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Abstract
The correct diagnosis of uric acid (UA) stones has important clinical implications since patients with a
high risk of perioperative morbidity may be spared surgical intervention and be offered alkalization
therapy. We developed and validated a machine learning (ML)-based model to identify UA stones from
non-UA stones. An international, multicenter study was performed on 202 patients who received
percutaneous nephrolithotomy for kidney stones with HU < 800. Data from 156 (77.2%) patients were
used for model development, while data from 46 (22.8%) patients from a multinational institution were
used for external validation. A total of 21,074 kidney and stone contour-annotated computed tomography
images were trained with the ResNet-18 Mask R-convolutional neural network algorithm. Finally, this
model was concatenated with demographic and clinical data as a fully-connected layer for stone
classification. Our model was 100% sensitive in detecting kidney stones in each patient, and the
delineation of kidney and stone contours was precise within clinically acceptable ranges. The
development model provided an accuracy of 99.9%, with 100.0% sensitivity and 98.9% specificity, in
distinguishing UA from non-UA stones. On external validation, the model performed with an accuracy of
97.1%, with 89.4% sensitivity and 98.6% specificity. SHAP plots revealed stone density, diabetes mellitus,
and urinary pH as the most important features for classification. Our ML-based model accurately
identified and delineated kidney stones and classified UA stones from non-UA stones with the highest
predictive accuracy reported to date. Our model can be reliably used to select candidates for an earlier-
directed alkalization therapy.

1. Introduction
The selection of a treatment modality for patients with kidney stones is based on stone size, location,
density, instrument availability, and patient comorbidities. This choice affects postoperative outcomes
and perioperative morbidity. Treatment modalities recommended by contemporary guidelines include
ureteroscopic lithotripsy, percutaneous nephrolithotripsy (PCNL), extracorporeal shockwave lithotripsy,
and alkalization therapy [1–3]. For selected stones, surgical treatment options may be equally effective
regarding the outcome. Therefore, a specific treatment modality can be recommended based on the
physician’s expertise and patient preference [1]. On the other hand, surgical intervention may compromise
perioperative outcomes and increase morbidity in patients with significant comorbidities. In some
patients, non-surgical modalities that are less invasive may be beneficial.

Uric acid (UA) stones comprise 5–20% of all urolithiasis and are primarily explained by a low urinary pH,
with a minority of patients exhibiting high urinary excretion of UA [4, 5]. Medical dissolution therapy with
urinary alkalization is the cornerstone of the medical management of UA stones, with a reported success
rate of 80% and cost savings compared to surgical intervention [5]. The prediction of UA stones is not
entirely accurate and is based on Hounsfield units (HU) < 450 on non-contrast-enhanced computed
tomography (NCCT), radiolucency on plain radiography, and low urinary pH < 6 [6]. However, UA stones
outside these ranges are often underdiagnosed due to a lack of reliable diagnostic systems predicting UA
components and concerns about stones mistakenly thought to be UA [7]. As a result, alkalization therapy
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is reported to be underused despite its potential benefits [6]. Correct differential diagnosis of UA stones
from other stone components has important clinical implications since patients with a high risk of
perioperative morbidity may be spared surgical interventions.

Several non-invasive techniques have been developed to classify UA from non-UA stones, including 24-
hour urinalysis, nomograms using clinical and HU parameters, and dual-energy CT (DECT) [8–10].
However, these classification systems were limited by their model developments being based on a
specific stone component, the necessity of access to particular CT scanner types, and, most importantly,
the lack of external validation, which precludes their general applicability to clinical use. A growing body
of evidence indicates that machine learning (ML) models may improve the accuracy of disease diagnosis
and treatment outcomes compared to conventional discriminant analyses [11]. Given the multifactorial
nature of the formation of specific stone components, we sought to develop an ML-based model that
incorporates a comprehensive set of demographic, clinical, and CT data to better classify UA stones.

The aims of our study were (1) to train and develop an ML-based urinary stone recognition algorithm that
can automatically identify the stone location and delineate its contour relative to the kidney and (2) to
utilize this algorithm to develop a prediction model that incorporates demographic, clinical, and NCCT
data to classify UA stones from other stone components.

2. Materials and Methods

2.1. Study cohort
An international, multicenter, cross-sectional study was conducted on 202 patients who underwent PCNL
for kidney stones with HU < 800 between March 2005 and November 2018. The development cohort
consisted of 156 (77.2%) patients from the Stone Centre at Vancouver General Hospital in Canada, while
the external validation cohort comprised 46 (22.8%) patients from Gangnam Severance Hospital in Seoul,
South Korea, a multinational institution with patients of a distinct ethnic background. Patients with
incomplete data, including unknown stone composition, were excluded from the analysis.

This study was approved by the institutional ethics committees of the University of British Columbia’s
Clinical Research Ethics Board (H14-00475) and Gangnam Severance Hospital (2019-0838-001) after
reviewing the protocols employed. All study procedures complied with the principles of the 1946
Declaration of Helsinki and its 2008 update.

2.2. Data acquisition
The demographic and clinical data that potentially affect stone components and NCCT images were
retrospectively collected from the patients’ medical records. Twenty-six preoperative demographic and
clinical data included: patient age, body mass index, gender, American Society of Anesthesiologists score,
stone history, number, bilaterality, multiplicity, HU, urinary pH and nitrite positivity, urine culture, serum
levels of sodium, potassium, calcium, glomerular filtration rate, UA, phosphate, and the presence of
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comorbidities including cerebrovascular disease, chronic kidney disease, chronic obstructive pulmonary
disease, diabetes mellitus, hypertension, gout, and neurological disease prior to PCNL (Table 1). Stone
component data for both the development and external validation cohorts were based on analyses
performed using Fournier-transform infrared spectrometry, carried out at Lifelabs, Burnaby, BC, Canada,
and Green Cross Laboratories, Yongin, South Korea, respectively.
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Table 1
Demographic and clinical characteristics of the development and external validation cohorts.

  Development cohort External validation
cohort

P

No. 156 (77.2%) 46 (22.8%) NS

Age (year) 59.0 (47.0–68.3) 54.0 (37.0–64.5) 0.030

Body mass index (kg/m2) 29.1 (24.3–33.3) 24.8 (21.8–27.6) < 0.001

Gender     0.467

Male 101 (64.7%) 26 (56.5%)  

Female 55 (35.3%) 20 (43.5%)  

Hounsfield units 499.4 (413.6–
629.3)

545.5 (487.3–699.5) < 0.001

Stone, number 3.0 (2.0–4.5) 4.0 (3.0–6.5) 0.065

Stone component      

UA 41 (26.3%) 13 (28.3%) 0.143

Struvite 56 (35.9%) 14 (30.4%) 0.508

Calcium oxalate 54 (34.6%) 17 (37.0%) 0.236

Cystine 5 (3.2%) 2 (4.3%) 0.987

Urinary pH 5.5 (5.0–6.5) 6.5 (5.5–7.3) 0.003

Nitrite positivity 32 (20.5%) 9 (19.6%) 0.566

Urine culture positivity 31 (19.9%) 8 (17.4%) 0.648

Serum      

Sodium 140.0 (139.0–
142.0)

140.0 (140.0–141.0) 0.587

Potassium 4.1 (3.8–4.4) 4.20 (4.10–4.38) 0.864

Calcium 2.33 (2.26–2.42) 2.31 (2.24–2.47) 0.873

Glomerular filtration rate 69.0 (50.0–94.0) 90.0 (74.0–121.5) < 0.001

UA 339.5 (273.5–
431.5)

298.0 (206.5–350.5) 0.018

Values are presented as number (%) or median (interquartile range).

ASA = American Society of Anesthesiologists; ; COPD = chronic obstructive pulmonary disease; UA = 
uric acid
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  Development cohort External validation
cohort

P

Phosphate 1.10 (0.92–1.29) 1.06 (0.96–1.28) 0.928

Bilaterality 42 (26.9%) 16 (34.8%) 0.040

Multiplicity 89 (57.1%) 37 (80.4%) 0.009

ASA score     0.062

0 38 (24.4%) 9 (19.6%)  

≥ 1 118 (75.6%) 37 (80.4%)  

Stone history 40 (25.6%) 10 (21.7%) 0.098

Comorbidity      

Cerebrovascular disease 18 (11.5%) 5 (10.9%) 0.438

Chronic kidney disease 12 (7.7%) 3 (6.5%) 0.768

Chronic obstructive pulmonary
disease

10 (6.4%) 2 (4.3%) 0.133

Diabetes mellitus 45 (28.8%) 10 (21.7%) 0.389

Hypertension 54 (34.6%) 20 (43.5%) 0.164

Gout 3 (1.9%) 0 (0.0%) 0.418

Neurological disease 20 (12.8%) 5 (10.9%) 0.129

Values are presented as number (%) or median (interquartile range).

ASA = American Society of Anesthesiologists; ; COPD = chronic obstructive pulmonary disease; UA = 
uric acid

Standard axial NCCT images that included kidney and stone information were acquired in DICOM format.
After acquisition, the images were extracted using a Python software application and saved in PNG files.
A total of 14,843 and 6,231 kidney and stone images were selected to form the datasets for developing
the ML model. The anatomical contours of the kidneys and stones were semi-automatically annotated
using the open-source Computer Vision Annotation Tool (Intel®, CA, USA). Overall, 21,074 kidney and
stone annotated images were included in the datasets for model development.

2.3. Model development
Figure 1 depicts the overall architecture of our model. Initially, the ResNet18 model framework was
trained with the PyTorch feedforward deep learning library using predefined methods [12]. We used
stochastic gradient descent as the optimizer with a learning rate set at 0.005 and a batch size of 32. The
ResNet-18 Mask R-convolutional neural network model was chosen for this study due to its capability
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and robustness in general-purpose image segmentation under limited data [13]. The kidney and stone
contour-annotated image data from the development cohort was used for model training, validation, and
testing in an 8:1:1 ratio, with all images in the training set being different from those in the testing set.
Finally, demographic and clinical data were concatenated with the ResNet18 model in a fully-connected
layer to develop the final model for stone component classification. The model was then interpreted using
the SHAP algorithm to enable visual interpretation of the quantitative association between the input
variables and the model’s output [14].

2.4. Evaluation metrics
Prediction accuracies were analyzed according to binary (UA vs. non-UA stones) and multiclass (UA vs.
calcium oxalate, struvite, and cystine stones) classifications. Prediction accuracies were measured by the
precision of instance prediction, which counted the number of true positive, true negative, false positive,
and false negative instances as compared with the operator’s semi-automatic annotation. Prediction
accuracies were compared to those of the multivariate logistic regression analyses.

2.5. Statistical analysis
Demographic and clinical characteristics between the development and external validation cohorts were
compared using the two-sided Mann-Whitney U-test for the analysis of continuous variables and the chi-
square test for the analysis of categorical variables. Logistic regression analysis for binary classification
was performed using the same training set. Independent predictive indicators associated with UA stones
in the multivariate analyses were entered into the logistic regression model. All tests were two-tailed, with
statistical significance set at a p < 0.05. Statistical analysis was performed using IBM SPSS Statistics
software ver. 21.0 (IBM Corporation, Armonk, NY) and R Statistical Package ver. 3.1.3. (Institute for
Statistics and Mathematics, Vienna, Austria).

3. Results

3.1. Demographic and clinical features
The demographic and clinical characteristics of patients in the development and external validation
cohorts are presented in Table 1. According to stone components, UA, calcium oxalate, struvite, and
cystine stones comprised 26.3%, 35.9%, 34.6%, and 3.2% in the development cohort, while 28.3%, 30.4%,
37.0%, and 4.3% in the external validation cohort, respectively. Overall, there were no significant
differences between the development and external validation cohorts regarding demographic, clinical,
and stone features.

3.2. Kidney and stone identification and contour delineation
Segmentation identified and delineated two anatomical elements, kidney and stone contours. Our model
was 100% sensitive in detecting kidney stones in each patient. The delineation of kidney and stone
contours was precise within clinically acceptable ranges, as shown in a selected sample patient (Fig. 2).
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3.3. Predictive performance
The predictive accuracies of our model varied according to the stone component and classification
system. Overall, the performances of the ML-based model outperformed those of the logistic regression
model (Table 2).

Table 2
Predictive accuracies of the development and external validation cohorts.

Classification Cohort Stone type Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

LR          

Binary Development UA vs. non-UA 82.4 72.4 69.6

  External
validation

UA vs. non-UA 86.9 82.6 73.3

ML          

Binary Development UA vs. non-UA 99.9 100.0 99.9

  External
validation

UA vs. non-UA 97.1 89.4 98.6

Multiclass Development UA 98.2 95.7 89.6

    Calcium
oxalate

88.4 70.7 98.4

    Struvite 98.7 97.7 99.2

    Cystine 95.5 77.1 96

  External
validation

UA 91.3 77.1 89.6

    Calcium
oxalate

74.3 95.8 55.8

    Struvite 89.4 72.5 97.2

    Cystine 93.5 0.0 93.5

UA = uric acid

3.3.1. Binary classification
The development model discriminated UA and non-UA stones with an accuracy of 99.9%, with 100.0%
sensitivity and 99.9% specificity (Table 2). We identified features most predictive for binary stone
classification by quantifying the predictor importance of each variable. Stone density, diabetes mellitus,
and urinary pH showed to be the top three contributing features for classifying UA stones. On external
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validation, the model performed with a predictive accuracy of 97.1%, with 89.4% sensitivity and 98.6%
specificity. The ML-based model exhibited higher performance than the multivariate logistic regression
model in both development and external validation cohorts.

3.3.2. Multiclass classification
The development model discriminated UA, calcium oxalate, struvite, and cystine stones with predictive
performances of 98.2%, 88.4%, 98.7%, and 95.5%, respectively (Table 2). The features most predictive for
multiclass stone classification were stone density, diabetes mellitus, and urinary pH. On external
validation, the model’s prediction accuracies for UA, calcium oxalate, struvite, and cystine stones were
91.3%, 74.3%, 89.4%, and 93.5%, respectively. The ML-based model’s performance for multiclass
classification was relatively lower than that of the binary classification; however, remained within
clinically acceptable ranges.

4. Discussion
The inspiration for this study arises from the unmet clinical need to accurately predict UA stones prior to
selecting the optimal treatment modality. Over the last decade, technological advancements in
ureteroscopes and laser lithotriptors have paved the path to an upsurge in surgical intervention regardless
of stone composition [15, 16]. Although alkalization therapy for UA stones is ideal for patients with high
morbidity or recurrent UA stone formers, it is commonly underused due to the lack of reliable factors
predicting its outcome, concerns about the existence of heterogeneous stone composition, and patient
intolerance [7–15]. Most of all, the lack of standardized protocols for predicting UA components adds
complexity to making treatment decisions in real-life situations [15]. The present study is the first to
develop and validate an effective predictive model incorporating NCCT images into traditional
demographic and clinical data to classify UA from non-UA stones in patients with stones in the ‘grey zone’
HUs. External validation showed that our objective, expeditious, and non-invasive model could identify UA
stones with an accuracy of 97.1%, the highest predictive performance reported to date.

Our model has several implications for improving the current standard of care through its implementation
in clinical practice. First, the input variables, including demographic, clinical, and NCCT data, are those
readily available in real-world practice, which supports the general applicability of our model. Previously
reported stone component classification models utilizing imaging data generally require time-consuming
manual analysis of HU parameters or additional examination using specific CT scanner types, such as
DECT, which may not be available across all practice settings [8, 17–19]. In contrast, our automated
model has the potential to be integrated into any electronic medical records system that utilizes coding
algorithms to be utilized as a decision support system. Such a system may reduce the time required for
classification and avoid additional radiation exposure and costs.

Second, we selected patients with stones of relatively low HUs for the model development since these
stones pose a diagnostic dilemma in clinical decision-making for alkalization therapy [5]. We selected
stones with HUs < 800 in order to include struvite and cystine stones, in addition to UA stones, that are
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characterized as having a completely distinct management approach. The multiclass classification
model provided a relatively lower performance than the binary classification. However, the overall
performance was excellent and surpassed that of the conventional multivariate logistic regression model,
providing a reliable diagnostic standard for treatment decision-making. Lastly, the architecture of our
model and its working principle allow future refinements. Our model can additionally integrate
intraoperative laser lithotripsy data and has the potential to provide patient-specific optimal laser settings
for maximal fragmentation efficiency according to each stone feature.

Several strengths of our study are worth mentioning. First, external validation of prediction models is
essential before their use in clinical practice. Since validation samples should be obtained from different
but plausibly relevant cohorts, the performance of our model was validated with an external cohort
comprised of patients from an international institution with distinct ethnic backgrounds. Discrimination
performance is usually observed to be inferior in the external validation cohort compared to the
development cohort [20]. Nevertheless, the performance of our external validation cohort was non-inferior
compared to that of the development cohort, indicating the validity and feasibility of our model. Second,
we incorporated a comprehensive set of demographic, clinical, and NCCT imaging data that are
potentially associated with stone components for the model development. Moreover, the dataset was
considered of high quality, with all input variables of the development and external validation cohorts
being manually reviewed and incorporated without any missing data, which may have contributed to its
high predictive performance.

This study is not without limitations. First, mixed component stones were excluded from the development
and external validation cohorts. Although the distinction between pure UA stones and mixed component
stones is crucial in the decision-making of alkalization therapy, only stones with pure components were
included. Since the extent of the UA component beyond which the stone has to be defined as mixed is
unclear, subsequent studies incorporating quantitative analysis of mixed stones, will need to be
performed to screen optimal patients who would be amenable to medical therapy. Second, a population-
based database with a larger number of subjects may provide better generalizability. Albeit, we utilized
institutional data, which provided a comprehensive and high-quality dataset, to maximize predictive
performance. Lastly, performances declined for the multiclass classification, indicating uncertainty of
clinical usefulness, especially in classifying cystine stones. The likely explanation is the limited number
of cystine stones in both the development and external validation cohorts. Notwithstanding these
limitations, the advantages of our model over previously reported tools classifying predicting stone
components indicate its feasibility and general applicability to be implemented into real-world clinical
practice.

5. Conclusions
We developed and externally validated an ML-based model to identify and delineate kidney stones and
classify UA stones from other stone components. With the highest predictive performance reported to
date, our model can be reliably used to select candidates for an earlier-directed alkalization therapy in
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patients with kidney stones within the ‘grey zone’ HUs. Further modification in the ML algorithm
incorporating cases with mixed component stones would be warranted for more sophisticated
predictions.
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Figures

Figure 1

Overall architecture of our model: First, the ResNet18 Mask R-convolutional neural network model
framework was trained using predefined methods with the PyTorch feedforward deep learning library.
Next, demographic and clinical data were concatenated with the ResNet18 model in a fully-connected
layer to develop the final model for stone component classification.
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Figure 2

A patient-specific human-annotated and model-interpreted kidney and stone contour segment of a
chosen sample patient (subject no. 78).


