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Abstract
Drug repurposing represents an attractive alternative to the costly and time-consuming process of new
drug development, particularly for serious, widespread conditions with limited effective treatments, such
as Alzheimer’s disease (AD). Emerging generative arti�cial intelligence (GAI) technologies like ChatGPT
offer the promise of expediting the review and summary of scienti�c knowledge. To examine the
feasibility of using GAI for identifying drug repurposing candidates, we iteratively tasked ChatGPT with
proposing the twenty most promising drugs for repurposing in AD, and tested the top ten for risk of
incident AD in exposed and unexposed individuals over age 65 in two large clinical datasets: 1)
Vanderbilt University Medical Center and 2) the All of Us Research Program. Among the candidates
suggested by ChatGPT, metformin, simvastatin, and losartan were associated with lower AD risk in meta-
analysis. These �ndings suggest GAI technologies can assimilate scienti�c insights from an extensive
Internet-based search space, helping to prioritize drug repurposing candidates and facilitate the treatment
of diseases.

Main
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that raises major concerns in
healthcare due to its irreversibility and high prevalence among older adults1. Despite decades of research,
treatment options for AD remain limited, leaving patients and families with little hope. Drug repurposing
to identify novel therapeutic applications for existing drugs is an attractive additional approach to
discovering treatment options compared to the costly and time-consuming process of new drug
development alone, particularly for serious, widespread conditions that continue to have few effective
treatments, such as AD2. In addition to accelerated timelines and lower costs throughout the discovery-to-
market process, the approach offers well-established drug safety pro�les and expedited clinical
translation with enhanced patient accessibility. Nevertheless, the success of drug repurposing hinges on
the prompt and accurate identi�cation of promising candidates among a large collection of drugs.

The search for drug repurposing candidates typically relies on a comprehensive review of the scienti�c
literature, focusing on studies that offer evidence of e�cacy for certain drugs or their constituent
ingredients. Mechanistic insights, preclinical experiments, clinical reports, large-scale observational
studies, and drug repurposing databases collectively form the space within which searches are
conducted. However, this review process is labor- and time-intensive, requiring researchers to incorporate
interdisciplinary expertise in disease mechanisms, molecular biology, pharmacology, clinical research,
and bioinformatics. As such, approaches that streamline this process offer an advantage in repurposing
efforts.

Recent advancements in generative arti�cial intelligence (GAI), exempli�ed by OpenAI’s ChatGPT3, have
showcased the remarkable capability of AI to understand and respond to diverse inquiries. The
comprehension and response capabilities of GAI derive from extensive exposure to a vast corpus from
the Internet, nuanced encoding of knowledge, and subsequent optimization of responses that display
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reasoning processes4,5. Beyond answering general questions, GAI has demonstrated effectiveness in
specialized medical contexts6, including U.S. Medical Licensing Examination queries7, clinical decision-
making consultations8,9, and medical research assessments10,11. Notably, ChatGPT is already being
leveraged by biotechnology companies to suggest novel pathways for drug targets12. However, given its
nascent stage and concerns regarding fabrication of information13,14, responsible deployment of this tool
in the medical setting necessitates comprehensive veri�cation of its functional utility and reliability with
clinical data in the real world.

We hypothesized that ChatGPT can function as an AI-driven screening tool to generate drug repurposing
candidates for AD. To assess this hypothesis, we provided ChatGPT (model GPT-4) with two sequential
prompts. First, we prompted ChatGPT to provide the twenty most promising drug repurposing candidates
for AD. Next, we prompted ChatGPT to con�rm its previous output and return a �nal list of drugs (Fig. 1a).
To account for the probabilistic nature of ChatGPT’s responses, we repeated this process ten times,
resulting in a total of 59 unique drug candidates (Supplementary Table 1). We con�rmed that each
candidate appeared in at least one publication discussing their potential use in AD. We then identi�ed the
ten most frequently appearing drugs for subsequent testing with clinical data (minimum frequency N = 7,
maximum frequency N = 10).

For each generated candidate, we composed two cohorts using de-identi�ed electronic health record
(EHR) data from large clinical datasets: 1) Vanderbilt University Medical Center (VUMC), and 2) the
National Institutes of Health (NIH) All of Us Research Program15 (Fig. 1b). We employed Cox proportional
hazards regression to compare the risk of developing AD between individuals with prior drug exposure
and individuals never exposed to the drug. We used age 65 as time zero; prior drug exposure was de�ned
by medication use ≤ 65 years of age. Each drug-exposed cohort was matched to an unexposed group
based on propensity score (PS), using sex, race, EHR length after age 65, and drug-speci�c comorbidities
at age 65 (i.e., at the time of cohort entry) as covariates. Drug-speci�c comorbidities were selected based
on primary clinical indication. Given that the cohort size for a particular drug might not be su�ciently
large in the independent datasets, we also performed a meta-analysis to derive a statistically robust
estimate of each drug’s hazard ratio.

We observed that three of the top ten ChatGPT recommendations were associated with a signi�cantly
reduced risk of AD after ten years of follow-up using VUMC data: the antidiabetic medication metformin
(hazard ratio (HR) = 0.67, 95% con�dence interval (CI): 0.54–0.82, p < 1.5 10− 4), the antihypertensive
agent losartan (HR = 0.73, 95% CI: 0.57–0.92, p = 0.009), and the antibiotic minocycline (HR = 0.34, 95%
CI: 0.13–0.89, p = 0.028) (Fig. 2). Though our studies with All of Us were limited by smaller sample sizes,
metformin showed treatment effects in the expected direction (i.e., HR < 1). While not statistically
signi�cant at p < 0.05, the lipid-lowering medication simvastatin and the antidiabetic medication
pioglitazone also exhibited bene�cial treatment effects in both the VUMC and All of Us data.

In the meta-analysis, we con�rmed the protective effect of metformin (HR = 0.67, 95% CI: 0.55–0.81, p = 
6.4 10− 5). The meta-analysis also revealed a statistically signi�cant protective treatment effect for
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simvastatin (HR = 0.84, 95% CI: 0.73–0.98, p = 0.024) that had not been identi�ed in either the VUMC or
All of Us data in isolation. Losartan was found to have a signi�cant protective treatment effect in meta-
analysis as well (HR = 0.76, 95% CI: 0.60–0.95, p = 0.017); however, the effect estimates from VUMC and
All of Us were opposing in their directionality.

Inadequate AD case counts (N < 5) prevented the evaluation of bexarotene and nilotinib in both VUMC
and All of Us. The effects of minocycline, candesartan, rapamycin, and lithium could not be tested in All
of Us for the same reason.

We found that ChatGPT’s utility as a drug repurposing tool resides in its ability to follow instructions
pertaining to drug repurposing and rapidly synthesize information from relevant literature. ChatGPT did
not propose any FDA-approved drugs for AD, suggesting that it accurately interprets the premise of drug
repurposing. In this study, the drugs suggested with the highest frequency by ChatGPT were not novel
repurposing candidates for AD, but rather drugs frequently mentioned together with AD in the literature.
Antidiabetic drugs such as metformin and pioglitazone have received considerable attention as potential
therapeutic candidates for AD, driven by increasing evidence implicating insulin resistance in the
pathogenesis of AD16–18. Similarly, reported associations between AD and cardiovascular disease have
sparked numerous investigations into the repurposing of cardiovascular drugs for AD, including statins
and antihypertensive agents such as losartan and candesartan19–21. Rapamycin, nilotinib, lithium, and
bexarotene have also been heavily explored in AD drug repurposing studies22–24.

We observed protective effects against AD for three of the ten drugs most frequently suggested by
ChatGPT–metformin, simvastatin, and losartan–in meta-analysis combining data from two large-scale
EHRs. Use of metformin, which produced the strongest signal in our meta-analysis, was associated with a
33% decreased risk of incident AD after age 65. Simvastatin and losartan produced more modest effects.
In meta-analysis, simvastatin was associated with a 16% decreased risk of AD, while losartan was
associated with a 24% decreased risk of AD. Whereas metformin and simvastatin were found to have
consistent treatment effects (HR < 1) in both VUMC and All of Us, losartan had con�icting treatment
effects (statistically signi�cant HR < 1 using VUMC data, non-signi�cant HR > 1 using All of Us data). This
suggests that losartan's protective treatment effect in meta-analysis may have been driven by the larger
sample size from VUMC. Despite supporting �ndings for these three drugs in previous studies, much
remains unknown about the mechanisms by which these drugs affect AD pathophysiology and
pathology, and population-based studies have not provided conclusive results25–27. Further investigation
in preclinical and clinical studies will be needed to ascertain the viability of these drugs in decreasing risk
of AD.

Our �ndings suggest that ChatGPT can generate quality hypotheses for drug repurposing. ChatGPT
expedites the process of extensive literature review, which has become infeasible for humans to perform
alone. With minimal costs, ChatGPT has the capacity and scalability to substantially accelerate the
review process, allowing researchers to focus on testing and validating the hypotheses. Moreover, the
anticipated regular updates of ChatGPT (which provide access to new Internet content) and its search
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engine plugins allow for consistently up-to-date and uninterrupted drug repurposing research.
Furthermore, combining ChatGPT-powered hypotheses with robust veri�cation using real-world clinical
datasets provides a cost-effective pipeline to investigate preliminary signals before allocating additional
resources to extensive research and clinical trials. This validation process serves as a critical balancing
force to disprove invalid hypotheses,   assuaging concerns about adverse consequences of AI
hallucinations–a major criticism of ChatGPT use. Despite these advantages, any pipelines incorporating
ChatGPT must account for the possibility of overlooked, but promising, repurposing candidates, which
can transpire when candidates exhibit low occurrence in the literature or necessitate complex reasoning
ability based on indirect evidence that surpasses ChatGPT's capabilities.

Our study has several limitations of note. First, we relied upon frequency to prioritize drug candidates;
however, the number of times a repurposing candidate appears in ChatGPT queries may not be directly
related to its promise in treating disease. Second, EHRs can contain missing or incomplete data28, and
discontinuities in medication adherence may not be reported with perfect �delity, creating possibilities for
misclassi�cation of outcome or exposure. Third, despite the use of two large EHRs, we still did not have
adequate statistical power for hypothesis testing of less common drugs (e.g., nilotinib). Fourth, while our
study evaluated drug exposure broadly as any-time, any-dose exposure ≤ 65 years of age, there exist
many opportunities for deeper phenotyping in characterizing drug exposure. Fifth, we sought to control
for a single primary indication for each drug using MEDI; however, we were unable to establish a clear
primary indication for several drugs (i.e., nilotinib, bexarotene, minocycline, and rapamycin). Furthermore,
a fully balanced covariate distribution was not achieved for metformin and simvastatin (standardized
mean difference > 0.1 for EHR length after 65 and drug-speci�c comorbidities), suggesting there may be
some residual confounding (although likely to bias towards the null). Sixth, this study cannot establish
causal effects or mechanisms as might be the case in a clinical trial. Lastly, although ChatGPT exhibits
exceptional response quality for general queries, further research is required to benchmark a range of GAI
models and their �ne-tuned variants for greatest effectiveness and reliability in supporting biomedical
tasks, particularly drug repurposing.

Still, this proof-of-concept study showcases the feasibility of employing ChatGPT as an AI-driven
hypothesis generator for drug repurposing, enabling the prompt generation of a promising list of drugs
for subsequent testing in EHRs, using AD as a case study. Our �ndings suggest that ChatGPT is able to
encode valuable insights concerning novel potential therapeutic utilities for existing drugs by
comprehensively synthesizing literature, and can subsequently decode this knowledge when responding
to queries. Pipelines that leverage the capabilities of ChatGPT offer a streamlined new framework for
drug repurposing that can be applied to numerous diseases.

Methods
Usage of All of Us data was approved by the NIH All of Us Research Program. All EHR data from VUMC
was de-identi�ed, such that this study was deemed to be exempt by the Institutional Review Board.
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Interactions with ChatGPT
In this study, we interacted with OpenAI’s ChatGPT (GPT-4) to generate promising drug repurposing
candidates for AD. These interactions were conducted in May 2023, at which time the technology had
access to information accumulated until September 2021. Ten independent queries were performed,
ensuring that each query did not serve as the context for another. Each query consisted of two prompts.
The �rst prompt described the instructions for generating drug repurposing candidates, whereas the
second prompt asked ChatGPT to self-correct its output from the previous prompt.

Prompt 1: Please provide a list of the 20 most promising drugs for repurposing in the treatment of
Alzheimer’s disease based on their potential e�cacy, and indicate the diseases they were originally
developed to treat. Please rank them in descending order of potential effectiveness and use the
JSON format to include the “Drug” and “Disease” keys.

Prompt 2: Please check if the generated list meets the requirement: 1) exclude the drugs that were
originally designed for Alzheimer’s disease, 2) 20 distinct drugs, 3) in JSON format, 4) rank in
descending order according to the potential effectiveness. If not, please regenerate the list that meets
the requirement.

In our queries, we intentionally emphasized drugs’ original purposes to encourage ChatGPT to distinguish
between the drugs originally intended to treat AD and those used in treating other diseases. This helped
to limit the possibility that candidates with original use in AD were returned in the �nal list of each query.
We also imposed a speci�c format for the drugs returned in the queries to facilitate subsequent
processing. We also asked ChatGPT to rank drugs according to their potential effectiveness. While
ChatGPT claimed that it “cannot rank the generated drugs with respect to their potential effectiveness
since the data is not de�nitive and is constantly evolving” in multiple responses, we sought to emphasize
the notion of effectiveness during the drug generation process. It is important to note that we did not use
the order of drugs in the generated lists for subsequent drug selection.

Data source
We performed our clinical validation studies using de-identi�ed EHR data from 1) Vanderbilt University
Medical Center (VUMC), a major academic medical center in Nashville, Tennessee, and 2) the All of Us
Research Program run by the National Institutes of Health (NIH), a U.S. nation-wide clinical database.
VUMC’s de-identi�ed EHR database contains longitudinal clinical data including diagnosis codes, lab
values, and medications for over three million patient records29. The NIH All of Us Research Program
database contained de-identi�ed EHR data for over 235,000 participants at the time of this study15. The
EHR data in both resources is standardized according to the Observational Medical Outcomes
Partnership (OMOP) Common Data Model30, allowing for reproducible cohort formation and
characterization of drug exposures in the two databases.

Study cohort



Page 8/13

For each candidate drug, we conducted a retrospective cohort study using age 65 as time 0. Each study
was limited to individuals aged 65 or older with no prior diagnosis of AD. We excluded individuals with a
diagnosis of non-Alzheimer's dementia (vascular dementia, diffuse Lewy body disease, frontotemporal
dementia, mixed dementia, and dementia associated with Parkinson's disease), individuals without EHR
follow-up after age 65, and individuals with missing demographic characteristics.

We de�ned a con�rmed diagnosis of AD as patients with at least one AD diagnosis code in their EHR
using ICD-9-CM code 331.0 and ICD-10-CM codes G30.1, G30.8, and G30.9. We have previously shown
that using ICD codes to phenotype AD patients has a high PPV (94%) in VUMC's de-identi�ed EHR
database31.

To capture all relevant drug exposures when creating the drug-exposed group, medications were mapped
to their ingredients using RxNorm32. Individuals with at least one recorded exposure to the drug of interest
occurring at ≤ 65 years of age were considered to be exposed. Individuals whose �rst record of drug
exposure occurred after age 65 were excluded from the analysis.

We gathered demographic characteristics (sex and race), remaining chart length, and comorbidities at
age 65 to generate a propensity score (PS) for matching. The comorbidities were selected to mitigate
potential confounding by indication. We used MEDI33, an ensemble medication indication resource, to
identify the primary clinical indication for each drug repurposing candidate. MEDI contains over 63,000
medication-indication pairs with indication prevalence evaluated using EHR data. We queried MEDI for
the highest prevalence indications for each drug and used these to de�ne a single primary indication for
the drug. If there was no consensus among the top indications, a primary indication for the drug was not
de�ned. MEDI reports medication indications using only ICD-9-CM; as such, we mapped the ICD-9-CM
code(s) comprising the primary indications to ICD-10-CM codes using the General Equivalence Mappings
developed by the Centers for Medicare & Medicaid Services. Supplementary Table 2 reports the set of ICD-
9-CM and ICD-10-CM codes relied upon to de�ne the comorbidities and the drugs they pertain to. A
con�rmed comorbidity status was de�ned as disease diagnosed at the start of follow-up (i.e., at ≤ 65
years of age).

We applied 2:1 PS matching (nearest-neighbor algorithm, caliper = 0.1) with sex, race, length of EHR after
age 65, and relevant drug-speci�c comorbidities as covariates to form comparable drug-exposed and
unexposed cohorts for each suggested drug repurposing candidate. PS matching was performed using
the MatchIt R package34. The participant counts for each drug after matching (AD/exposed, no
AD/exposed, AD/unexposed, and no AD/unexposed) are provided in Supplementary Table 3. The
covariate balance between the drug-exposed and unexposed groups after matching is provided in
Supplementary Table 4.

Based on our study design, an individual with a history of exposure to multiple drug repurposing
candidates could be included in more than one drug-exposed cohort. We did not consider potential
compound effects resulting from multiple drug exposures.
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Statistical analysis
All survival analyses were performed using Cox proportional hazards regression models. Each model
compared the risk of AD in individuals exposed to a drug repurposing candidate and PS-matched
individuals never exposed to the drug. Follow-up ended at the �rst of 1) AD diagnosis, 2) last recorded
EHR observation, or 3) ten years. We censored observations after ten years of EHR follow-up (i.e., at age
75) to minimize differential loss to follow-up. To ensure adequate statistical power, we did not report
drugs with fewer than �ve AD cases included in the �nal study cohort. We used p < 0.05 as our
signi�cance threshold given the small number of tests (N = 10).

Meta-analysis of hazard ratios was performed using NCSS statistical software35. Cochran's Q test was
used to assess heterogeneity. Meta-analysis was performed under a �xed-effects model.

Declarations
Data Availability

The VUMC dataset used in this study is available upon request from the corresponding authors and
subsequent institutional approval. The All of Us dataset can be accessed through the Researcher
Workbench by following the detailed data application process outlined at
https://www.researchallofus.org.
 

Code Availability

The source code associated with this study is publicly available at: 

https://github.com/monikagrabowska/GPT4_AD_Drug_Repurposing.

Acknowledgements

This study was supported by the National Institute of General Medical Sciences of the National Institutes
of Health under award numbers R01GM139891, R35GM131770 and the National Institute of Aging of the
National Institutes of Health under award numbers R01AG069900, F30AG080885.

Author Information

C.Y. and M.E.G. contributed equally and share the �rst authorship. W.Q.W. and B.A.M. jointly supervised
this research and share the senior authorship. W.Q.W., C.Y., and M.E.G. conceived and designed this study.
M.E.G and C.Y. performed the data collection, curation, and experiments and analyzed the results. Q.P.F.,
A.L.D. and C.M.S. provided guidance on cohort selection and survival analysis study design. B.L., Z.W.,
D.M.R., P.J.E., and J.F.P. critically reviewed the paper and contributed important intellectual content. C.Y.



Page 10/13

and M.E.G. wrote the original draft. A.L.D., M.E.G., and C.Y. led paper revision. All authors approved this
study.

Competing Interests

All authors have no competing interests to declare.

References
1. Matthews, K. A. et al. Racial and ethnic estimates of Alzheimer’s disease and related dementias in

the United States (2015–2060) in adults aged ≥ 65 years. Alzheimers. Dement. 15, 17–24 (2019).

2. Pushpakom, S. et al. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug
Discov. 18, 41–58 (2019).

3. OpenAI. Introducing ChatGPT. November 30, 2022 (https://openai.com/blog/chatgpt).

4. Singhal, K. et al. Large language models encode clinical knowledge. arXiv [cs.CL] (2022).

5. Liu, H. et al. Evaluating the logical reasoning ability of ChatGPT and GPT-4. arXiv [cs.CL] (2023).

�. Lee, P. et al. Bene�ts, limits, and risks of GPT-4 as an AI chatbot for medicine. N. Engl. J. Med. 388,
1233–1239 (2023).

7. Kung, T. H. et al. Performance of ChatGPT on USMLE: Potential for AI-assisted medical education
using large language models. PLOS Digit. Health 2, e0000198 (2023).

�. Ayers, J. W. et al. Comparing physician and arti�cial intelligence chatbot responses to patient
questions posted to a public social media forum. JAMA Intern. Med. (2023)
doi:10.1001/jamainternmed.2023.1838.

9. Liu, S. et al. Using AI-generated suggestions from ChatGPT to optimize clinical decision support. J.
Am. Med. Inform. Assoc. (2023) doi:10.1093/jamia/ocad072.

10. Cahan, P. & Treutlein, B. A conversation with ChatGPT on the role of computational systems biology
in stem cell research. Stem Cell Reports 18, 1–2 (2023).

11. Aydın, Ö. & Karaarslan, E. OpenAI ChatGPT generated literature review: Digital twin in healthcare.
SSRN Electron. J. (2022) doi:10.2139/ssrn.4308687.

12. Savage, N. Drug discovery companies are customizing ChatGPT: here’s how. Nat. Biotechnol. 41,
585–586 (2023).

13. Májovský, M. et al. Arti�cial intelligence can generate fraudulent but authentic-looking scienti�c
medical articles: Pandora’s box has been opened. J. Med. Internet Res. 25, e46924 (2023).

14. Kung, T. H. et al. Performance of ChatGPT on USMLE: Potential for AI-assisted medical education
using large language models. PLOS Digit. Health 2, e0000198 (2023).

15. All of Us Research Program Investigators et al. The “All of Us” Research Program. N. Engl. J. Med.
381, 668–676 (2019).



Page 11/13

1�. Kellar, D. & Craft, S. Brain insulin resistance in Alzheimer’s disease and related disorders:
mechanisms and therapeutic approaches. Lancet Neurol. 19, 758–766 (2020).

17. Leclerc, M. et al. Cerebrovascular insulin receptors are defective in Alzheimer’s disease. Brain 146,
75–90 (2023).

1�. Michailidis, M. et al. Antidiabetic drugs in the treatment of Alzheimer’s disease. Int. J. Mol. Sci. 23,
4641 (2022).

19. Leszek, J. et al. The links between cardiovascular diseases and Alzheimer’s disease. Curr.
Neuropharmacol. 19, 152–169 (2021).

20. Torrandell-Haro, G. et al. Statin therapy and risk of Alzheimer’s and age-related neurodegenerative
diseases. Alzheimers Dement. (N. Y.) 6, e12108 (2020).

21. Adesuyan, M. et al. Antihypertensive agents and incident Alzheimer’s disease: A systematic review
and meta-analysis of observational studies. J. Prev. Alzheimers Dis. 9, 715–724 (2022).

22. Kaeberlein, M. & Galvan, V. Rapamycin and Alzheimer’s disease: Time for a clinical trial? Sci. Transl.
Med. 11, eaar4289 (2019).

23. Nobili, A. et al. Nilotinib: from animal-based studies to clinical investigation in Alzheimer’s disease
patients. Neural Regen. Res. 18, 803–804 (2023).

24. Tousi, B. The emerging role of bexarotene in the treatment of Alzheimer’s disease: current evidence.
Neuropsychiatr. Dis. Treat. 11, 311–315 (2015).

25. Ha, J. et al. Association of metformin use with Alzheimer’s disease in patients with newly diagnosed
type 2 diabetes: a population-based nested case-control study. Sci. Rep. 11, 24069 (2021).

2�. Jeong, S.-M. et al. Association between statin use and Alzheimer’s disease with dose response
relationship. Sci. Rep. 11, 15280 (2021).

27. Kehoe, P. G. et al. Safety and e�cacy of losartan for the reduction of brain atrophy in clinically
diagnosed Alzheimer’s disease (the RADAR trial): a double-blind, randomised, placebo-controlled,
phase 2 trial. Lancet Neurol. 20, 895–906 (2021).

2�. Haneuse, S. et al. Assessing missing data assumptions in EHR-based studies: A complex and
underappreciated task. JAMA Netw. Open 4, e210184 (2021).

29. Zheng, N. S. et al. A retrospective approach to evaluating potential adverse outcomes associated
with delay of procedures for cardiovascular and cancer-related diagnoses in the context of COVID-19.
J. Biomed. Inform. 113, 103657 (2021).

30. Data standardization – OHDSI. Ohdsi.org https://www.ohdsi.org/data-standardization/.

31. Thakkar, R. et al. Developing a universal phenotyping algorithm to identify patients with clinically
diagnosed and probable Alzheimer’s disease using electronic health record data. Alzheimers.
Dement. 18, (2022).

32. Nelson, S. J. et al. Normalized names for clinical drugs: RxNorm at 6 years. J. Am. Med. Inform.
Assoc. 18, 441–448 (2011).



Page 12/13

33. Wei, W.-Q. et al. Development and evaluation of an ensemble resource linking medications to their
indications. J. Am. Med. Inform. Assoc. 20, 954–961 (2013).

34. Ho, D. E. et al. MatchIt: Nonparametric Preprocessing for Parametric Causal Inference. J. Stat. Softw.
42, (2011).

35. Penman, N. & Pastore, F. G. Statistical software. Ncss.com http://ncss.com/software/ncss (2012).

Figures

Figure 1

An illustration of the study design. a, Employing iterative queries of ChatGPT to recommend twenty drugs
for AD repurposing. b, Evaluating the potential e�cacy of the ten most frequently suggested drugs using
electronic health records (EHR) data from two large clinical databases.
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Figure 2

Associations between exposure to ChatGPT-suggested drug repurposing candidates and AD risk. Hazard
ratios (HR) and 95% con�dence intervals (CI) are shown for VUMC (blue squares), the NIH All of Us
Research Program (red squares), and the combined meta-analysis (gray squares). ** indicates drugs
associated with signi�cantly reduced AD risk using VUMC data (p<0.05); * indicates drugs associated
with signi�cantly reduced AD risk in the meta-analysis (p<0.05). To ensure adequate statistical power, we
did not report drugs with fewer than �ve AD cases in the study cohort (i.e., bexarotene and nilotinib in
both VUMC and All of Us; minocycline, candesartan, rapamycin, and lithium in All of Us).
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