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ABSTRACT

Compared with monotherapy, anti-cancer drug combination can provide effective therapy with less toxicity

in cancer treatment. Recent studies found that the topological positions of protein modules related to the

drugs and the cancer cell lines in the protein-protein interaction (PPI) network may reveal the effects of

drugs. However, due to the size of the combinatorial space, identifying synergistic combinations of drugs

from PPI network is computationally difficult. To address this challenge, we propose an end-to-end deep

learning framework, namely Graph Convolutional Network for Drug Synergy (GraphSynergy), to make

synergistic drug combination predictions. GraphSynergy adapts a spatial-based Graph Convolutional

Network component to encode the high-order structure information of protein modules targeted by a pair

of drugs, as well as the protein modules associated with a specific cancer cell line in the PPI network.

The pharmacological effects of drug combinations are explicitly evaluated by their therapy and toxic

scores. By introducing an attention component to automatically allocate contribution weights to the

proteins, we show the ability of GraphSynergy to capture the pivotal proteins that play a part in both PPI

network and biomolecular interactions between drug combinations and cancer cell lines. Experiments on

two latest drug combination datasets demonstrate that GraphSynergy outperforms the state-of-the-art in

predicting synergistic drug combinations. This study sheds light on using machine learning to discover

effective combination therapies for cancer and other complex diseases.
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Introduction

Drug combination therapy has shown great promises to improve the efficacy and extend the duration of

response in the treatment of complex diseases1, such as cancers2, human immunodeficiency virus (HIV)3,

and cardiovascular diseases4. However, identifying synergistic drug combinations is challenging because

the combinatorial space of drugs is huge and the effects can be adverse5. Therefore, effective identification

of potential synergistic drug combinations for specific cancer diseases is in a pressing need, which can

minimize the unexpected adverse effects and maximize the synergistic benefits.

Traditional drug combination identification is usually based on clinical experience. With the de-

velopment of High-Throughput Screening (HTS)6 technology, researchers may discover synergistic

combinations by experiments at the cost of huge money and time spending. Machine learning methods

offer the opportunity to efficiently explore the large combinatorial space. Existing models, such as random

forest and support vector machine, mainly focus on the drug’s chemical features or biological targets7–9 of

a specific cancer. Recent deep learning models such as DeepSynergy10 introduces the cancer genomic

information to make predictions for multiple types of cancers. A latest model, namely AuDNNsynergy11,

integrates multiomics data by introducing three auto-encoders. These methods are all based on the as-

sumption that drugs with similar chemical structures have similar treatment effects. This assumption does

not take into consideration the complex biological interactions among the proteins related to drugs and

diseases, and thus lacks the ability to explicitly capture the toxic effects resulted by combining drugs.

Most anti-cancer drugs work with specific proteins related to cancer cells in the Protein-Protein

Interaction (PPI) network12. Recent network science studies provide the evidence that the topological

relations between drugs and diseases in the PPI network play an essential role in drug identification13–15.

More specifically, (a) An effective drug should target the proteins within or near the corresponding

disease module14; (b) Two drugs with synergistic effects should target complementary (non-overlapping)

proteins to prevent the toxicities brought by over-exposure15. The potential predictability of considering

the drug-drug and drug-disease relationships in the PPI network was demonstrated15. However, these

network science methods only focus on the topological distance between proteins directly associated

with drugs and diseases, while ignoring the local connections (formed by neighboring proteins) and the
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global structure of the PPI network. In addition, existing network science approaches16 treat each protein

homogeneously, whereas recent studies reveal that several proteins have dominant contribution to the

progression of cancers17, 18.

To address these challenges, we propose a novel end-to-end machine learning framework, namely

the Graph Convolutional Network for Drug Synergy (GraphSynergy), to identify synergistic drug com-

binations for specific cancer cell lines from the perspective of the molecular mechanism (i.e. biological

interactions between proteins) in the PPI network. GraphSynergy introduces a Graph Convolutional

Network (GCN)19, 20 component to learn the rich topological information of drug and disease modules in

the PPI network by extending neighbor aggregation to deeper layers. At each layer, GraphSynergy utilizes

an attention component21 to determine the contribution of each protein and uses them to guide the aggre-

gation. Then, we define two scores to explicitly evaluate two pharmacological characteristics of drugs: a

joint therapy score measured by the similarity between the drug combinations and the cancer cell lines; a

toxic score measured by the similarity between two drugs. Experiments on two latest drug combination

datasets demonstrate that GraphSynergy outperforms the state-of-the-art in predicting synergistic drug

combinations, and reveals the pivotal proteins that have been verified in both biological mechanism and

PPI network. This represents a novel conceptual and methodological advancement in synergy prediction

from the perspective of biomolecular interactions.

The contributions are threefold. First, to the best of our knowledge, GraphSynergy is the first attempt

to identify synergistic drug combinations from the PPI network with deep learning methods. Second,

GraphSynergy adapts graph embedding methods to capture the complex topological relations between

drug combinations and cell lines, and to derive explicit joint therapy and toxic effects of drug combinations.

Third, pivotal proteins can be identified to enhance the explainability of the prediction.

Results

GraphSynergy outperforms classic and state-of-art methods.

The framework of GraphSynergy is illustrated in Figure 1. GraphSynergy takes a combination of drug

i and drug j with a cell line k as input and outputs the predicted probability that the drug combination

is synergistic to the corresponding cell line. For each entity e in the input (i, j,k), its directed connected
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proteins S0
e are extracted from the drug(cell line)-protein associations A as target field, and then extended

along edges in the PPI network G to form a radiant field Sk
e(k = 1,2, ...,H), which contains the proteins

that are within k hops away from entity e. The radiant field captures the local interactions between the

proteins that might play a role but are not directly targeted by the entity (either a drug or a cancer cell line).

The union of target and radiant field Sk
e(k = 0,1,2, ...,H) are defined as the interaction field of entity e and

these fields are fed into the aggregation layer iteratively to obtain the latent representation of entity e. An

attentive mechanism is introduced to characterize the heterogeneous effect of proteins in the interaction

field. The representations of drug i, drug j, and cell line k denote positions of their target modules in

the PPI network, and they are combined to estimate the synergistic effect of the drug combination for

the cancer cell line. Based on the relationships between the pharmacological effects with the topological

positions of the related protein modules of drugs and cell lines, the synergistic effect is explicitly measured

by two scores: therapy score and toxic score. The details of GraphSynergy is elaborated in the Methods.

We formulate the synergistic drug combination prediction problem as a binary classification problem.

The performance is evaluated by five metrics: accuracy (ACC), recall, area under receiver operating

characteristic curve (AUC-ROC), area under precision-recall curve (AUC-PR), and F1 score on two large

recent-developed drug combination datasets: DrugCombDB22 and Oncology-Screen23. DrugCombDB

contains 69,436 drug combinations among 764 unique drugs and 76 unique cell lines. Oncology-Screen is

a much smaller data which includes 4176 drug combinations among 21 unique drugs and 29 unique cell

lines. To illustrate the superiority of GraphSynergy, we compare the performance of GraphSynergy with a

number of classic and state-of-the-art baselines. The compared methods include Network Proximity15,

Matrix Factorization (GraRep24), Random Walk (DeepWalk25 and Node2Vec26, Deep Neural Network

(DeepSynergy10, and Graph Convolutional Network (KGNN27 and GCN19). In general, as shown in

Table 1, GraphSynergy significantly outperforms all baselines on both datasets. This demonstrates that

GraphSynergy can predict the synergistic drug combinations for cancers well by capturing the topological

relations between drug combination and cell line within the PPI network.

More specifically, as a model specific-designed for the Drug-Drug Interaction prediction task, KGNN

has a similar graph embedding module to GraphSynergy, but it underperforms GraphSynergy significantly

(e.g. at least 12.47% AUC-ROC reduction on DrugCombDB), indicating that incorporating the topological
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Figure 1. The framework of the GraphSynergy. A. The PPI network and the related proteins of cell lines

and targeted proteins of drugs. B. The drug-drug-cell-line combination matrix, where the label 1 denotes

the synergistic effect and 0 for the antagonistic effect. C. The graph aggregation layer of GraphSynergy.

D. and E. show the idea of the designs of therapy score and toxic score, respectively, where the orange,

blue and green round blocks denote the positions of protein modules of cell lines and two drugs,

respectively. F. The output of GraphSynergy is the probability of a combination of drugs having the

synergistic effect on a specific cell line.

proximity to characterize the therapy and toxicity effects can greatly improve the prediction power.

Network Proximity (NP), which is based on proximity measures (e.g. z-score or separation score), shows

mild prediction ability, but its performance is the least compared with other machine-learning-based

models, indicating that simple proximity measures cannot fully capture the complex high-dimensional

relations between drugs and cancer cell lines. The performances of random-walk-based models are nearly

identical on both datasets. They also outperform the matrix-factorization-based model (GraRep). This is

because that deep walks can capture sufficient structural information on these relatively smaller datasets.

If the networks are large (such as social and bibliographic networks), GCN-based methods could have

performed better than random-walk-based methods. KGNN performs better than GCN, indicating that

incorporating the attention mechanism is helpful in learning the relations between drugs and cancer cell

lines. DeepSynergy is the only model designed specifically for drug combination identification. Its
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Model
DrugCombDB Oncology-Screen

ACC Recall AUC-ROC AUC-PR F1 ACC Recall AUC-ROC AUC-PR F1

NP 0.6741 0.1752 0.4750 0.4459 0.2427 0.4547 0.0635 0.4887 0.5352 0.1117

GraRep 0.6667 0.5812 0.7282 0.6896 0.6162 0.6627 0.7667 0.7225 0.7020 0.7019

DeepWalk 0.6741 0.5964 0.7359 0.6979 0.6275 0.6830 0.7403 0.7427 0.7648 0.7225

Node2Vec 0.6735 0.5956 0.7358 0.6963 0.6268 0.6818 0.7403 0.7428 0.7649 0.7218

DeepSynergy 0.6846 0.6256 0.7461 0.7296 0.6434 0.6898 0.7179 0.7664 0.7696 0.7052

GCN 0.6733 0.6015 0.7211 0.6905 0.6264 0.6615 0.7375 0.7146 0.7096 0.6926

KGNN 0.6602 0.6751 0.7241 0.6916 0.6441 0.7080 0.7562 0.7820 0.7718 0.7280

GraphSynergy 0.7545 0.7184 0.8351 0.8160 0.7281 0.7635 0.8008 0.8450 0.8497 0.7792

Table 1. The performance of GraphSynergy compared with baselines. Each experiment is repeated 5

times, and the average performance is reported. The standard deviation scores are omitted due to the space

limitation. Note that GraphSynergy presented here is with the transformation matrix for therapy score

computation.

performance is in the midst of GCN and KGNN, indicating that the incapability of capturing the graphical

information might have hindered its prediction power.

Prediction performance for various drugs, cancer cell lines and tissues

The prediction performance is highly dependent on the related proteins of drugs and cell lines. We further

investigated the prediction performance for each individual drug and cell line on DrugCombDB dataset,

which covers a wide spectrum of synergistic/antagonistic effects. The performance is represented by the

ROC-AUC value between all the observed and the predicted combinations in the test set. Figure 2.A shows

that the performance varies across different cell lines and drugs. GraphSynergy achieves great prediction

ability (ROC-AUC is larger than 0.75) for more than 85% of drugs and 90% of cell lines.

The number and degree of related proteins vary dramatically among drugs and cell lines. We calculated

the Pearson correlation between the number of related proteins and the prediction performance, as well as

the Pearson correlation between the average degree and the ROC-AUC of predictions ((Figure 2.B) and

Figure 2.C). The correlations are insignificant for both drugs and cell lines, indicating that simple statistics

of the network connectivity are not predictive. In contrast, the complex biological mechanism and unique

pharmacological properties can be well captured by the proposed GraphSynergy model.

We further calculated the prediction performance across different tissues, shown in Figure 2.D. In

general, the performance of GraphSynergy didn’t vary dramatically across different tissues, showing the

generalization power of GraphSynergy which can be introduced to different tissues. More specifically,
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A

B

C

D

Figure 2. Prediction performance in view of different drugs, cell lines and tissues on DrugCombDB

dataset. A. The distribution of the prediction performance for drugs and cell lines. The x-axis represents

the value of the ROC-AUC. The y-axis represents the frequency of the corresponding ROC-AUC value. B.

The distribution of the number of related proteins of drugs and cell lines with their corresponding

ROC-AUC values. C. The distribution of the average degree of related proteins of drugs and cell lines with

their corresponding ROC-AUC values. In both B. and C., the lines are the fitting lines with grey shades

denoting the fitting error. D. The tissue-specific distribution of the ROC-AUC values for all cell lines.
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GraphSynergy achieved a high ROC-AUC value with small variance in lung (median, 0.8284), breast

(median, 0.8243), and urogenital system (median, 0.8135).

Interpreting the pivotal proteins

GraphSynergy applies an attention mechanism to automatically allocate contribution weights to the

proteins that are related/targeted by drugs and cell lines. The weight represents the contribution to the

synergistic prediction of GraphSynergy. We define the pivotal proteins as the top 10 proteins by the

contribution weight for each drug and cell line. In this section, we examine the roles played by these

pivotal proteins in the connectivity of the PPI network, as well as their biological mechanisms.

A B

C D

Figure 3. A shows the top 20 most frequent pivotal proteins among all the drugs and cell lines. B is the

relationships between the occurrence frequencies among all the drugs (cell lines) with the degree of each

pivotal protein, where the lines are the fitting lines with the grey shades denoting the fitting error. C and D

show the molecular function and biological process for the top 20 most frequent pivotal proteins of drugs

and cell lines, respectively. Note that in the molecular function plot, GPCRs and STPK are the

abbreviations for G-protein coupled receptor and Serine/threonine-protein kinase, respectively.
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Figure 3.A and Figure 3.B present the top 20 proteins measured by the frequency of being the pivotal

protein for drugs and cell lines, respectively. They are noticeably difference, with only four common

proteins: UBC, ESR1, JUN, and MYC. They represent the most important proteins in the progress of

some cancers. For instance, UBC which encodes ubiquitin C contributes to the regulation of many celluar

events, such as innate immunity, DNA repair and kinase activity28, 29 through the ubiquitin-proteasome

pathway, and some recent researches found a synthetic lethal relationship between UBB and UBC that has

potential to be exploited as a therapeutic strategy to fight these devastating cancers30. Having a closer look

at the molecular functions and biological processes of these popular pivotal proteins, we found differences

between those for drugs and those for cell lines (Figure 3.C-F.). Specifically, the popular pivotal proteins

for drugs are more often acted as receptor and transducer, while those for cell lines tend to be activator

and DNA-binding in view of molecular functions. Considering roles in the biological process, the popular

proteins for both drugs and cell lines tend to play a role in transcription and transcription regulation.

Furthermore, we examine if the the network connectivity is associated with the pivotal role by

calculating the Pearson correlation between the degree and the frequency of pivotal proteins in drugs

(3.G) and in cell lines(3.H), respectively. They exhibit positive correlations in both drugs (0.7947, p-value

< 0.0001) and cell lines (0.5585, p-value < 0.0001). These findings indicate that the proteins that interact

with many others tend to be the pivotal proteins. This is aligned with the previous findings that high degree

of protein is associated with its importance in the biological mechanism in human body.31.

To intuitively demonstrate the explainability of GraphSynergy, we select two clinically-verified drug

combinations in the testing set (Figure 4): the synergistic combination of Pemetrexed with Crizotinib on

cell line NCIH322; the synergistic combination of Pemetrexed with Gefitinib on cell line NCIH522. All

three drugs are identified to be effective for the treatment to non-small cell lung cancer (NSCLC)32–34.

And some recent studies verified Pemetrexed in combination with Crizotinib or Gefitinib could both

provide significant survival benefit for patients with NSCLC35, 36. For both two combinations, GraphSyn-

ergy generate positive predictions, and even though the combination of Pemetrexed with Gefitinib on

NCIH522 in the experiment data (DrugCombDB) is antagonistic, GraphSynergy can still identify their

pharmacological effect which is verified in clinical trail stduy36.

In Figure 4, for each protein in the interaction field of one drug or cell line, we directly obtain the
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normalized contribution weights. We only visualize the proteins with significant contribution weights (i.e.

more than 0.001) and the proteins connecting to them (marked with purple color). Two cell lines NCIH322

and NCIH522 of non-small-cell lung cancer (NSCLC) are marked with dark orange and red, respectively,

and the proteins related to them are marked with corresponding lighter colors. The color intensity is

proportional to the distance. Similarly, three drugs (Crizotinib, Pemetrexed, and Gefitinib) and their related

proteins are marked with blue, green and indigo. From Figure 4, we notice that even though the targets

of these three drugs do not directly connect to the targets of NCIH322 or NCIH522, GraphSynergy still

generates positive predictions based on their influential fields (indirectly connected proteins). Among

hundreds of related proteins of NSCLC (NCIH322 and NCIH522), BNIP3L, TRIM26, AP4M1, RPL23

and so on are given a high priority by GraphSynergy. Recent clinical and experimental evidence showed

the close relationships of such proteins with NSCLC. For example, TRIM26 was decreased in NSCLC

and overexpression of TRIM26 inhibited NSCLC cell growth by suppressing PI3K/AKT pathway, which

suggested that TRIM26 could be as a potential target for the treatment of NSCLC37; the loss of BNIP3L

regulation through p53 under hypoxia facilitates microenvironmental adaptation and may be a key step

in tumor development38. On the other hand, for these three drugs, MET, SBK1, IRAK3, ATIC, IKBKE

and so on are given high importance, which are all connected to the related proteins of two cell lines.

Previous studies show that these proteins are highly related to the progression of NSCLS. For instance,

MET is found to be a promising therapeutic target in advanced NSCLC which can initiate and maintain

tumor transformation, promote cell proliferation, survival, tumor invasion and angiogenesis when signals

are abnormally activated39; Target IKBKE has shown to be a strategy to eradicate EGFR-TKI–resistant

NSCLC40.

Discussion

Experiments show that GraphSynergy can accurately identify synergistic anti-cancer combinations by

capturing the biological mechanisms of proteins related to drugs and cancer cell lines in the PPI network.

Among these three measures of therapy score, GraphSynergy with transformation matrix (GraphSynergy-

tm) performs best, indicating that transformation matrix better captures the relations among the repre-

sentations of drugs and cancer cell lines. As for the parameter sensitivity, we examine the effects of H,
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Figure 4. Visualization of contribution weights w.r.t. the related proteins for synergistic drug

combination verified by clinical trials. Pivotal proteins are marked with their contribution weights above.

the depth in the interaction fields, and Ŝ, the sample size of neighbors in each layer. Figure 5 reports the

performance given other parameters fixed. In terms of H, GraphSynergy achieves the best performance

when H ≥ 2, indicating that a moderate depth is sufficient to capture the proteins that are most relevant to

drug and cell line targets. In terms of Ŝ, we find that Ŝ = 128 yields the best performance, indicating that

GraphSynergy needs to sample a representative subset of proteins in each layer to capture the complex

relations between proteins in the PPI network.

GraphSynergy is inspired by the recent advances in network medicine14, 15. Based on a GCN frame-

work, GraphSynergy further enhance the prediction power of network medicine, and the results verify

that the topological positions of protein modules related to the drugs and cell lines in the PPI network are

associated with the effects of drugs or drug combinations. By explicitly considering the therapy score and

toxic score simultaneously, GraphSynergy outperform both network proximity method and state-of-the-art
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Metrics GraphSynergy-wip GraphSynergy-mp GraphSynergy-tm
GraphSynergy-tm

with external features

ACC 0.7348(±0.0025) 0.7371(±0.0019) 0.7545(±0.0015) 0.7460 (±0.0045)

Recall 0.6859(±0.0039) 0.6920(±0.0030) 0.7184(±0.0015) 0.7077(±0.0117)

AUC-ROC 0.8144(±0.0022) 0.8161(±0.0019) 0.8351(±0.0008) 0.8215(±0.0043)

AUC-PR 0.7942(±0.0021) 0.7965(±0.0013) 0.8160(±0.0011) 0.7979(±0.0064)

F1 0.7041(±0.0029) 0.7080(±0.0023) 0.7281(±0.0015) 0.7154 (±0.0052)

Table 2. The performance of variations of GraphSynergy on DrugCombDB dataset. Exch experiment is

repeated 5 times, and the average performance is reported. "wip", "mp", and "tm" denotes weighed inner

product, max pooling and transformation matrix for therapy score in GraphSynergy, respectively.

deep learning models (Table 1).

Different from other deep-learning based approaches10, 16 (e.g. DeepSynergy) which are based on

the detailed biological descriptions of cell lines (e.g. genomic profiles) and chemical descriptors of

drugs, GraphSynergy only requires the related proteins modules of drugs and cell lines in the PPI

network. Additionally, we examined if incorporating the genomic profiles and chemical descriptors into

GraphSynergy would further improve the performance of GraphSynergy. Specifically, we followed the

preprocessing steps of DeepSynergy and used the features of drugs and cell lines as the initial embeddings.

As shown in Table 2, we found that these additional genomic and chemical features could not improve

the performance of GraphSynergy. These results indicate that the molecular mechanisms introduced

by the PPI network can better describe the relationships between drugs and cell lines even without

any genomic and chemical features. However, similar to other existing approaches, GraphSynergy can

only predict synergistic pharmacodynamic interactions whereas the effects of a drug on the absorption,

distribution, metabolism and excretion of another drug (pharmacokinetic interactions), which are important

for informing co-prescription of drugs in the clinical settings, is largely ignored.

To summarize, the superior performance of GraphSynergy suggests that the combination of network

science knowledge with deep learning methods could be a valuable tool for the discovery of efficacious

anti-drug combinations. With enough biological knowledge of gene expressions or target proteins in the

PPI network, GraphSynergy is able to accurately identify identify novel combination therapies for multiple

complex diseases. This study sheds light on using machine learning to discover effective combination

therapies for cancer and other complex diseases.
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Figure 5. Results of GraphSynergy with respect to the depth in the interaction fields H and the depth in

the interaction fields Ŝ.

Methods

Datasets

Protein-Protein Interaction (PPI) Network. We use the comprehensive human interactome network

generated by 15, which assembled by 15 commonly used databases with experimental evidence. The PPI

network contains 217,160 interactions connecting 15,790 unique proteins. Each protein is mapped to its

coding genes based on GeneCards.

Drug-protein Associations. The drug-protein associations are based on FDA-approved or clinically

investigational drugs15, which has 4,428 drugs and 2,256 human proteins connected by 15,051 associations.

Cell-protein Associations. The cell-protein associations dataset is harvested from the Cancer Cell Line

Encyclopedia41, which has 18,022 genes mapped to their coding proteins in the PPI network, 1,035 cancer

cell lines, and 74,9551 associations.

Drug-drug-cell Associations. We evaluate GraphSynergy on two anti-cancer drug combination datasets:

(a) DrugCombDB22, a database with the largest number of drug combinations to date. (b) Oncology-

Screen, an oncology screening dataset23. In both datasets, the drugs and cancer cell lines are mapped to
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Datasets Drugs Cell lines Positive pairs Negative pairs
Target proteins Related proteins

of drugs of cell lines

DrugCombDB 764 76 31623 37813 6.92 364.86

Oncology-Sreen 21 29 2257 1919 19.28 306.24

Table 3. Basic statistics for the two datasets. All the values denote the number of corresponding entity

and the numbers of related proteins of drugs and cell lines are the average number.

drug-protein associations and cell-protein associations, respectively, and the synergistic score above zero

indicates the synergistic effect. The basic statistics of these two datasets are summarized in Table 3.

GraphSynergy

Problem Formulation

We formulate the synergistic drug combination prediction problem based on the PPI network as follows:

Drug-Combination-Cell-Line table. Given a set of Nd drugs and a set of Nc cancer cell lines1, the

effect of drug combinations on a specific cell line is defined as table Y ∈ (0,1)|Nd |×|Nd |×|Nc|, where |Nd|

and |Nc| denote the number of drugs and the number of cell lines, respectively. In the table, yi, j,k = 1

(i, j ∈Nd,k ∈Nc, i 6= j) indicates that the combination of drugs i and j is synergistic to cell line k; otherwise

yi, j,k = 0 denotes that the drug combination is antagonism (adverse) to this cell line.

Protein-Protein-Interaction network. We denote a PPI network as G = (P,E), where P is the set of

proteins and E is the set of interactions among these proteins. The interactions are physical contacts of

high specificity established between two proteins.

Drug-Protein associations and Cell-Line-Protein associations. We integrate the associations be-

tween drugs and proteins and the associations between cell lines and proteins together as A = {e → p|e ∈

(Nd ∪Nc), p ∈ P}. For any entity e (drug or cell line), it has multiple target proteins p existed in the PPI

network G. The topological relations between drugs and cell lines are described by both their related

proteins and the interactions between these proteins in the PPI network.

Given the drug-combination-cell table Y , the PPI network G, and the entity (drug or cell line)-protein

associations A, we aim to predict whether the combination of drug i(i ∈ Nd) and drug j( j ∈ Nd) is

1Cell lines are cultures of human/animal cells that can be propagated repeatedly. Cell lines are commonly used to study the

biology of cancer and to test cancer treatments.
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synergistic to the cell line k(k ∈ Nc). A prediction function ŷi, j,k = F (i, j,k|Y,G,A,Θ) is formulated,

where ŷi, j,k denotes the probability that the combination of drugs i and j will be synergistic to the cell line

k, and Θ denotes the model parameters to be learned.

Interaction Fields

Previous studies usually focus on the molecular mechanisms of the proteins directly targeted by drugs and

diseases. Recent studies found out that some proteins act as mediators in the progression of drug efficacy

or disease progressing42. Meanwhile, many drug-protein and cell-protein associations or the PPI network

are still not yet discovered14. For example, Figure 6 shows part of proteins related to Tamoxifen, an

anti-cancer drug with several targets: EBP, EBPL, ESR2, DHCR7, and HTR6. Although protein BAZ1A

is not directly targeted by Tamoxifen, a recent study shows that BAZ1A plays an important role in the

progression of non-small-cell lung cancer (NSCLC)43. Specifically, the knockdown of BAZ1A results in

senescence-associated phenotypes in A549 cell lines, which is a main tissue cell of NSCLC. Subsequently,

clinical trail studies44 verified the therapy effect of Tamoxifen to NSCLS, indicating protein BAZ1A may

play an important role in the therapy of Tamoxifen by interacting with the related proteins of NSCLS.

Inspired by the spatial-based GCN approach19, we define the set of H-hop relevant neighbors Sh
e(h =

0,1,2, ...H) of entity e as its interaction fields, which contains the target filed S0
e (direct targets of entity

e) and the radiant field Sh
e(h = 1,2, ...H) (indirectly connected proteins that may also play a role in the

therapy mechanism). Note that the size of Sk
e may vary significantly across entities, thus we uniformly

sample a fixed-size subset S̃ instead of using all the proteins at each layer.

Neighborhood Aggregation

This section illustrates how to aggregate the information of proteins at each layer in the interaction field

for one entity.

Contribution Propagation Inspired by the attention mechanism21, we utilize the inner product (defined

as g : Rd ×R
d → R for simplicity) to compute the protein’s contribution to the effect of the drug or the

cell line. Given the representation of entity e and its interaction field Sh
e , each protein p ∈ Sh

e is assigned a

contribution weight:

πe
p = g(e, p), (1)
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Figure 6. Illustration of target field and radiant field for drug Tamoxifen. The color from dark to light

denotes the distance between these proteins and drug node from near to far. Each grey shade area

represents one interaction field.

where e ∈ R
d and p ∈ R

d , d is the dimension of the representations. πe
p denotes the contribution of a

protein p to the effect of an entity e and can be regarded as the similarity of e and p.

After obtaining the contribution of each protein in one layer, we compute the linear combination of the

proteins in this layer weighted by their corresponding contributions:

ISh
e
= ∑

p∈Sh
e

π̂e
p p, (2)

where ISh
e

is the representation of layer h and π̂e
p is the normalized contribution score:

π̂e
p =

exp(πe
p)

∑p∈Sh
e
exp(πe

p)
. (3)

Aggregation Layer By updating the representation of entity e in Eq. (1) using the representation

ISh
e

of interaction field Sh
e , we can repeat the procedure of contribution propagation to deeper layers

in order to obtain entity e’s multiple-hops’ representations {IS0
e
, IS1

e
, ..., ISH

e
}. The problem now is how

to aggregate the representations of different layers. Previous studies27 experimented three types of

aggregators aggre : Rd ×R
d...×R

d → R
d on a similar structure, including: aggresum =W ·∑H

h=0 ISh
e
+b,

aggreconcat =W · concat(IS0
e
, IS1

e
, ..., ISH

e
)+b, and aggreneighbor =W · ISH

e
+b. Their experiments showed
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that aggreconcat performs best. GraphSynergy adopts it and the final representation of entity e is:

ê =Wagg · concat(IS0
e
, IS1

e
, ..., ISH

e
)+bagg, (4)

where ê is the final representation of entity e, Wagg and bagg are the aggregation weight and bias, respec-

tively.

Therapy Score and Toxic Score

Given the final representations êi, ê j and êk of two drugs and one cell line, we aim to predict whether

the drug combination is synergistic to this cell line. GraphSynergy uses the inner product of entities’

representations to measure the similarity between two entities. The higher the similarity, the more overlap

between the two corresponding protein modules. Therefore we define two scores as follows:

Therapy Score. The drugs targeting proteins that are within or near the proteins in the disease module

are found to be more effective in treating the disease14. Thus, we use three methods (denoted as Γ :

R
d ×R

d ×R
d → R) to compute the therapy score sp, which is evaluated by the similarity between the

final representations of drug pairs and cell line.

• Weighted inner product first computes the inner products of two drugs with the cell line separately,

and then takes the weighted sum as the therapy score.

Γwip(êi, ê j, êck
) = α(êi ⊙ êk)+β (ê j ⊙ êk) (5)

where α and β are the weights, respectively.

• Max pooling utilizes the element-wise maximum of the representations of two drugs as the combined

drug representation, and then compute the the inner product of the combined drug representation

and the cell line representation.

Γmp(êi, ê j, êk) = max(êi, ê j)⊙ êk (6)

• Transformation matrix concatenates the representations of the two drugs, and then compute the

inner product of the concatenated drug representation and the cell line representation.

Γtm(êi, ê j, êk) = (WΓ · concat(êi, ê j)+bΓ)⊙ êk, (7)

where WΓ and bΓ are the weight and bias, respectively.
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Toxic Score. It has been recognized that we should avoid the combination of drugs that are overlapping

in the PPI network to prevent the toxicities15. Thus, GraphSynergy prefers the pair of drugs that are

dissimilar. The toxic score is computed as the inner product of the two drugs’ representations.

sn = Ψ(êi, ê j) = êi ⊙ ê j (8)

Synergistic Drug Combination Prediction

The synergistic drug combination prediction problem can be viewed as a binary classification task. Given

the representations of drug i, drug j, and cell line k, the synergistic probability ŷi, j,k is the evaluated by the

difference between the therapy score sp and the toxic score sn.

ŷi, j,k = σ(sp − sn), (9)

where σ is the sigmoid function.

Given a set of drug-drug-cell pairs and the ground-truth, we formulate the following loss function for

GraphSynergy:

L= ∑
(i, j,k)∈Y (i6= j)

L (yi, j,k, ŷi, j,k)+
λ1

2
‖E‖2

2 +
λ2

2
‖Θ‖2

2, (10)

where L (yi, j,k, ŷi, j,k) =−yi, j,k log ŷi, j,k − (1− yi, j,k) log(1− ŷi, j,k) is the binary-cross-entropy loss. The

second and third terms are the regularizers to prevent over-fitting, where E is the embedding matrix for all

items.

The model size and time complexity of GraphSyner are (|Nd|+ |Nc|+ |Np|)×d +(H +2)×d2 +d

and O(nHd2) (where n is the number of drug-drug-cell combinations), respectively. Please refer to the

supplementary materials for detailed complexity analysis.

Baselines

We compare the performance of GraphSynergy with the a number of classic and state-of-the-art baselines

based on Network Proximity, Matrix Factorization, Random Walk, DNN, and GCN.

(a) Network Proximity (NP):15 utilized two measures (z-score and separation score) in the PPI network

to quantify the proximity between the proteins targeted by the drugs and the diseases.

(2) GraRep: GraRep24 is a matrix-factorization-based approach which integrates global structural infor-

mation to learn the representations of graph.
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(3) DeepWalk and Node2Vec: Random walk-based methods are commonly used for link prediction and

knowledge representation. We adopt DeepWalk25 and Node2Vec26.

(4) DeepSynergy: DeepSynergy10 applied a normalization strategy to account for input data heterogeneity,

and conical layers to model drug synergies with a DNN framework.

(5) GCN and KGNN: We choose a representative spatial-based GCN methods19 and a state-of-art

knowledge-graph-based method: KGNN27, which is specially designed for DDI prediction task.

Experiments Setup

GraphSynergy is implemented with Python 3.7, PyTorch 1.6.0, NumPy 1.19.1 and scikit-learn 0.23.2. The

batch size, learning rate, the depth of the interaction field H, and the sample size of neighbors in each layer

Ŝ are set to 512, 10−3, 2, and 128, respectively, for both two datasets. The ratio of training, validation, and

test set is 7: 1: 2. The hyper-parameters are determined by optimization AUC-ROC on the validation set.

Specifically, for DrugCombDB dataset, the dimension of embeddings d, and the regularizer weights λ1

and λ2 are 64, 10−6, and 10−4, respectively. For Oncology-Screen dataset, d, λ1 and λ2 are 32, 10−5, and

10−6 separately. All trainable parameters are optimized by Adam algorithm and the number of epoch is set

to 50 for training. All the models are trained from scratch without any pre-training on a single NVIDIA T4

GPU. Please refer to the supplementary materials for more details of the parameter settings of baselines.
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Figures

Figure 1

The framework of the GraphSynergy. A. The PPI network and the related proteins of cell lines and
targeted proteins of drugs. B. The drug-drug-cell-line combination matrix, where the label 1 denotes the
synergistic effect and 0 for the antagonistic effect. C. The graph aggregation layer of GraphSynergy. D.
and E. show the idea of the designs of therapy score and toxic score, respectively, where the orange, blue
and green round blocks denote the positions of protein modules of cell lines and two drugs, respectively.
F. The output of GraphSynergy is the probability of a combination of drugs having the synergistic effect
on a speci�c cell line.



Figure 2

Prediction performance in view of different drugs, cell lines and tissues on DrugCombDB dataset. A. The
distribution of the prediction performance for drugs and cell lines. The x-axis represents the value of the
ROC-AUC. The y-axis represents the frequency of the corresponding ROC-AUC value. B. The distribution of
the number of related proteins of drugs and cell lines with their corresponding ROC-AUC values. C. The
distribution of the average degree of related proteins of drugs and cell lines with their corresponding ROC-



AUC values. In both B. and C., the lines are the �tting lines with grey shades denoting the �tting error. D.
The tissue-speci�c distribution of the ROC-AUC values for all cell lines.

Figure 3

A shows the top 20 most frequent pivotal proteins among all the drugs and cell lines. B is the
relationships between the occurrence frequencies among all the drugs (cell lines) with the degree of each
pivotal protein, where the lines are the �tting lines with the grey shades denoting the �tting error. C and D
show the molecular function and biological process for the top 20 most frequent pivotal proteins of drugs
and cell lines, respectively. Note that in the molecular function plot, GPCRs and STPK are the
abbreviations for G-protein coupled receptor and Serine/threonine-protein kinase, respectively.



Figure 4

Visualization of contribution weights w.r.t. the related proteins for synergistic drug combination veri�ed
by clinical trials. Pivotal proteins are marked with their contribution weights above.



Figure 5

Results of GraphSynergy with respect to the depth in the interaction �elds H and the depth in the
interaction �elds S.



Figure 6

Illustration of target �eld and radiant �eld for drug Tamoxifen. The color from dark to light denotes the
distance between these proteins and drug node from near to far. Each grey shade area represents one
interaction �eld.
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