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Abstract

Background
The incidence and mortality rate of esophageal carcinoma (ESCA) remains high. This study proposed to
explore the promising prognostic markers based on m6A RNA methylation regulators, and �nally to
improve the prognostic assessment for ESCA patients.

Methods
The RNA sequencing and relevant clinical data of ESCA and normal tissues were obtained from The
Cancer Genome Atlas (TCGA) database. Then, we evaluated the expression pattern of 13 m6A
methylation regulators in ESCA and normal samples. Two groups of ESCA were divided by the consensus
clustering analysis. STRING database and R package were used to construct the protein-protein
interaction network and conduct correlation analysis, respectively. Cox regression and least absolute
shrinkage and selection operator (LASSO) regression analyses were performed to develop the multiple-
gene risk signature. Kaplan-Meier method and receiver operating characteristic (ROC) curves were used to
assess the accuracy of the model. The clinical nomogram combining clinicpathological factors and gene
signature was built to predict survival rate of ESCA patients. Gene set enrichment analysis (GSEA) and
networks prediction analysis were conducted to explore the signaling pathways that related to the risk
genes.

Results
Eight m6A methylation regulators (HNRNPC, YTHDF1, METTL3, YTHDF2, WTAP, YTHDC1, KIAA1429, and
RBM15) were signi�cantly upregulated in ESCA. Two clusters of ESCA with obvious differences in tumor
stage were identi�ed via the consensus clustering analysis. A two-gene signature, ALKBH5 and HNRNPC,
was established for predicting the prognosis of ESCA patients. Kaplan-Meier curves illustrated that the
overall survival of patients in low-risk group was obviously longer than that of patients in high-risk group
(P = 1.411e-02). Importantly, risk score and tumor stage were identi�ed as the independent prognostic
indicators. The testing dataset GSE13898 showed that the nomogram had a good capacity to assess the
prognosis of ESCA patients. Cell cycle, mTOR pathway, and p53 signaling pathway were found to be
related to the dysregulation of risk genes.

Conclusions
m6A RNA methylation regulators ALKBH5 and HNRNPC could act as prognostic indicators and
therapeutic targets for prognostic analysis and cancer treatment of ESCA.
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1. Background
Esophageal carcinoma (ESCA) is the seventh most commonly diagnosed cancer worldwide, with 572,000
new cases and 509,000 deaths estimated in 2018[1]. The development of ESCA is a complex process
which is in�uenced by many factors[2]. The major risk factors of ESCA are obesity, heavy drinking, gastric
re�ux, and smoking[3]. Although much progress has been made in the early screen and treatment
strategy of ESCA, this disease remains a profound public health burden [3]. Radical esophageal resection
is the mainstay of treatment for patients with resectable ESCA. However, the overall survival (OS) of ESCA
patients has remained poor over the past decades[4]. Thus, it is of great importance to identify the
prognostic biomarkers for ESCA patients, especially for these with high risk and may receive bene�t from
the timely treatment.

RNAs play a crucial role in various cellular processer, and its emerging roles in the regulation of tumor
progress have been gradually revealed during the past decade[5]. To date, RNA modi�cations have been
identi�ed in various RNAs, including mRNA, non-coding RNA, and others [5, 6]. So far, there are more than
150 known RNA modi�cations forms have been reported, including 5-methylcytosine, N6-
methyladenosine (m6A), N7-methyladenosine, etc[7]. Among these, N6-methyladenosine (m6A) is widely
found in various RNAs and is regarded as the most abundant types of mRNA modi�cations [8]. Generally,
RNA m6A modi�cation can modulate RNA transcription, translocation, metabolism, and RNA splicing [8–
10]. The process of RNA m6A modi�cation is dynamic and reversible[10], which is regulated by a
methyltransferase complex called “writers” (KIAA1429, RBM15, METTL3, METTL14, ZC3H13, and WTAP),
“readers” (YTHDF1, YTHDF2, YTHDC1, YTHDC2, and HNRNPC), and “erasers” (ALKBH5 and FTO). The
dysregulation of m6A RNA methylation regulators is found to be related to several diseases including
obesity, autoimmune diseases, and cancers [11, 12]. For example, METTL14 exerts an oncogenic role
through regulating its mRNA targets (MYB and MYC) by m6A modi�cation in leukemogenesis [13].
Controversy, METTL3-mediated m6A modi�cation plays a tumor suppressor role in colorectal cancer [14].
Thus, the m6A methylation regulators may play different roles in different cancers. Considering the
limited reports of the role of m6A methylation in ESCA, studying on the clinical values of m6A methylation
regulators in ESCA is highly needed.

In this study, we comprehensively analyzed the expression pattern of 13 widely studied m6A RNA
methylation regulators in 160 ESCA and 11 normal tissues from the Cancer Genome Atlas (TCGA)
datasets. The correlation of these m6A regulators and its relationship with patients’ clinical features were
explored. Based on the result of Cox regression and LASSO regression analysis, a two-gene signature
based on m6A RNA regulators was constructed, which presented good performance in predicting the
prognosis of ESCA patients. A nomogram combining the clinicalpathological factors and

risk gene signature was established to predict the individual’s survival rate in ESCA. Finally, several
important pathways (cell cycle, mTOR pathway, and p53 signaling pathway) were found to be associated
with the dysregulation of risk genes.
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2. Material And Methods

2.1 Data collection and procession
The RNA-sequencing transcriptome data and clinicopathological information of 160 ESCA patients and
11 normal samples were obtained from The Cancer Genome Atlas (https://cancergenome.nih.gov/)
database. Data procession was performed as the previous studies[15, 16]. GSE13898 dataset was
downloaded from the GEO database (https://www.ncbi.nlm.nih.gov/geo/) for validation [17]. This study
was conducted according to the �ow chart (Figure. 1)

2.2 Identi�cation of differentially expressed m6A RNA
methylation regulators
According to the recent published literature of m6A RNA methylation regulators in human cancer [15, 16],
13 m6A RNA methylation regulators (METTL3, METTL14, WTAP, KIAA1429, RBM15, ZC3H13, YTHDC1,
YTHDC2, YTHDF1, YTHDF2, HNRNPC, FTO, and ALKBH5) with available expression pro�les in the TCGA-
ESCA dataset were included (Table 1). The Wilcoxon signed-rank test was applied to screen the
differentially expressed m6A RNA methylation regulators between ESCA and normal tissues with P < 0.05.
Subsequently, the expression data of the m6A RNA methylation regulators were combined with the
corresponding clinical data. The “pheatmap” and “vioplot” packages in R software were used to visualize
the expression patterns of m6A regulators.

2.3 Consensus clustering analysis
The “Consensus ClusterPlus” package was used to divide the ESCA samples into different clusters[18].
Subsequently, the principal component analysis (PCA) was performed to evaluate the gene expression
patterns of m6A RNA methylation regulators in two ESCA clusters. Then, “survival” package was used to
compare the OS of patients in two ESCA clusters. The clinicopathologic features and expression patterns
of m6A RNA methylation regulators in two groups were presented by “pheatmap” package.

2.4 Protein-protein interaction network construction,
correlation analysis, and KEGG enrichment
STRING database (https://string-db.org/; Version: 11.0) was used to construct the protein-protein
interaction (PPI) network for these 13 m6A methylation regulators. Subsequently, the hub genes within the
PPI network were screened via CytoHubba-plugin in Cytoscape software according to the degree of
connectivity. The correlation analysis was conducted by “corrplot” package to explore the relationships
among the m6A regulators. KEGG analysis of the 13 m6A methylation regulators was conducted via the
FunRich tool (FunRich 3.0)[19].

2.5 Construction of prognostic gene signature
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The cBio Cancer Genomics database (https://www.cbioportal.org/) was used to investigate the genetic
alteration information of 13 m6A methylation regulators [20]. Univariate Cox regression analysis was
performed to exp lore the relationships between the expression of m6A RNA methylation regulators and
patients’ survival [21]. Then, these 13 m6A methylation regulators were entered into a LASSO regression
analysis[15]. Two m6A regulators were screened as the prognostic factors by LASSO regression analysis.
Moreover, the prognostic roles of these two genes were explored using the Kaplan-Meier plotter website
(http://kmplot.com/analysis/index.php), a free available tool based on GEO database, European Genome-
phenome Archive (EGA) database, and TCGA database[22]. These two m6A regulators were then used to
develop a potential risk signature as previous study[23]. Each patient with ESCA was assigned a risk
score according to the formula. The predictive formula was calculated as following: risk score =
(Coe�cient gene1 × Expression gene1) + (Coe�cient gene2 × Expression gene2) [24]. The Kaplan-Meier curve
and receiver operating characteristic (ROC) curve were applied to assess the predictive e�ciency of the
gene signature.

2.6 Identi�cation of the independent prognostic indicators
in ESCA
Univariate and multivariate Cox regression analyses were performed to identify the independent
prognostic factors for ESCA patients (including age, gender, stage, T (primary tumor), M (metastasis), N
(lymph nodes), and risk score). In addition, the Kaplan-Meier curves were conducted to compare the OS
difference between the low-risk and high-risk groups strati�ed by gender age, and stage.

2.7 Construction and validation of the clinical nomogram
A nomogram based on the independent prognostic factors (stage and risk score) was develop for
predicting the 1-year and 3-year survival rate of ESCA patients [25]. The calibration curves were used to
evaluate the performance of the nomogram. GSE13898 ESCA dataset was downloaded and used to
validate the accuracy of the nomogram.

2.8 Gene set enrichment analysis (GSEA)
160 ESCA patients were divided into high expression and low expression group according to the median
expression value of ALKBH5 or HNRNPC. GSEA (http://software.broadinstitute.org/gsea/index.jsp) was
performed to analyze HNRNPC or ALKBH5 gene related biological pathways and biological processes
[26]. The normalized enrichment score (NES) and nominal p-value were applied to sort the pathways and
processes enriched in each phenotype [27].

2.9 Establishment of transcription factors (TFs)-genes
networks and miRNA-genes networks
The NetworkAnalysis database (http://www.networkanalyst.ca) was applied to build the TFs-genes
networks and miRNA-genes networks for HNRNPC and ALKBH5 [28]. The ENCODE database with ChIP-
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seq data in the NetworkAnalysis platform was used to predict the potential TFs [28]. The miRNA-gene
networks were predicted by the TarBase and miRTarBase in the NetworkAnalysis platform.

2.10 Statistical analysis
The Perl language and R statistical package (R version 3.6.3) were used to conduct all the statistical tests
and graphics unless otherwise stated. P < 0.05 was considered as statistical signi�cance.

3. Results

3.1 Expression patterns of m6A RNA methylated regulators
in ESCA
The m6A RNA methylation regulators play a crucial role in the cancer development and progression. Thus,
we �rstly explored the expression patterns of these 13 genes in 160 ESCA tissues and 11 normal tissues
in TCGA dataset. As shown in Figure. 2a and Figure. 2b, HNRNPC, YTHDF1, METTL3, YTHDF2, WTAP,
YTHDC1, KIAA1429, and RBM15 were upregulated in ESCA tissues as compared with normal samples.
According to Figure. 2c, some of the m6A RNA methylation regulators were positively correlated with
others. For example, YTHDC1 gene and METTL14 gene are most relevant. While YTHDC1 is
overexpressed, METTL14 is most likely to be overexpressed (Figure. 2c). To explore the interaction of the
13 m6A RNA methylation regulators, STRING database (https://string-db.org/; Version: 11.0) was applied
to construct the PPI network of the these genes (Figure. 2d). The 13 m6A RNA methylation regulators
presented complicated interactions among each other. Moreover, 5 genes (METTL14, RBM15, METTL3,
WTAP, and KIAA1429) were considered as the hub genes according to the degree connectivity (Figure.
S1). To better understand the biological functions of m6A RNA methylation regulators in ESCA, KEGG
analysis were performed for these 13 genes, as shown in Figure. S2, KEGG analysis showed that these
genes were mainly enriched in processing of capped intron-containing pre-mRNA, mRNA processing, and
formation and maturation of mRNA transcript, gene expression, and regulation of telomerase, etc.

3.2 Clustering of ESCA patients and prognosis of two
clusters
According to the expression similarity of m6A RNA methylation regulators, “Consensus ClusterPlus”
package in R software was applied to clustered the ESCA cases into different groups. As a result, k = 2
was selected as the most appropriate index, which could cluster the ESCA patients into two cohorts
(cluster 1 and cluster 2) with ideal stability (Figure. 3). Moreover, the principal component analysis (PCA)
demonstrated that cluster 1 and cluster 2 had an obvious distinction of the transcriptional pro�le (Figure.
S3). Then, Kaplan-Meier method was used to compare the OS of ESCA patients between cluster 1 and
cluster 2. Figure. S4a showed that the ESCA patients in cluster 1 presented a trend with shorter OS
compared to cluster 2 although it was not statistically signi�cant (P = 0.333). However, the relationship
analysis of the clinicopathological features showed obvious difference for the stage factor between the
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two clusters (P < 0.01) (Figure. S4b). Taking together, the above results indicated that the clustering result
was associated with the clinicopathological factors and tumorigenesis of ESCA.

3.3 Construction of the risk gene signature for ESCA
To investigate the contributions of the 13 m6A RNA methylation regulators to ESCA, the genetic alteration
information of these regulators were explored in the cBio Cancer Genomics database. The Nature 2017
ESCA dataset (265 cases) and Firehose Legacy ESCA dataset (184 cases) of ESCA were both included.
The 13 m6A RNA methylation regulators were altered in 97 (37%) of 265 queried patients (TCGA ESCA,
Nature 2017 dataset) (Figure. S5a), compared with that altered queried genes were detected in 62 (34%)
of 184 queried patients (TCGA ESCA, Firehose Legacy dataset) (Figure. S5b). These �ndings indicated
that the 13 m6A RNA methylation regulators play a crucial role in esophageal carcinogenesis.

To explore the prognostic value of m6A RNA methylation regulators in ESCA, we conducted the univariate
Cox regression analysis to screen the regulators related to OS of ESCA patients. The results showed that
ALKBH5 was markedly associated with OS with HR = 0.956 (P = 0.013). In addition, HNRNPC was weekly
associated with the OS of ESCA patients (P = 0.168) (Figure. 4a). We then explored the prognostic roles of
these two genes in Kaplan-Meier plotter website (http://kmplot.com/analysis/index.php), the results
showed that overexpression of ALKBH5 might lead to a better prognosis in ESCA, while high level of
HNRNPC could predict poor outcome in ESCA patients (Figure. S6).

In order to get a better understanding of the relationships between the m6A RNA methylation regulators
expression and prognosis of ESCA patients, LASSO regression analysis was conducted for these 13
genes. Figure. 4b presented the regression coe�cient of these 13 genes in ESCA. As shown in Figure. 4c,
when the two genes (ALKBH5 and HNRNPC) were included, the model achieved the best performance.
Finally, a stepwise multivariate Cox regression was performed to construct the optimal risk signature
based on these two genes. Each ESCA patient received a risk score calculated as follows: risk score =
(-0.027844 × expression value of ALKBH5) + (0.008465 × expression value of HNRNPC). Then, the ESCA
patients were divided into low-risk and high-risk group according to the median value of risk score. The
Kaplan-Meier curves showed that ESCA patients with high risk score had a poorer survival than those
with low risk score (P = 1.411e-02) (Figure. 4d). The ROC curve showed that the risk score curve had a
good feasibility in predicting the individuals’ survival rate with AUC of 0.644 (Figure. 4e). Figure. 4f
illustrated that the survival time of ESCA patients decreases along with the rising of risk score. Therefore,
the above results suggesting that this risk gene signature could effectively identify the high risk ESCA
patients with poor OS.

3.4 The risk score and stage were independent prognostic
indicators in ESCA
Univariate and multivariate Cox regression analyses were performed to identify the independent
prognostic indicators in ESCA. As shown in Figure. 5a, gene signature-based risk score was closely
related to the worse OS in EC (HR = 55.941, 95% CI:7.540-415.025, P < 0.001). In addition, stage (HR = 
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2.625, 95% CI:1.778–3.878, P < 0.001) and N (lymph nodes) (HR = 55.941, 95% CI:1.077–1.888, P = 0.013)
were also demonstrated to be associated with the OS. Then, all factors were entered into the multivariate
Cox analysis. Importantly, gene signature based risk score (HR = 52.021, 95% CI:6.110-442.934, P < 0.001)
and stage (HR = 2.608, 95% CI:1.598–4.255, P < 0.001) were still identi�ed as the independent prognostic
factors for poorer OS in ESCA patients (Figure. 5b).

Finally, we also performed subgroup analysis to assess the prognostic role of the two-gene risk signature
in ESCA patients according to several clinicopathological factors (grade, stage, and age). ESCA patients
with high risk score in subgroup of female, stage III-IV, and patients with age > 65 had dramatically lower
OS than patients with low risk score (Figure. 6) (P < 0.05), suggesting that the two-gene based signature
have good ability to discriminate the patients with poor OS. Other subgroups also presented similar
trends but not statistically signi�cant.

3.5 Construction and validation of a clinical nomogram
The nomogram was used to quantitatively evaluate the patients’ survival rate through integrating the
independent prognostic factors (stage and risk score). The total points of risk factors were used to
assess the patients’ 1-year and 3-year survival rates (Figure. 7a). The concordance index (C-index) was
0.70 (95% CI: 0.62–0.79). Moreover, calibration curves showed good concordance between the
nomogram-predicted survival and actual survival (Figure. 7b-7c), especially for the 3-year survival.
Importantly, we validated the nomogram in the GSE13898 ESCA dataset, and the 1-year and 3-year
calibration curves was also presented good concordance between the nomogram-predicted survival and
actual survival (Figure. 7d-7e). These result suggested that the clinical nomogram performs well in
predicting the prognosis of ESCA patients.

3.6 Identi�cation of ALKBH5 and HNRNPC related signaling
pathway and biological processes via GSEA
To explore the signaling pathways and biological processes that are differentially activated in the ESCA
development and progression, GSEA was conducted between high and low ALKBH5 or HNRNPC
expression datasets respectively. According to the normalized enrichment score (NES) and NOM p-value 
< 0.05, the most signi�cantly enriched signaling pathways and biological processes were selected and
presented in Figure. 8 and Figure. S6, respectively. Figure. 8a-8c showed that cell cycle, DNA replication,
and mTOR signaling pathway were differentially enriched in ALKBH5 high expression phenotype, while
cell cycle, pentose phosphate pathway, and p53 signaling pathway were activated in HNRNPC high
expression phenotype. As for the signi�cant terms of biological processes, DNA biosynthetic process,
DNA recombination, and DNA repair were associated with ALKBH5 overexpression (Figure. 6Sa), whereas
phospholipase C activity and regulation of cellular extravasation were mainly related to low expression
phenotype of HNRNPC (Figure. 6Sb).

3.7 Construction of TFs-genes networks and miRNA-genes
networks for ALKBH5 and HNRNPC
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To explore the contributions of ALKBH5 and HNRNPC to the development of ESCA. The TFs-genes
networks and miRNA-genes networks of ALKBH5 and HNRNPC were constructed (Fig. 9a-9b). The
numbers of TFs and miRNAs in the networks were 60 and 143, respectively. In the TFs-genes networks
(Fig. 9a), ALKBH5 and HNRNPC shared 6 TFs (ZNF580, MBD11, GATA4, SP7, HDGF, and KLF9). In the
miRNA-genes networks (Fig. 9b), miR-4747-5p, miR-4698, miR-484, miR-5196-5p, miR-8063, miR-4773,
miR-615-3p and miR-4531 could regulate both ALKBH5 and HNRNPC. Taking together, the TFs-genes
networks and miRNA-genes may provide novel clues for the in-depth studies of ESCA.

4. Discussion
ESCA is one of the major causes of cancer-related mortality worldwide. So far, there are no effective
treatment strategies for advanced ESCA patients, leading to a poor 5-year survival rate. To optimize and
personalize the treatments for ESCA patients, an accurate prognostic judgment is important during the
cancer management. So far, the tumor node metastasis (TNM) classi�cation is the most commonly
utilized tool for predicting the prognosis in cancer patients [29]. However, increasing evidences
demonstrated the unsatisfactory discriminative capacity of TNM system in predicting clinical outcomes
[30, 31]. With the development of life science and technology, more and more prognostic markers have
been identi�ed for ESCA [3]. However, the existing markers may lack su�cient sensitivity and speci�city
in cancer prognosis. The gene signature based prognostic index model holds promising in prognostic
prediction, thus may help to improve the personalized medicine.

To the best of our knowledge, this study �rstly investigated the prognostic roles of reported m6A RNA
methylation regulators in ESCA. Firstly, 8 out of 13 m6A RNA regulators were found to be dysregulated in
ESCA, implying its crucial roles in the development of ESCA. Moreover, two clusters of ESCA presented
signi�cant difference in tumor stage, which also indicated that the expression pattern of these regulators
were associated with the malignancy of ESCA. Previously, yang et al reported that genetic variants of
m6A modi�cation genes could affect the ESCA susceptibility [32]. In this study, we also found that genetic
alteration of these gene was common in ESCA according to the cBio Cancer Genomics database. These
results, taking together, suggested that m6A RNA methylation play a signi�cant role in modulating the
malignant process of ESCA. Subsequently, we conducted the Cox regression and LASSO regression
analyses to build a gene signature with two m6A RNA regulators, ALKBH5 and HNRNPC, which divided
the ESCA patients into two groups (high-risk and low-risk groups). The results showed that the two-gene
based signature could effectively discriminate the patients with different OS (P = 1.411e-02), and
presented a great performance in prognosis prediction. What’s more, the univariate and multivariate Cox
regression analyses further proved that the risk score calculated by the gene signature was an
independent prognostic indicator with the highest HR value than other factors. Subgroup analysis also
showed that this two-gene signature have good ability to distinguish the patients with poor OS in group
of female, stage III-IV, and patients with age > 65. Other subgroups presented similar trends although with
no signi�cant difference. One reasonable explanation for it may due to the limited number of ESCA
patients in TCGA database. The clinical nomogram based on the independent prognostic factors was
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established and validated to have a good ability in predicting the 1-year and 3-year survival rate of ESCA
patients.

In the two-gene signature, ALKBH5 was proved to be a protective gene in ESCA, while high level of
HNRNPC was associated with poor OS. The progression of esophageal carcinomas is in�uenced by the
complex gene networks, our predicted TFs-genes networks and miRNA-genes networks of ALKBH5 and
HNRNPC may provide powerful bases for in-depth studies regarding the molecular mechanisms of ESCA.
Currently, the biological functions of ALKBH5 and HNRNPC have been investigated in various researches.
Previously, He et al. demonstrated that ALKBH5 can suppress pancreatic cancer by demethylating lncRNA
KCNK15-AS1[33]. Moreover, ALKBH5 can inhibit pancreatic cancer through regulating WIF-1 RNA
methylation and Wnt signaling pathway[34]. On the contrary, ALKBH5 was also reported to be an
candidate oncogene in other cancers, including ovarian cancer[35], breast cancer[36], and gastric cancer
[37]. Given that the opposite role of ALKBH5 in different cancers, more experimental studies are highly
demand. In our study, several ALKBH5-related signaling pathways were screened by GESA, including cell
cycle, DNA replication, and mTOR signaling pathway. Recently, a study reported that ALKBH5 can activate
EGFR-PIK3CA-AKT-mTOR signaling pathway in ovarian cancer [35]. These �ndings suggested that
ALKBH5-mTOR pathway may be an available therapeutic pathway for cancer treatment. HNRNPC mainly
function as an oncogenic role in cancers[38, 39]. Previously, studies found that the abnormally expressed
HNRNPC was related to the LBX2-AS1 pathway[40] and JAK-STAT1 signaling pathway[39] in several
cancers. But the association between the HNRNPC expression and cell cycle related pathway, pentose
phosphate pathway, and p53 signaling pathway was �rstly reported here, thus the regulatory
mechanisms required to be elucidated in future.

There are also some limitations in this study. Firstly, the number of normal tissues (11) is much less than
the number of ESCA tissues (160). Secondly, we did not divide the ESCA samples into two subtypes
(adenocarcinoma and squamous cell carcinoma) due to the limited number of patients in TCGA dataset.
These may in�uence the reliability of our �ndings. Thirdly, the prognostic index should be further
validated in large clinical cohort. Finally, further studies on the two m6A RNA regulators may improve the
targeted therapy in ESCA patients.

5. Conclusions
In conclusion, the dysregulated m6A RNA methylation regulators were closely related to
clinicopathological factors of ESCA. The m6A RNA methylation regulators, especially ALKBH5 and
HNRNPC, play an essential role in the cancigenesis and progression of ESCA. Importantly, the two-gene
based signature was demonstrated to be a promising tool to distinguish ESCA patients with different
clinical outcome. The GESA and networks prediction analysis also provided new clues for mechanism
research in ESCA.
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Figure 1

The �ow chart of the study analysis.
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Figure 2

The expression pattern of 13 m6A RNA methylation regulators in ESCA. a. Heatmap of expression levels
of 13 m6A RNA methylation regulators in ESCA tissues and normal tissues; b. Vioplot of expression levels
of 13 m6A RNA methylation regulators in ESCA and normal samples; c. The Pearson correlation analysis
of the 13 m6A RNA methylation regulators in ESCA; d. PPI network of the 13 m6A RNA methylation
regulators. *p < 0.05, **p < 0.01, ***p < 0.001
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Figure 3

Consensus clustering by m6A RNA methylation regulators. a. Consensus clustering cumulative
distribution function (CDF) for k=2-9; b. Relative change in area under CDF curve for k=2-9; c. Consensus
clustering matrix for k=2; d. The tracking plot for k=2-10
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Figure 4

Construction of the prognostic index based on m6A RNA methylation regulators. a. Univariate Cox
regression analysis of the 13 m6A RNA methylation regulators in ESCA; b-c. LASSO regression analysis
of the 13 m6A RNA methylation regulators; d. Kaplan-Meier curves of ESCA patients in low-risk and high-
risk group; e. The ROC curve for assessing the prediction e�ciency of the prognostic index; f.
Characteristics of prognostic gene signature in ESCA.
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Figure 5

Identi�cation of the independent prognostic indicators in ESCA. a. Univariate Cox regression analysis of
the clinicopathological factors and risk score; b. Multivariate Cox regression analysis of the
clinicopathological features and risk score.

Figure 6

Subgroup analyses for survival in low-risk and high-risk group strati�ed by clinicopathological factors. a-
b. Subgroup analyses for survival in low-risk and high-risk group strati�ed by gender; c-d. Subgroup
analyses for survival in low-risk and high-risk group strati�ed by stage; e-f. Subgroup analyses for
survival in low-risk and high-risk group strati�ed by age.
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Figure 7

The clinical nomogram for predicting the prognosis in ESCA. a. The clinical nomogram of the training
group (TCGA cohort) for predicting the OS in ESCA. b-c. Calibration curves present the concordance of 1-
year (b) and 3-year survival (c) between the observation and the prediction in training group. d-e.
Calibration curves present the concordance of 1-year (d) and 3-year survival (e) between the observation
and the prediction in the GSE13898 ESCA cohort (testing group).



Page 22/23

Figure 8

KEGG pathway enrichment plots from GSEA. GSEA results showing cell cycle (a), DNA replication (b), and
mTOR signaling pathway (c) are differentially enriched in ALKBH5 high expression phenotype. Cell cycle
(d), pentose phosphate pathway (e), and p53 signaling pathway (f) are differentially enriched in HNRNPC
high expression phenotype. ES: enrichment score; NES: normalized ES; NOM p-val: normalized p-value.
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Figure 9

TFs-genes networks and miRNA-genes networks of AKLBH5 and HNRNPC a. The predicted networks of
TFs and two m6A RNA methylation regulators (AKLBH5 and HNRNPC). The blue circles represent
AKLBH5 and HNRNPC, the red and orange squares represent the predicted TFs; b. The predicted networks
of miRNAs and two m6A RNA methylation regulators (AKLBH5 and HNRNPC). The blue circles represent
AKLBH5 and HNRNPC; The red and orange squares represent the predicted miRNAs.
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