Bader, G. G., Witt-Engerström, I., & Hagberg, B. (1989). Neurophysiological findings in the Rett syndrome, II: Visual and auditory brainstem, middle and late evoked responses. Brain and Development, 11(2), 110–114. https://doi.org/10.1016/S0387-7604(89)80078-6
Bernardo, P., Cobb, S., Coppola, A., Tomasevic, L., Di Lazzaro, V., Bravaccio, C., Manganelli, F., & Dubbioso, R. (2020). Neurophysiological Signatures of Motor Impairment in Patients with Rett Syndrome. Annals of Neurology, 763–773. https://doi.org/10.1002/ana.25712
Bhattacherjee, A., Winter, M., Eggimann, L., Mu, Y., Gunewardena, S., Liao, Z., Christianson, J., & Smith, P. (2017). Motor, Somatosensory, Viscerosensory and Metabolic Impairments in a Heterozygous Female Rat Model of Rett Syndrome. International Journal of Molecular Sciences, 19(1), 97. https://doi.org/10.3390/ijms19010097
Chahrour, M., & Zoghbi, H. Y. (2007). The Story of Rett Syndrome: From Clinic to Neurobiology. In Neuron (Vol. 56, Issue 3, pp. 422–437).
De Filippis, B., Musto, M., Altabella, L., Romano, E., Canese, R., & Laviola, G. (2015). Deficient Purposeful Use of Forepaws in Female Mice Modelling Rett Syndrome. Neural Plasticity, 2015. https://doi.org/10.1155/2015/326184
De Filippis, B., Nativio, P., Fabbri, A., Ricceri, L., Adriani, W., Lacivita, E., Leopoldo, M., Passarelli, F., Fuso, A., & Laviola, G. (2014). Pharmacological stimulation of the brain serotonin receptor 7 as a novel therapeutic approach for rett syndrome. Neuropsychopharmacology, 39(11), 2506–2518. https://doi.org/10.1038/npp.2014.105
Engineer, C. T., Perez, C. A., Carraway, R. S., Chang, K. Q., Roland, J. L., & Kilgard, M. P. (2014). Speech training alters tone frequency tuning in rat primary auditory cortex. Behavioural Brain Research, 258, 166–178. https://doi.org/10.1016/j.bbr.2013.10.021
Engineer, C. T., Perez, C. A., Chen, Y. H., Carraway, R. S., Reed, A. C., Shetake, J. A., Jakkamsetti, V., Chang, K. Q., & Kilgard, M. P. (2008). Cortical activity patterns predict speech discrimination ability. Nature Neuroscience, 11(5), 603–608. https://doi.org/10.1038/nn.2109
Engineer, C. T., Rahebi, K. C., Borland, M. S., Buell, E. P., Centanni, T. M., Fink, M. K., Im, K. W., Wilson, L. G., & Kilgard, M. P. (2015). Degraded neural and behavioral processing of speech sounds in a rat model of Rett syndrome. Neurobiology of Disease, 83(6), 26–34. https://doi.org/10.1016/j.nbd.2015.08.019
Foxe, J. J., Burke, K. M., Andrade, G. N., Djukic, A., Frey, H.-P., & Molholm, S. (2016). Automatic cortical representation of auditory pitch changes in Rett syndrome. Journal of Neurodevelopmental Disorders, 8(1), 34. https://doi.org/10.1186/s11689-016-9166-5
Gandaglia, A., Brivio, E., Carli, S., Palmieri, M., Bedogni, F., Stefanelli, G., Bergo, A., Leva, B., Cattaneo, C., Pizzamiglio, L., Cicerone, M., Bianchi, V., Kilstrup-Nielsen, C., D’Annessa, I., Di Marino, D., D’Adamo, P., Antonucci, F., Frasca, A., & Landsberger, N. (2019). A Novel Mecp2 Y120D Knock-in Model Displays Similar Behavioral Traits But Distinct Molecular Features Compared to the Mecp2-Null Mouse Implying Precision Medicine for the Treatment of Rett Syndrome. Molecular Neurobiology, 56(7), 4838–4854. https://doi.org/10.1007/s12035-018-1412-2
Goffin, D., Allen, M., Zhang, L., Amorim, M., Wang, I.-T. J., Reyes, A.-R. S., Mercado-Berton, A., Ong, C., Cohen, S., Hu, L., Blendy, J. a, Carlson, G. C., Siegel, S. J., Greenberg, M. E., & Zhou, Z. (2011). Rett syndrome mutation MeCP2 T158A disrupts DNA binding, protein stability and ERP responses. Nature Neuroscience, 15(2), 274–283. https://doi.org/10.1038/nn.2997
Guy, J., Hendrich, B., Holmes, M., Martin, J. E., & Bird, a. (2001). A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nature Genetics, 27(3), 322–326. https://doi.org/10.1038/85899
Hagberg, B., Witt-Engerström, I., Opitz, J. M., & Reynolds, J. F. (1986). Rett Syndrome: A suggested staging system for describing impairment profile with increasing age towards adolescence. American Journal of Medical Genetics, 25(S1), 47–59. https://doi.org/10.1002/ajmg.1320250506
Hays, S. A., Khodaparast, N., Sloan, A. M., Fayyaz, T., Hulsey, D. R., Ruiz, A. D., Pantoja, M., Kilgard, M. P., & Rennaker, R. L. (2013). The bradykinesia assessment task: An automated method to measure forelimb speed in rodents. Journal of Neuroscience Methods, 214(1), 52–61. https://doi.org/10.1016/j.jneumeth.2012.12.022
Hulsey, D. R., Hays, S. A., Khodaparast, N., Ruiz, A., Das, P., Rennaker, R. L., & Kilgard, M. P. (2016). Reorganization of Motor Cortex by Vagus Nerve Stimulation Requires Cholinergic Innervation. Brain Stimulation, 9(2), 174–181. https://doi.org/10.1016/j.brs.2015.12.007
Hulsey, D. R., Shedd, C. M., Sarker, S. F., Kilgard, M. P., & Hays, S. A. (2019). Norepinephrine and serotonin are required for vagus nerve stimulation directed cortical plasticity. Experimental Neurology, 320(February), 112975. https://doi.org/10.1016/j.expneurol.2019.112975
Kálmánchey, R. (1990). Evoked potentials in the rett syndrome. Brain and Development, 12(1), 73–76. https://doi.org/10.1016/S0387-7604(12)80181-1
Kawahara, H. (1997). Speech representation and transformation using adaptive interpolation of weighted spectrum: vocoder revisited. 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2, 1303–1306. https://doi.org/10.1109/ICASSP.1997.596185
Liao, W., Gandal, M. J., Ehrlichman, R. S., Siegel, S. J., & Carlson, G. C. (2012). MeCP2+/- mouse model of RTT reproduces auditory phenotypes associated with Rett syndrome and replicate select EEG endophenotypes of autism spectrum disorder. Neurobiology of Disease, 46(1), 88–92. https://doi.org/10.1016/j.nbd.2011.12.048
Morello, N., Schina, R., Pilotto, F., Phillips, M., Melani, R., Plicato, O., Pizzorusso, T., Pozzo-Miller, L., & Giustetto, M. (2018). Loss of Mecp2 causes atypical synaptic and molecular plasticity of parvalbumin-expressing interneurons reflecting rett syndrome-like sensorimotor defects. Eneuro, 5(October), ENEURO.0086-18.2018. https://doi.org/10.1523/ENEURO.0086-18.2018
Moretti, P., Levenson, J. M., Battaglia, F., Atkinson, R., Teague, R., Antalffy, B., Armstrong, D., Arancio, O., Sweatt, J. D., & Zoghbi, H. Y. (2006). Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 26(1), 319–327.
Morrison, R. A., Hulsey, D. R., Adcock, K. S., Rennaker, R. L., Kilgard, M. P., & Hays, S. A. (2019). Vagus nerve stimulation intensity influences motor cortex plasticity. Brain Stimulation, 12(2), 256–262. https://doi.org/10.1016/j.brs.2018.10.017
Patterson, K. C., Hawkins, V. E., Arps, K. M., Mulkey, D. K., & Olsen, M. L. (2016). MeCP2 deficiency results in robust Rett-like behavioural and motor deficits in male and female rats. Human Molecular Genetics, 25(15), 3303–3320. https://doi.org/10.1093/hmg/ddw179
Samaco, R. C., Fryer, J. D., Ren, J., Fyffe, S., Chao, H. T., Sun, Y., Greer, J. J., Zoghbi, H. Y., & Neul, J. L. (2008). A partial loss of function allele of Methyl-CpG-binding protein 2 predicts a human neurodevelopmental syndrome. Human Molecular Genetics, 17(12), 1718–1727. https://doi.org/10.1093/hmg/ddn062
Samaco, R. C., Mcgraw, C. M., Ward, C. S., Sun, Y., Neul, J. L., & Zoghbi, H. Y. (2013). Female Mecp2+/- mice display robust behavioral deficits on two different genetic backgrounds providing a framework for pre-clinical studies. Human Molecular Genetics, 22(1), 96–109. https://doi.org/10.1093/hmg/dds406
Stach, B. A., Stoner, W. R., Smith, S. L., & Jerger, J. F. (1994). Auditory evoked potentials in Rett syndrome. Journal of the American Academy of Audiology, 5(3), 226–230. https://doi.org/10.3171/JNS/2008/108/5/0950
Stauder, J. E. A., Smeets, E. E. J., van Mil, S. G. M., & Curfs, L. G. M. (2006). The development of visual- and auditory processing in Rett syndrome: An ERP study. Brain and Development, 28(8), 487–494. https://doi.org/10.1016/j.braindev.2006.02.011
Stearns, N. A., Schaevitz, L. R., Bowling, H., Nag, N., Berger, U. V., & Berger-Sweeney, J. (2007). Behavioral and anatomical abnormalities in Mecp2 mutant mice: A model for Rett syndrome. Neuroscience, 146(3), 907–921. https://doi.org/10.1016/j.neuroscience.2007.02.009
Ure, K., Lu, H., Wang, W., Ito-Ishida, A., Wu, Z., He, L. J., Sztainberg, Y., Chen, W., Tang, J., & Zoghbi, H. Y. (2016). Restoration of Mecp2 expression in GABAergic neurons is sufficient to rescue multiple disease features in a mouse model of Rett syndrome. ELife, 5(JUN2016), 1–21. https://doi.org/10.7554/eLife.14198
Veeraragavan, S., Wan, Y. W., Connolly, D. R., Hamilton, S. M., Ward, C. S., Soriano, S., Pitcher, M. R., McGraw, C. M., Huang, S. G., Green, J. R., Yuva, L. A., Liang, A. J., Neul, J. L., Yasui, D. H., LaSalle, J. M., Liu, Z., Paylor, R., & Samaco, R. C. (2015). Loss of MeCP2 in the rat models regression, impaired sociability and transcriptional deficits of Rett syndrome. Human Molecular Genetics, 25(15), 3284–3302. https://doi.org/10.1093/hmg/ddw178
Wu, Y., Zhong, W., Cui, N., Johnson, C. M., Xing, H., Zhang, S., & Jiang, C. (2016). Characterization of Rett Syndrome-like phenotypes in Mecp2-knockout rats. Journal of Neurodevelopmental Disorders, 8(1), 23. https://doi.org/10.1186/s11689-016-9156-7
Zappella, M., Meloni, I., Longo, I., Canitano, R., Hayek, G., Rosaia, L., Mari, F., & Renieri, A. (2003). Study ofMECP2 gene in Rett syndrome variants and autistic girls. American Journal of Medical Genetics, 119B(1), 102–107. https://doi.org/10.1002/ajmg.b.10070