Ahmed, N., Liaqat, U., Rafique, M., Baig, M.A., Tawfik, W.: Detection of toxicity in some oral antidiabetic drugs using LIBS and LA-TOF-MS. Microchem. J. 155, 104679 (2020). https://doi.org/10.1016/j.microc.2020.104679
Akram, M., Bashir, S., Rafique, M.S., Hayat, A., Mahmood, K.: Laser Induced Surface Morphology of Molybdenum Correlated with Breakdown Spectroscopy. Plasma Chem. Plasma Process. 37, 287–304 (2017). https://doi.org/10.1007/s11090-016-9752-z
Alhijry, I.A., EL Sherbini, A.M., EL Sherbini, T.M.: Measurement of deviations of transition probability of the neutral silver lines at 827.35 and 768.77 nm using OES-technique. J. Quant. Spectrosc. Radiat. Transf. 106922 (2020). https://doi.org/10.1016/j.jqsrt.2020.106922
Calin, M.R., Radulescu, I., Calin, M.A.: Measurement and evaluation of natural radioactivity in phosphogypsum in industrial areas from Romania. J. Radioanal. Nucl. Chem. 304, 1303–1312 (2015). https://doi.org/10.1007/s10967-015-3970-3
Camacho, J., Sol, L.D., Santos, M., Juan, L.J., Poyato, J.: Optical Breakdown in Gases Induced by High-power IR CO2 Laser Pulses. undefined. (2011)
Ciucci, A., Corsi, M., Palleschi, V., Rastelli, S., Salvetti, A., Tognoni, E.: New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy. Appl. Spectrosc. 53, 960–964 (1999). https://doi.org/10.1366/0003702991947612
Cremers, D.A., Ebinger, M.H., Breshears, D.D., Unkefer, P.J., Kammerdiener, S.A., Ferris, M.J., Catlett, K.M., Brown, J.R.: Measuring Total Soil Carbon with Laser-Induced Breakdown Spectroscopy (LIBS). J. Environ. Qual. 30, 2202–2206 (2001). https://doi.org/10.2134/jeq2001.2202
Cuadri, A.A., Navarro, F.J., García-Morales, M., Bolívar, J.P.: Valorization of phosphogypsum waste as asphaltic bitumen modifier. J. Hazard. Mater. 279, 11–16 (2014). https://doi.org/10.1016/j.jhazmat.2014.06.058
Edwards, L., Winefordner, J.D.: Laser-Induced Breakdown Spectroscopy for the Determination of Carbon in Soil. Chemistry (Easton). Ph.D., 140 (2007)
Effenberger, A.J., Scott, J.R.: Effect of atmospheric conditions on LIBS spectra. Sensors. 10, 4907–4925 (2010). https://doi.org/10.3390/s100504907
Eseller, K.E., Yueh, F.Y., Singh, J.P., Melikechi, N.: Helium detection in gas mixtures by laser-induced breakdown spectroscopy. Appl. Opt. 51, (2012). https://doi.org/10.1364/AO.51.00B171
Farooq, W.A., Al-Johani, A.S., Alsalhi, M.S., Tawfik, W., Qindeel, R.: Analysis of polystyrene and polycarbonate used in manufacturing of water and food containers using laser induced breakdown spectroscopy. J. Mol. Struct. 1201, (2020). https://doi.org/10.1016/j.molstruc.2019.127152
Farooq, W.A., Al-Mutairi, F.N., Khater, A.E.M., Al-Dwayyan, A.S., AlSalhi, M.S., Atif, M.: Elemental analysis of fertilizer using laser induced breakdown spectroscopy. Opt. Spectrosc. (English Transl. Opt. i Spektrosk. 112, 874–880 (2012). https://doi.org/10.1134/S0030400X12060082
Farooq, W.A., Rasool, K.G., Tawfik, W., Aldawood, A.S.: Application of laser induced breakdown spectroscopy in early detection of red palm weevil: (Rhynchophorus ferrugineus) infestation in date palm. Plasma Sci. Technol. 17, 948–952 (2015). https://doi.org/10.1088/1009-0630/17/11/11
Farooq, W.A., Tawfik, W., Alahmed, Z.A., Ahmad, K., Singh, J.P.: Role of Purging Gases in the Analysis of Polycarbonate With Laser-Induced Breakdown Spectroscopy. J. Russ. Laser Res. 35, 252–262 (2014). https://doi.org/10.1007/s10946-014-9420-9
Farooq, W.A., Tawfik, W., Atif, M., Alsalhi, M.S., Zahran, H.Y., Abd El-Rehim, A.F., Yahia, I.S., Mansoor, S.: Evaluation of laser Induced Breakdown Spectroscopy for analysis of annealed Aluminum Germanium alloy at different temperatures. IOP Conf. Ser. Mater. Sci. Eng. 383, (2018). https://doi.org/10.1088/1757-899X/383/1/012012
Fikry, M., Tawfik, W., Omar, M.: Measurement of the Electron Temperature in a Metallic Copper Using Ultrafast Laser-Induced Breakdown Spectroscopy. J. Russ. Laser Res. 41, 484–490 (2020)(a). https://doi.org/10.1007/s10946-020-09901-w
Fikry, M., Tawfik, W., Omar, M.M.: Investigation on the effects of laser parameters on the plasma profile of copper using picosecond laser induced plasma spectroscopy. Opt. Quantum Electron. 52, (2020)(b). https://doi.org/10.1007/s11082-020-02381-x
Galbács, G.: A critical review of recent progress in analytical laser-induced breakdown spectroscopy. Anal. Bioanal. Chem. 407, 7537–7562 (2017). https://doi.org/10.1007/s00216-015-8855-3
Gallou, C., Pailloux, A., Lacour, J.L.: Chemical warfare detection by LIBS. 30, 263–270 (2009)
Gojani, A.B.: Experimental Study of Laser-Induced Brass and Copper Plasma for Spectroscopic Applications. ISRN Spectrosc. 2012, 1–8 (2012). https://doi.org/10.5402/2012/868561
Griem, H.R.: Plasma Spectroscopy. McGraw-Hill (1964)
Harmon, R.S., Lawley, C.J.M., Watts, J., Harraden, C.L., Somers, A.M., Hark, R.R.: Laser-induced breakdown spectroscopy-An emerging analytical tool for mineral exploration. Minerals. 9, 1–45 (2019). https://doi.org/10.3390/min9120718
J. J, E.: Elemental Composition of Selected Inorganic Fertilizers in Zaria by XRF Method: A Source of Possible Environmental Contamination. IOSR J. Appl. Chem. 7, 01–03 (2014). https://doi.org/10.9790/5736-07420103
Ji, G., Ye, P., Shi, Y., Yuan, L., Chen, X., Yuan, M., Zhu, D., Chen, X., Hu, X., Jiang, J.: Laser-induced breakdown spectroscopy for rapid discrimination of heavy-metal-contaminated seafood Tegillarca granosa. Sensors (Switzerland). 17, 1–11 (2017). https://doi.org/10.3390/s17112655
Kaski, S., Häkkänen, H., Korppi-Tommola, J.: Laser-induced plasma spectroscopy to as low as 130 nm when a gas-purged spectrograph and ICCD detection are used. Appl. Opt. 42, 6036 (2003). https://doi.org/10.1364/ao.42.006036
Kim, Y.K., Desclaux, J.P.: Ionization of carbon, nitrogen, and oxygen by electron impact. Phys. Rev. A - At. Mol. Opt. Phys. 66, 127081–1270812 (2002). https://doi.org/10.1103/PhysRevA.66.012708
Kramida, A., Ralchenko, Y.: NIST ASD Output: Lines, NIST Atomic Spectra Database (2018).
Li, Y., Tian, D., Ding, Y., Yang, G., Liu, K., Wang, C., Han, X.: A review of laser-induced breakdown spectroscopy signal enhancement. Appl. Spectrosc. Rev. 53, 1–35 (2018). https://doi.org/10.1080/05704928.2017.1352509
Liu, H.C., Mao, X.L., Yoo, J.H., Russo, R.E.: Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon. Spectrochim. acta, Part B At. Spectrosc. 54, 1607–1624 (1999). https://doi.org/10.1016/S0584-8547(99)00092-0
Marangoni, B.S., Silva, K.S.G., Nicolodelli, G., Senesi, G.S., Cabral, J.S., Villas-Boas, P.R., Silva, C.S., Teixeira, P.C., Nogueira, A.R.A., Benites, V.M., Milori, D.M.B.P.: Phosphorus quantification in fertilizers using laser induced breakdown spectroscopy (LIBS): A methodology of analysis to correct physical matrix effects. Anal. Methods. 8, 78–82 (2016). https://doi.org/10.1039/c5ay01615k
Merk, S., Scholz, C., Florek, S., Mory, D.: Increased identification rate of scrap metal using Laser Induced Breakdown Spectroscopy Echelle spectra. Spectrochim. Acta - Part B At. Spectrosc. 112, 10–15 (2015). https://doi.org/10.1016/j.sab.2015.07.009
Mortazavi, S.Z., Parvin, P., Mousavi Pour, M.R., Reyhani, A., Moosakhani, A., Moradkhani, S.: Time-resolved evolution of metal plasma induced by Q-switched Nd:YAG and ArF-excimer lasers. Opt. Laser Technol. 62, 32–39 (2014). https://doi.org/10.1016/j.optlastec.2014.02.006
Nizevičienė, D., Vaičiukynienė, D., Michalik, B., Bonczyk, M., Vaitkevičius, V., Jusas, V.: The treatment of phosphogypsum with zeolite to use it in binding material. Constr. Build. Mater. 180, 134–142 (2018). https://doi.org/10.1016/j.conbuildmat.2018.05.208
Pacheco-Torgal, F., Ding, Y., Miraldo, S., Abdollahnejad, Z., Labrincha, J.A.: Are geopolymers more suitable than Portland cement to produce high volume recycled aggregates HPC? Constr. Build. Mater. 36, 1048–1052 (2012). https://doi.org/10.1016/j.conbuildmat.2012.07.004
Palleschi, V.: Laser-induced breakdown spectroscopy: principles of the technique and future trends. ChemTexts. 6, 1–16 (2020). https://doi.org/10.1007/s40828-020-00114-x
Potiriadis, C., Koukouliou, V., Seferlis, S., Kehagia, K.: Assessment of the occupational exposure at a fertiliser industry in the northern part of Greece. Radiat. Prot. Dosimetry. 144, 668–671 (2011). https://doi.org/10.1093/rpd/ncq309
Qi, H., Lai, H.: Micromachining of Metals and Thermal Barrier Coatings using a 532 nm Nanosecond Fiber Laser. Phys. Procedia. 39, 603–612 (2012). https://doi.org/10.1016/j.phpro.2012.10.079
Raciukaitis, G., Brikas, M., Gedvilas, M.: Efficiency aspects in processing of metals with high-repetition-rate ultra-short-pulse lasers. ICALEO 2008 - 27th Int. Congr. Appl. Lasers Electro-Optics, Congr. Proc. 403, 176–184 (2008). https://doi.org/10.2351/1.5061377
Rai, A.K., Zhang, H., Yueh, F.Y., Singh, J.P., Weisburg, A.: Parametric study of a fiber-optic laser-induced breakdown spectroscopy probe for analysis of aluminum alloys. Spectrochim. Acta - Part B At. Spectrosc. 56, 2371–2383 (2001). https://doi.org/10.1016/S0584-8547(01)00299-3
Rajavelu, H., Vasa, N.J., Seshadri, S.: Effect of ambiance on the coal characterization using laser-induced breakdown spectroscopy (LIBS). Appl. Phys. A Mater. Sci. Process. 126, 1–10 (2020). https://doi.org/10.1007/s00339-020-03558-7
Raven, K.P., Loeppert, R.H.: Trace Element Composition of Fertilizers and Soil Amendments. J. Environ. Qual. 26, 551–557 (1997). https://doi.org/10.2134/jeq1997.00472425002600020028x
Sabsabi, M.: Femtosecond LIBS. In: Laser-Induced Breakdown Spectroscopy. pp. 151–171. Elsevier Inc. (2007)
Şen, İ.: Spectroscopic Determination of Major Nutrients (N, P, K) of Soil. Izmir Institute of Technology (2003)
El Sherbini, A.M., El Sherbini, T.M., Hegazy, H., Cristoforetti, G., Legnaioli, S., Palleschi, V., Pardini, L., Salvetti, A., Tognoni, E.: Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements. Spectrochim. Acta - Part B At. Spectrosc. 60, 1573–1579 (2005). https://doi.org/10.1016/j.sab.2005.10.011
Tawfik, W., Bousiakou, L.G., Qindeel, R., Farooq, W.A., Alonizan, N.H., Fatani, A.J.: Trace analysis of heavy metals in groundwater samples using laser induced breakdown spectroscopy (LIBS). Optoelectron. Adv. Mater. Rapid Commun. 9, 185–192 (2015)(a)
Tawfik, W., Farooq, W.A., Al-Mutairi, F.N., Alahmed, Z.A.: Monitoring of inorganic elements in desert soil using laser-induced breakdown spectroscopy. Lasers Eng. 32, 129–140 (2015)(b)
Tawfik, W., Mohamed, Y.: Calibration free laser-induced breakdown spectroscopy (LIBS) identification of seawater salinity. Opt. Appl. Vol. 37, 5–19 (2007)
Unnikrishnan, V.K., Alti, K., Kartha, V.B., Santhosh, C.: V. K. Unnikrishnan, Kamlesh Alti, V. B. Kartha, C. Santhosh, G. P. Gupta and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions”, Pramana Jour. Pramana --journal Phys. 74, 983–993 (2010)
Welander: Einige Worte über die Form der Anwendung des Quecksilbers. Arch. Dermatol. Syph. 46, 476 (1898). https://doi.org/10.1007/BF01825086
Yueh, F.Y., Sharma, R.C., Singh, J.P., Zhang, H., Spencer, W.A.: Evaluation of the Potential of Laser-Induced Breakdown Spectroscopy for Detection of Trace Element in Liquid. J. Air Waste Manag. Assoc. 52, 1307–1315 (2002). https://doi.org/10.1080/10473289.2002.10470860
Zavilopulo, A.N., Chipev, F.F., Shpenik, O.B. 50, 402–407 (2005)