[1] Li YY, Zhao K, Ren JH, Ding LY, Wu LL. Analysis of the dielectric constant of saline-alkali soils and the effect on radar backscattering coefficient: a case study of soda alkaline saline soils in western Jilin Province using RADARSAT-2 data. The Scientific World J. 2014; 56: 30-45.
[2] Ge Y, Li Y, Lv DK, Bai X, Ji W, Cai H, Wang AX, Zhu YM. Alkaline-stress response in Glycine soja leaf identifies specific transcription factors and ABA-mediated signaling factors. Funct Integr Genomic. 2011; 11: 369-379.
[3] Wang G, Zhu, QG, Meng QW, Wu CA. Transcript profiling during salt stress of young cotton (Gossypium hirsutum) seedlings via solexa sequencing. Acta Physiol Plant. 2012; 34(1): 107-115.
[4] Li Q, Yang A, Zhang WH. Comparative studies on tolerance of rice genotypes differing in their tolerance to moderate salt stress. BMC Plant Biol. 2017; 17(1): 141.
[5] Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008; 59: 651-681.
[6] Guo HJ, Hu ZQ, Zhang HM, Min W, Hou ZA. Comparative effects of salt and alkali stress on antioxidant system in cotton (Gossypium hirsutum L.) leaves. Open Chem. 2019; 17(1): 1352-1360.
[7] Jia XM, Wang H, Svetla S, Zhu YF, Hu Y, Cheng L, Zhao T, Wang YX. Comparative physiological responses and adaptive strategies of apple Malus halliana to salt, alkali and saline-alkali stress. Sci Hortic. 2019; 245: 154-162.
[8] Ma HX, Meng CM, Zhang KX, Wang KY, Fan H, Li YB. Study on physiological mechanism of using cottonseed meal to improve salt–alkali tolerance of cotton. J Plant Growth Regul. 2020; 1-11.
[9] Wang XP, Geng SJ, Ri YJ, Cao DH, Liu J, Shi DC, Yang CW. Physiological responses and adaptive strategies of tomato plants to salt and alkali stresses. Sci Hortic. 2011; 130(1): 248-255.
[10] Kiełkowska A, Grzebelus E, Lis-Krzyścin A, Maćkowska K. Application of the salt stress to the protoplast cultures of the carrot (Daucus carota L.) and evaluation of the response of regenerants to soil salinity. Plant Cell Tiss Org. 2019; 137: 379-395.
[11] Mao L, Lu JG, Jiang HY. Mechanisms of plant responses to salt–alkali stress. Mol Plant Breeding. 2019; 1: 07-24.
[12] Gong XQ, Shi ST, Dou F, Ma FW. Exogenous melatonin alleviates alkaline stress in malus hupehensis rehd by regulating the biosynthesis of polyamines. Molecules. 2017; 22(9): 1542.
[13] Faghih S, Zarei A, Ghobadi C. Positive effects of plant growth regulators on physiology responses of fragaria × ananassa cv. ‘camarosa’ under salt stress. Int J Fruit Sci. 2018; 19(2): 104-114.
[14] Ashraf J, Zuo DY, Wang DY, Malik W, Zhang YP, Abid MA, Cheng HL, Yang QH, Song GL. Recent insights into cotton functional genomics: progress and future perspectives. Plant Biotechnol. J. 2018; 16(3): 699-713.
[15] Yin ZP, Zhang H, Zhao Q, Yoo MJ, Zhu N, Yu JL, Yu JJ, Guo SY, Miao YC, Chen SX, et al. Physiological and comparative proteomic analyses of saline-alkali NaHCO3-responses in leaves of halophyte Puccinellia tenuiflora. Plant Soil. 2019; 437(1-2): 137-158.
[16] Razzaq A, Ali A, Safdar LB, Zafar MM, Rui Y, Shakeel A, Shaukat A, Ashraf M, Gong WK, Yuan YL. Salt stress induces physiochemical alterations in rice grain composition and quality. J Food Sci. 2020; 85(1): 14-20.
[17] Wei YY, Xu YC, Lu P, Wang XX, Li ZQ, Cai XY, Zhou ZL, Wang YH, Zhang ZM, Lin ZX, et al. Salt stress responsiveness of a wild cotton species (Gossypium klotzschianum) based on transcriptomic analysis. Plos One. 2017; 12(5): e0178313.
[18] Chen L, Liu LT, Lu B, Ma TT, Jiang D, Li J, Zhang K, Sun HC, Zhang YJ, Bai ZY, et al. Exogenous melatonin promotes seed germination and osmotic regulation under salt stress in cotton (Gossypium hirsutum L.). Plos one. 2020; 15(1): e0228241.
[19] Guo HJ, Li SN, Min W, Ye J, Hou ZA. Ionomic and transcriptomic analyses of two cotton cultivars (Gossypium hirsutum L.) provide insights into the ion balance mechanism of cotton under salt stress. Plos One. 2019; 14(12): e0226776.
[20] Xu YC, Magwanga RO, Yang X, Jin DS, Cai XY, Hou YQ, Wei YY, Zhou ZL, Wang KB, Liu F. Genetic regulatory networks for salt-alkali stress in Gossypium hirsutum with differing morphological characteristics. BMC Genomics. 2020; 21(1): 1-15.
[21] Lee SB, Kwon HB, Kwon SJ, Park SC, Jeong MJ, Han SE, Byun MO, Daniell H. Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Mol Breed. 2003; 11: 1-13.
[22] Zhu JK. Abiotic stress signaling and responses in plants. Cell. 2016; 167(2): 313-324.
[23] Zhang YJ, Li DH, Zhou R, Wang X, Dossa K, Wang LH, Zhang YX, Yu JY, Gong HH, Zhang XR, et al. Transcriptome and metabolome analyses of two contrasting sesame genotypes reveal the crucial biological pathways involved in rapid adaptive response to salt stress. BMC Plant Biol. 2019; 19(1): 66-79.
[24] Zhao Q, He L, Wang B, Liu QL, Pan YZ, Zhang F, Jiang BB, Zhang L, Liu GL, Jia Y. Transcriptome comparative analysis of salt stress responsiveness in chrysanthemum (Dendranthema grandiflorum) roots by illumina- and single-molecule real-time-based RNA sequencing. DNA Cell Biol. 2018; 37(12): 1-15.
[25] Niu ML, Xie JJ, Chen C, Cao HS, Sun JY, Kong QS, Shabala S, Shabala L, Huang Y, Bie ZL. An early aba-induced stomatal closure, Na+ sequestration in leaf vein and K+ retention in mesophyll confer salt tissue tolerance in cucurbita species. J Exp Bot. 2018; 69(20): 4945-4960.
[26] Barragán V, Leidi EO, Andrés Z, Rubio L, Luca AD, Fernández JA, Cubero B, Pardo JM. Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell. 2012; 24: 1127-1142.
[27] Qiu QS, Guo Y, Quintero FJ, Pardo JM, Schumaker KS, Zhu JK. Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. J Biol Chem. 2004; 279: 207-215.
[28] Huang L, Kuang LH, Li X, Wu LY, Wu DZ, Zhang GP. Metabolomic and transcriptomic analyses reveal the reasons why Hordeum marinum has higher salt tolerance than Hordeum vulgare. Environ Exp Bot. 2018; 156: 48-61.
[29] Chakraborty K, Bishi SK, Goswami N, Singh AL, Zala PV. Differential fine-regulation of enzyme driven ROS detoxification network imparts salt tolerance in contrasting peanut genotypes. Environ Exp Bot. 2016; 128: 79-90.
[30] Zhang L, Ma HJ, Chen TT, Pen J, Yu SX, Zhao XH. Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity. Plos One. 2014; 9(11): e112807.
[31] Luo XL, Wu JH, Li YB, Nan ZR, Guo X, Wang YX, Zhang AH, Wang ZA, Xia GX, Tian YC. Synergistic effects of GhSOD1 and GhCAT1 overexpression in cotton chloroplasts on enhancing tolerance to methyl viologen and salt stresses. Plos One.2013; 8(1): e54002.
[32] Geng G, Lv C, Stevanato P, Li R, Liu H, Yu L, Wang Y. Transcriptome analysis of salt-sensitive and tolerant genotypes reveals salt-tolerance metabolic pathways in sugar beet. Int J Mol Sci. 2019; 20(23): E5910.
[33] Cui F, Sui N, Duan GY, Liu YY, Han Y, Liu SS, Wan SB, Li GW. Identification of metabolites and transcripts involved in salt stress and recovery in peanut. Front Plant Sci. 2018; 9: 217.
[34] Shafi A, Chauhan R, Gill T, Swarnkar MK, Sreenivasulu Y, Kumar S, Kumar N, Shankar R, Ahuja PS, Singh AK. Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress. Plant Mol Biol. 2015; 87(6): 615-631.
[35] Chun HJ, Baek D, Cho HM, Lee SH, Jin BJ, Yun DJ. Lignin biosynthesis genes play critical roles in the adaptation of Arabidopsis plants to high-salt stress. Plant Signal Behav. 2019; 14(8): 1625697.
[36] Dixon RA, Liu CG, Jun JH. Metabolic engineering of anthocyanins and condensed tannins in plants. Curr Opin Biotechnol. 2013; 24(2): 329-335.
[37] Shen X, Wang Z, Song X, Xu J, Jiang C, Zhao Y, Ma C, Zhang H. Transcriptomic profiling revealed an important role of cell wall remodeling and ethylene signaling pathway during salt acclimation inarabidopsis. Plant Mol Biol. 2014; 86(3): 303-317.
[38] Liu H, Guo ZH, Gu FW, Ke SW, Sun DY, Dong SY, Liu W, Huang M, Xiao WM, Yang GL, et al. 4-Coumarate-CoA ligase-like gene OsAAE3 negatively mediates the rice blast resistance, floret development and lignin biosynthesis. Front Plant Sci. 2017; 7: 2041.
[39] Vanholme B, Cesarino I, Goeminne G, Kim H, Marroni F, Van Acker R, Vanholme R, Morreel K, Ivens B, Pinosio S, et al. Breeding with rare defective alleles (BRDA): A natural populus nigra HCT mutant with modified lignin as a case study. New Phytol. 2013; 198(3): 765-776.
[40] Eudes A, Dutta T, Deng K, Jacquet N, Sinha A, Benites VT, Baidoo EEK, Richel A, Sattler SE, Northen TR, et al. SbCOMT (Bmr12) is involved in the biosynthesis of tricin-lignin in sorghum. Plos One. 2017; 12(6): e0178160.
[41] W Wagner A, Tobimatsu Y, Phillips L, Flint H, Geddes B, Lu F, Ralph J. Syringyl lignin production in conifers: Proof of concept in a pine tracheary element system. Proc Natl Acad Sci. 2015; 112(19): 6218-6223.
[42] Van Acker R, Déjardin A, Desmet S, Hoengenaert L, Vanholme R, Morreel K, Laurans F, Kim H, Santoro N, Foster C, et al. Different routes for conifer- and sinapaldehyde and higher saccharification upon deficiency in the dehydrogenase CAD1. Plant Physiol. 2017; 175(3): 1018-1039.
[43] Herrero J, Fernández-Pérez F, Yebra T, Novo-Uzal E, Pomar F, Pedreño MÁ, Cuello J, Guéra A, Esteban-Carrasco A, Zapata JM. Bioinformatic and functional characterization of the basic peroxidase 72 from Arabidopsis thaliana involved in lignin biosynthesis. Planta. 2013; 237(6): 1599-1612.
[44] Liu QQ, Luo L, Zheng LQ. Lignins: Biosynthesis and biological functions in plants. Int J Mol Sci. 2018; 19(2): 335.
[45] Paoletti F, Aldinucci D, Mocali A, Caparrini A. A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Anal Biochem. 1986; 154(2): 536-541.
[46] Zhou W, Leul M. Uniconazole-induced tolerance of rape plants to heat stress in relation to changes in hormonal levels, enzyme activities and lipid peroxidation. Plant Growth Regul. 1999; 27(2): 99-104.
[47] Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol. 1992; 98(4): 1222-1227.
[48] Heath RL, Packer L. Photoperoxidation in isolated chloroplasts: I. kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 1968; 125(1): 189-198.
[49] Lutts S, Kinet JM, Bouharmont J. NaCl-induced senescence in leaves of rice (Oryza satival.) cultivars differing in salinity resistance. Ann Bot-London. 1996; (3): 389-398.
[50] Bao SD. Soil agrochemical analysis, 3rd edition. China Agriculture Press, Beijing. 2000.
[51] Ma W, Li X, Shen J, Du Y, Xu K, Jiang Y. Transcriptomic analysis reveals Apis mellifera adaptations to high temperature and high humidity. Ecotoxicol Environ Saf. 2019; 184: 109599.
[52] Chen SF, Zhou YQ, Chen YR, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor bioinformatics. 2018; 34 (17): 884-890.
[53] Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, Ju L, Deng J, Zhao T, Lian J. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet. 2019; 51(4): 739-748.
[54] Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017; 14(4): 417-419.
[55] Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12): 550.
[56] Yu G, Wang LG, Han Y, He QY. Clusterprofiler: An R package for comparing biological themes among gene clusters. OMICS. 2012; 16(5): 284-287.