et al., 2015).

3. Results

3.1. Model performance
We determined AUC values for checking the model performance of all climate scenarios. The simulated
results showed that the average AUC for the replicate runs of Maxent model under different climate
scenarios was 0.9608mean ± 0.038SD (Table 2). The results suggested that the performance of Maxent
model was excellent.

 
Table 2

The average of AUC values under different periods.
Time periods Mean AUC Standard deviation

Current 0.964 0.040

2021–2040 0.961 0.038

2041–2060 0.961 0.036

2061–2080 0.958 0.038

2081–2100 0.960 0.038

 

3.2 Key environment variables and current distribution
The variable jack-knife results (Table 1) showed that soil moisture (sm, 43.4%), UV-B seasonality (uvb2,
20.2%), temperature seasonality (bio4, 6.0%) and precipitation of coldest quarter (bio19, 4.5%) had
greater contribution to potential distribution modeling of Bryophytes. The permutation importance of
these four variables reached 66.3%.

The occupied habitats under the current climatic conditions mainly distributed in non-permafrost region
of southeast (SE) QTP (Song et al., 2015; Zou et al., 2016) (Fig. 2). According to the classi�ed results of
HSI, the total occupied habitat reached to 9.12 × 105 km2 (covered 35.43 % of total QTP), among which
18.46% was LSH; next was MSH (13.21%), while HSH accounted for the smallest percentage (3.75%).
Geographically, the larger proportion of occupied habitats distributed in three rivers valley and the Yalu
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Tsangpo River basin. Moist condition and low UV-B radiation environment of these areas provided a
suitable ecological corridor for Bryophytes (Martnez-Abaigar et al., 2003; Bartels et al., 2018).

3.3. Impact of climate change on Bryophytes
Variation of occupied areas of Bryophytes in four future time periods under SSP2-4.5 climate scenario
was in accordance with total vegetation greening trend in QTP ecosystem with warming climate (Shen et
al., 2016) (Fig. 3 and Fig. 4). With climate warming, degradation regions of permafrost and glacier in the
central and western QTP would gradually become suitable for the growth of Bryophytes, and the potential
occupied habitat of Bryophytes would migrate toward the Midwest of QTP (Fig. 3)

Note that the shifts ratios of different habitat types changed inconsistently (Fig. 4). Ratios of LSH and
HSH showed increasing trends, however fall in MSH. Concluding from the transition matrix results of four
suitable habitat types (Table 3), the gained area of LSH mainly came from NSH and MSH, and increased
area of HSH was from MSH. Totally, majority of lost MSH was converted to LSH, yet a small part to HSH.
However, the area of the former was much larger than the latter, which was also consistent with the
overall increase in the potential distribution of Bryophytes.

  



Page 9/21

Table 3
Dynamics of transition in four suitable types of Bryophytes on the QTP from Current

to 2021–2040, 2021–2040 to 2041–2060, 2041–2060 to 2061–2080 and 2061–
2080 to 2081–2100 (unit: ×104 km2).

Periods Habitat Types NSH LSH MSH HSH

Current to 2021–2040 NSH 155.89 9.29 0.76 0.24

LSH 6.33 35.30 5.64 0.23

MSH 0.17 6.09 24.77 3.12

HSH 0.01 0.06 1.71 7.80

2021–2040 to 2041–2060 NSH 159.75 2.61 0.04 0.00

LSH 3.80 44.72 2.21 0.01

MSH 0.03 2.82 29.04 1.00

HSH 0.00 0.01 0.89 10.48

2041–2060 to 2061–2080 NSH 159.76 3.71 0.11 0.00

LSH 3.46 43.69 2.99 0.02

MSH 0.02 3.24 27.71 1.20

HSH 0.00 0.01 1.18 10.29

2061–2080 to 2081–2100 NSH 159.66 3.57 0.01 0.00

LSH 3.02 45.06 2.58 0.01

MSH 0.12 2.52 28.27 1.08

HSH 0.01 0.01 0.84 10.66

 
Both gained and lost occupied habitats of Bryophytes existed on the QTP as the temperature continues to
rise. It could be inferred from Fig.5 that range shifts of Bryophytes correlated to elevations on the QTP,
and gained habitats mainly migrate toward relatively higher elevations, while lost habitats happened at
relatively low elevations.

4. Discussions
As an important bio-indication to climate monitoring, ecosystem biodiversity conservation, and soil
nutrients cycling and reserving, less attention has been paid to changes about Bryophytes’ niches and
covers with climate warming on the QTP. Considering the global greenhouse gas emissions (SSP2-4.5),
this paper delved the potential distribution, range shifts and key environmental variables of Bryophytes
under current and future climate scenarios.
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Geographically, the suitable habitats distributed in non-permafrost region of SE QTP and the area reached
to 9.12 × 105 km2 (covered 35.43% of total QTP). Without considering the biotic interactions, the different
range shifts of Bryophytes species habitats mainly depended on habitat heterogeneity and environmental
factors (Gao et al., 2016). In the larger scale, habitats with higher habitat heterogeneity were more
conducive to the coexistence of species, which was shown in the spreading of gained Bryophytes to
higher elevation regions, where usually more colder and wetter to be the considerable diversity (Sun et al.,
2013; Zanatta et al., 2020). Additionally, the range shifts of Bryophytes were highly in�uenced by external
environments and interactions of multiply factors due to the speci�c eco-physiological and biological
features of Bryophytes (Mateo et al., 2013). Soil moisture, UV-B seasonality, temperature seasonality and
precipitation of the coldest quarter were the four most predominant environmental factors by the
Jackknife tests, and which were also compared with previous studies (Song et al., 2015; He et al., 2016;
Tomiolo et al., 2018). Physiological of Bryophytes would change when exposed to UV-B seasonality,
including changes of light quality, duration and intensity, in particular, a high UV-B radiation intensities at
low temperatures, would be permanently damaged (Kallio and Valanne, 1975; Kershaw and Webber,
1986). Additionally, they preferred damp or humid habitats along with river (Levetin et al., 1996). So, it
was common recognized that the peak photosynthetic activity of Bryophytes happened in early morning
and late evening when the moisture conditions were most suitable (Bartels et al., 2018). In the meanwhile,
the distribution and niches of Bryophytes were likewise coordinated by air temperature and its seasonal
changes. Dilks and Proctor (1975) approved that there exist a relatively narrow temperatures extent for
Bryophytes to obtain net photosynthesis. It seems that at high temperature, most Bryophytes on the QTP
may suffer irreversible degradation or die (Weis et al., 1986; Löbel et al., 2018), but it could withstand
much lower habitats in very cold climate for many years (Perera-Castro et al., 2020). Besides these three
factors, precipitation de�nes Bryophytes’ growth and distribution within those boundaries. Thus, we can
inferred that extreme climate events might be the main factors for range shifts Bryophytes on the QTP
(Zhu et al., 2017; Yao et al., 2018; Zhang et al., 2018).

Thus, there is a need for further studies to delve the larger variation in climate and more frequent climate
extremes on Maxent model to improve the feedback of Bryophytes and niches to climate change. In
addition to the climate change, the biomass and diversity of shrub and herbaceous vegetation
(Jägerbrand et al 2012., Chen et al., 2017; Fergus et al., 2017), freeze-thaw cycles for frozen soil (Porada
et al., 2016a; Higgins et al., 2018) and excessive grazing (Olden et al., 2016), can also affect the
distribution of Bryophytes. Thus, future work should synthesis other crucial factors into Maxent modeling
for Bryophytes.

5. Conclusions
In this study, changes in potential geographical distribution of Bryophytes under current and CMIP6 future
projections on the QTP were projected using Maxent model based on species occurrences and relative
environmental variables. The in�uences of environmental heterogeneity to habitats suitability were also
analyzed. Our results indicated the occupied habitats of Bryophytes would increase slightly and move
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towards to the central and western regions with an overall surface air warming and moistening, solar
dimming. The �ndings in this study can be used to clearly understand the distribution and range shifts of
Bryophytes, and provide a basis for habitats and their biota conversation of Bryophytes, even conductive
for monitoring climate and ecosystem change on the degradation regions of permafrost and glacier in
the central and western QTP.
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Figure 1

Study area and presence samples of Bryophytes
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Figure 2

Potential distribution of Bryophytes under current climatic condition

Figure 3

Occupied habitat maps of Bryophytes under future climate scenarios (the years of 2021-2040, 2041-2060,
2061-2080 and 2081-2100. The legends were same as Fig.2).
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Figure 4

Variation of occupied areas and ratios of Bryophytes in different periods under SSP2-4.5 climate scenario
for three habitat classes: LSH: Low suitable habitats; MSH: Middle suitable habitats; HSH: High suitable
habitats.
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Figure 5

Box plot showed the elevation change in four future time periods. ‘+‘and ‘-‘represent the gained and lost
habitats of Bryophytes relative to the former time period, respectively. The lower boundary of the box
indicates the 25%, a line within the box marks the 50% (median), and the upper boundary of the box
indicates the 75%.
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