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Abstract

Given the dual roles in immune function and metabolism, liver can be selected as an interesting
candidate to bridge host defense and metabolic adjustments during pathogen infections in teleost. In
order to dissect the roles of liver in the immune response of Sebastes schlegelii, detection of activities of
SOD, CAT and GPX4, systematic analysis of circRNA, miRNA and mRNA expression profiles, as well as
circRNA-miRNA-mRNA regulatory networks in the liver of S. schlegelii following Aeromonas salmonicida
infection were performed in the present study. The present results demonstrated the content of SOD, CAT
and GPX4 increased significantly at early infection stage to protect the liver tissue from excessive
damage. Meanwhile, 622 circRNA-miRNAs pairs, 78 miRNA-mRNA pairs and 327 circRNA-miRNA-mRNA
pairs were identified in our study. These differently expressed circRNA and mRNA were related with
LMNB1, DMBT1, NAMPT, IFIT1, CELSRs, PYGL etc. GO and KEGG enrichment analyses showed that
differently expressed genes are related with TLR signal pathway, RIG signal pathway, PPAR signal
pathway etc. These results revealed an antibacterial ceRNA network in the liver of S. schlegelii post A.
hydrophila infection, which provided new clues and insights into the immune mechanisms of teleost.

1. Introduction

The liver is considered to be the main target organ that involved in metabolism. Because the liver is
located in the abdominal cavity between the intestine and systemic circulation, it is constantly exposed to
nutritional damage, intestinal microbiome products, and toxic substances (Freitas-Lopes MA et al., 2017).
Once the nutrients are absorbed by the intestine and then were transported to the liver, which can then be
responsible for filtering out excess harmful substances, thus acting as an immune modulator. Therefore,
the liver not only performs metabolism-related functions, but also plays an important role in the body's
immune function (Nemeth E et al., 2009). It has been demonstrated that the vertebrate liver can produce
cytokines, chemokines, complement components and acute phase reactants proteins in response to
pathogen infection (Robinson MW et al., 2016; Causey, Dwight R. et al., 2018). Given its dual roles in
immune function and metabolism, liver can be selected as an interesting candidate to bridge host
defense and metabolic adjustments during pathogen infections in teleost. For example, Castro et al.
confirmed the presence of IgM™, IgD™*, IgT*, CD8%*, CD3™ cells and cells expressing the major
histocompatibility complex (MHC-I) in the liver of rainbow trout (Oncorhynchus mykiss), and evaluated
the immune role of liver tissue in response to viral attack (Castro Rosario et al., 2014). Similarly,
transcriptome analysis has been performed in Epinephelus akaara, immune-related genes such as /L8,
TLR9, CXCR4, CCL4, and IkBa were found in the liver, suggesting the high carbohydrate level of diet can
lead to inflammatory immune response in the liver of E. akaara (Yang Y et al., 2018). Therefore,
identification of candidate genes involved in liverimmunity and metabolism is the first step to elucidate
its molecular mechanism.

High-throughput sequencing can provide detailed molecular information on global gene expression views,
including the profiles of MRNA and non-coding RNAs (long ncRNAs (IncRNAs), circular RNAs (circRNAs)
and microRNAs (miRNAs). Among these RNAs, the function of circRNA has been demonstrated that it
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participates different biological processes via biding to miRNA as a sponge, thus to influence the
expressions of the downstream target genes of miRNA and relevant signaling pathways (Cao M et al.,
2021; Luo HL et al., 2021; Zheng W et al., 2022). In recent years, advances in high-throughput sequencing
technology have resulted in the discovery of a large number potential regulatory pathways including
IncRNA/circRNA-miRNA-mRNA in teleost. For instance, 1947 differentially expressed mRNAs, 9
differentially expressed miRNAs, and 4 differentially expressed circRNAs between fast- and slow-growing
individuals of Nile tilapia were observed. Based on the constructed ceRNAs, circMef2c can interact with 3
miRNAs and 65 mRNAs that regulate growth, thus providing novel insights into the role of circRNAs in the
regulation of muscle growth in teleost (Golam Rbbani et al., 2023). In teleost fish, infection-associated
ceRNAs have been reported in a number of species. Cai et al. investigated the whole-transcriptome in the
in the Vibrio anguillarum infected turbot liver, and constructed miRNA-circRNA pairs, miRNA-mRNA pairs
and 65 circRNA-miRNA-mRNA pairs. They speculated that novel_circ_0002878/miR-34a/NR1D2 axis may
relate with protection against bacterial infection (Cai X et al., 2022). Researchers studied the expression
profiles of circRNAs, miRNA and mRNA in S. schlegelii response to Edwardsiella tarda infection, and
identified ceRNAs networks that are strongly related to immune signaling pathways, such as the NF-kB
signal pathway and the chemokine signaling pathway (Cao M et al., 2021). In addition, the whole-
transcriptome sequencing was conducted in the black rockfish spleen with Aeromonas salmonicida
challenging to construct circRNA-miRNA-mRNA networks. Totally, 290 circRNA-miRNA-mRNA pathways
were constructed including 31 circRNAs, 50 miRNAs, and 156 mRNAs, which can regulate immune related
genes and signal pathways such as immunoglobulin, mucin domain-containing protein 4, Galectin-9 and
Cathepsin D, FoxO signaling pathway, Jak-STST signaling pathway, TGF-B signaling pathway, etc. (Gao C
et al., 2023). However, studies on the interactions of mMRNAs and ncRNAs in the liver of S. schlegelii
response to A. salmonicida have not been carried out systematically.

The black rockfish (S. schlegelii), which inhabits the coastal waters of China, Japan, and Korea, has been
studied extensively due to its viviparous breeding habits and aquaculture requirements. However, the
aquaculture of S. schlegelii still has many shortcomings such as low level of farming intensification,
inadequate breeding techniques and degradation of germplasm resources, which have directly led to
decrease in its growth rate, disease resistance and mortality. Liver plays an important role in fish
metabolism, immune defense and life activities. Therefore, S. schlegelii was selected as the object to
explore the changes in the activities of Glutathione peroxidase 4 (GPX4), superoxide dismutase (SOD)
and catalase (CTA) in liver and the whole transcriptome expression characteristics following Aeromonas
salmonicida infection at different time points. The purpose of this study is to investigate the immune
response of S. schlegeliito bacterial infection based on the gene expressions as well as activities of
enzyme.

2. Materials and methods

2.1 Ethics approval and consent to participate
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The protocol was approved by the Committee on the Ethics of Animal Experiments of Qingdao
Agricultural University IACUC (Institutional Animal Care and Use Committee).

2.2 Sample collection and bacterial infection

The experimental healthy fish were obtained from a local fish farm in Weihai, Shandong Province. Firstly,
fish were acclimated in a recirculating fresh water system for one week before bacterial infection
experiments was conducted. For bacterial infection, fish in the experimental groups were challenged in 30
L (20 L water) aquaria in triplicates, and each replicate was consisted of 5 random individuals.
Individuals were immersed in A. salmonicida for 2 h at a final concentration of 5-6 x 107 CFU/mL. Then,
the liver tissues from 5 fish were collected as one sample at 2 h (AS2H), 12 h (AS12H) and 24 h(AS24H)
after euthanized with MS-222 (200 mg/L). Meanwhile, fish in seawater were defined as the control (CON)
group. All samples were flash frozen in liquid nitrogen and stored at - 80 °C for RNA extraction.

2.3 Measuring of the activities of SOD, CAT and GPX4 enzyme

After tissue collection from different time points, 0.1 of liver sample of the A. salmonicida infected S.
schlegeliiwas ground in 2mL of 50 mM (containing 0.2mM EDTA) phosphate-buffered saline (PBS; pH
7.8). The homogenate was then transferred to a test tube and centrifuged at 12,000 rpm for 20 min. After
centrifugation, the supernatant was collected as the enzymatic solution for the following measurement of
the activities of SOD, CAT and GPX4 enzyme. The activities of SOD, CAT and GPX4 enzyme were detected
by using a SOD kit (Jiancheng, A007-2-1), CAT (Jiancheng, A001-1) and GPX4 kit (Jiancheng, H545-1-1),
respectively.

2.4 Library construction and sequencing

Total RNA was extracted from CON and infected liver samples with TRIzol Reagent (Invitrogen, Carlsbad,
CA, USA) according to the instructions. The purity, and integrity of extracted RNA were detected using
NanoPhotometer spectrophotometer (IMPLEN, CA, USA) and Agilent 2200 TapeStation (Agilent
Technologies, USA), respectively. Subsequently, the library construction, sequencing,

gene expression levels quantification, ceRNA networks constructions, and functional analysis have been
described in a previous study (Cao M et al., 2021).

2.5 gRT-PCR verification of the expressions of circRNA, miRNA and mRNA in the networks

To validate the accuracy of RNA sequencing, we detected the expression levels of 30 DE-RNAs, including
10 DE-circRNAs, 10 DE-miRNAs, and 10 DE-mRNAs by qRT-PCR, as well as compared the expression
patterns with those from RNA sequencing results. RNA samples were used from the same sample that
used for sequencing library construction. For all the primers of DE-mRNAs and DEcircRNAs used in this
study, PrimerQuest (https://sg.idtdna.com/PrimerQuest/Home) was used for these primers design. For
miRNA primers, they were designed on the basis of the instructions of miRcute miRNA isolation kit
(Tiangen Biotech, China). Subsequently, B-actin was chosen as an internal control to normalize the
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relative quantification of circRNAs, and mRNAs, while U6 was used as an internal control of miRNA. The
used primers in this study were listed in Table 1. Then, expression profiles of the selected-genes were
analyzed with a CFX96 real-time PCR detection system (Bio-Rad Laboratories, Hercules, CA, USA) as
descripted in previous study (Cao et al., 2020). Finally, the 2722Ct method (Livak KJ et al.,2001) was used
to calculate the relative expression levels and the data were expressed as the mean SE of three
replicates.

Table 1 Primers used in the current study
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Primer
dre-miR-155
dre-miR-190a
dre-miR-22a-3p
dre-let-7b
dre-miR-301b-5p
dre-miR-128-3p
novel_169
novel_559
dre-miR-456
dre-miR-20a-5p
TCONS_00098868F
TCONS_00098868R
TCONS_00019905F
TCONS_00019905R
TCONS_00070177F
TCONS_00070177R
TCONS_00113123F
TCONS_00113123R
TCONS_00088456F
TCONS_00088456R
TCONS_00009109F
TCONS_00009109R
TCONS_00044066F
TCONS_00044066R
TCONS_00002961F
TCONS_00002961R

Sequence (5-3")
TTAATGCTAATCGTGATAGGGG
TGATATGTTTGATATATTAGGT
AAGCTGCCAGCTGAAGAACTGT
TGAGGTAGTAGGTTGTGTGGTT
GCTTTGACGATGTTGCACTAC
TCACAGTGAACCGGTCTCTTTT
TCAGGAGTTTTAGAAATCGGTG
TAGGACAATAATTAAGGCAGA
CAGGCTGGTTAGATGGTTGTCA
TAAAGTGCTTATAGTGCAGGTAG
TGTACGATGGATGCCGTAAAG
GGATCAGCTTTGAACAGGAAATG
CAAACATGGTGGCCCTTTAATC
CAGCCATCTTCAGGGTCATATC
AGTCTGGTGGTTCTGCTTTC
TCTGCTGTGACCTTCTGTAATG
CCCGTGTCTTTCTACCTCTTTC
CGACTTCGGCAGAGTCAAAT
CTGAGGAGGAGATGTGAATGTG
ACTCTGTCCCTCTGTGATGTA
GACTGCTACAACCACGACTAC
GCTCTCAGTCCACAACCATT
GTGAGGGCTGTTTGTTAGGA
CGCCCTCACCACCATTATTA
GTCGTGGTTACCAGGTGTATAAG
CGATGGTCTTAACCTCGTTCTC

evm.model.Chr11.381F ACAATGTCGGGTTCCTCTAATC

evm.model.Chr11.381R GGGAGACCTTCACTCTGTTTATG

TCONS_00090561F GTTGCTCAGCTGGTCTGATAG
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TCONS_00090561R

novel_circ_0000790F
novel_circ_0000790R
novel_circ_0000829F
novel_circ_0000829R
novel_circ_0000791F
novel_circ_0000791R
novel_circ_0000320F
novel_circ_0000320R
novel_circ_0000773F
novel_circ_0000773R
novel_circ_0001459F
novel_circ_0001459R
novel_circ_0000343F
novel_circ_0000343R
novel_circ_0001460F
novel_circ_0001460R
novel_circ_0000004F
novel_circ_0000004R
novel_circ_0000298F
novel_circ_0000298R

TGACTGACTGCTGGATGATTG
ACCTCTCGGCTGTCTGTAT
CAGCTCATTGAAGCGGATTTG
TTACCTCTACCCAGATCCATCC
AGTGCAGTTAGACACCCAATAC
GCACAGAGAAGAAGAGTGTGAG
GAAGAGGGAGGAGGAGAGAAG
TTGGGTCTGAAGGTCAAAGAG
GGTGGAGTAGGACAGGTAGAA
TGTGGGATTCCTCCTCTCAA
GGGACACTCTCTCTCCAATCT
CACCAACAACACCGAATGTG
CTCCCTGTGTGGCATCTTATC
TTGGAGGACGTGAAGAGTTTG
ACAAGTGATGTAGGACGGATTG
CCAGTCTGTGCTTTCCAGAT
AGCAGTTGTGTTTGTGTTTCC
GGATGGAGAGCACGACAAA
CAGTTCTTCCTCCGGATCTTATC
GGAACACGCCGATAGAAGAG
CCAGCAGGTGGGATGTATTT

2.6. Data analysis

The physiological and biochemical indexes and fluorescence quantitative experiments were repeated for
3 times. SPSS 20.0 was used for statistical significance analysis, and the data were expressed as mean +
standard deviation. p < 0.01 is considered to be a significant difference and p < 0.05 was considered a
significant difference.

3. Results

3.1 Activities of SOD, CAT and GPX4 enzyme
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The activities of SOD, CAT and GPX4 enzyme in control and A. salmonicida infected livers of S.
schlegeliiwas shown in Figure 1. The activity of CAT in the liver of healthy fish (0 h) was 83.32+2.65
U/gHb. When infected with A. salmonicida, the content of CAT in S. schlegelii liver was reached the
highest level of 127.2048.25 U/gHb after 2 h infection, and then decreased in the other infected groups. In
detail, the activities of CAT were 115.2141.88 U/gHb at 12 h and reached the lowest level (80.95+7.70
U/gHb) at 24h after infection (Figure 1 A). We also noticed that the activity of GPX4 was 5.32+0.59
mg/ml at 0 h, increased to 5.75+0.30 mg/ml at 2 h after infection, and then continued to increase,
reaching the highest level at 12 h (5.83+0.23 mg/ml) (Figure 1 B). Similarly, the activity of GPX4 also
decreased at 24 h (4.86+0.36 mg/ml). SOD activity was 6.26+0.58 U/ml at 0 h, reached the highest level
(6.87+0.82 U/ml) at 2 h after infection. While, the SOD decreased less than that in the control (0 h) at 12 h
and 24 h (Figure 1 C).

3.2 Transcriptome sequencing results of circRNAs

In order to fully understand the circRNAs in response to A. salmonicida infection of S. schlegelii, the rRNA-
depleted samples from control and A. salmonicida infected liver samples at different infection time
points (2, 12 and 24 h) were used to library construction and sequencing. A total of 2,406 circRNAs were
identified in S. schlegelii and widely distributed on different chromosomes (Figure 2A). 71.60%, 0.22% and
0.07% identified circRNAs were generated from exons, intergenic and intron, respectively (Figure 2B). The
length distribution of circRNAs were mainly ranged from 200 to 400 bp (Figure 2C). As shown in Figure
2D, the expression patterns of the A. salmonicida-infected and control samples were categorized into
different clusters. The results of circRNAs expression patterns showed that a total of 3,6 and 11 DE-
circRNAs were identified in A. salmonicida-infected groups (AS2H, AS12H, and AS24H) against the
control group (Figure 2E). Functional analysis was performed to clarify the biological function of
circRNAs of S. schlegelii after A. salmonicida infection (Figure 2F, 2G). The results showed that the DE-
circRNAs were involved in multiple biological processes such as protein processing in edoplasmic
reticlum, mTOR signaling pathway, MAPK signaling pathway, insulin signaling pathway, herpes simplex
infection, FoxO signaling pathway, adherens junction.

3.3. Transcriptome sequencing results of miRNAs

For small RNA, the length of these miRNAs was mainly ranged from 21 to 23 nt, and the length of 22 nt
showed the peak distribution (Figure 3A). A total of 473 miRNAs were obtained, including 231 known
miRNAs and novel 242 miRNAs (Figure 3C). Among which16 (AS2H), 22 (AS2H) and 57(AS2H)
differentially expressed miRNAs, respectively (Figure 3B). The top DE-miRNAs were presented in a heat
map based on gene expression (Figure 3D). In order to explore the functions of these DE-miRNAs
furtherly, GO and KEGG were used to perform statistical analysis of their target genes. The target genes
were mainly enriched in 2,436 GO term processes (Figure 3E). KEGG analysis showed that the

target genes of DE-miRNAs were involved in wnt signaling pathway, focal adhesion and adrenergic
signaling in caridiomyocytes (Figure 3F).

3.4 Statistical Analysis of mMRNAs Data
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A total of 6,745 significantly DEmRNAs were identified by stringent thresholds (FDR< 0.05), among which
3,694 DEmRNAs were upregulated, and 3,052 DEmRNAs were downregulated (Figure 4A). We also found
that 14 core genes were expressed differently at each time point of infection, and 27, 2,460 and 1,618
genes that specific to AS2H, AS12H and AS24H, respectively (Figure 4B). Then, the function of DE-mRNA
was analyzed by GO analysis and KEGG pathway analysis showed that most DE-mRNAs participate
metabolic process. In addition, we also noticed some genes are related with TLR signal pathway, RIG
signal pathway, PPAR signal pathway etc (Figure 4C-D).

3.5 Construction of the circRNA-MiRNA, miRNA-mRNA, and ceRNA regulatory networks

Among ncRNAs, circRNAs can regulate the gene expression on post-transcriptional levels by sponging
miRNAs. Meanwhile, miRNAs can bind to the 3' UTR of mRNAs or the coding regions to repress or
degrade the mRNAs, thus influencing the expression of relative genes. Therefore, the circRNA-MiRNA,
miRNA-mRNA, and ceRNA regulatory networks during the infection of A. salmonicida in the liver of S.
schlegelii were analyzed. Totally, 622 circRNA-miRNAs pairs were identifed in our study, including 164
circRNAs and 175miRNAs (Table S1). And, 78 miRNA-mRNA pairs were identified, including 43 miRNA
and 69 mRNA (Table S2). The ceRNA regulatory network contained 327 circRNA-miRNA-mRNA pairs,
including 31 circRNAs, 35 miRNAs, and 31 mRNAs (Figure 5 and Supplementary Table S3). Among which,
we found that novel_circ_0000320/dre-let-7b/evm.model.Chr1.63 (Lamin-B1, LMNB1),
novel_circ_0000320/dre-let-7a/TCONS_00113123(GTPase IMAP family member 8-like, GIMAPS),
novel_circ_0001251/dre-miR-187/evm.model.Chr1.2451(FERM domain-containing protein 4B, FRM4B),
novel_circ_0000773/dre-miR-100-5p/ TCONS_00017916(collagenase 3-like), dre-miR-145-
3p/novel_circ_0000748/TCONS_00097654(deleted in malignant brain tumors 1 protein-like, DMBT1)),
novel_circ_0001351/dre-miR-18a/TCONS_00116969(dixin-A-like), novel_circ_0000791/dre-miR-22a-
3p/evm.model.Chr1.1161(Nicotinamide phosphoribosyltransferase, NAMPT),
novel_circ_0001377/novel_215/evm.model.Chr1.1906(Cadherin EGF LAG seven-pass G-type receptor 2,
CELR2), novel_circ_0000790/dre-miR-155/TCONS_00116969 (3-oxoacyl-[acyl-carrier-protein] reductase,
FabG-like), novel_circ_0001459/dre-miR-128-3p/TCONS_00078350(ubiquitin carboxyl-terminal hydrolase
47-like, USP47), novel_circ_0001387dre-miR-140-5p/TCONS_00102560 (interferon-induced protein with
tetratricopeptide repeats 1-like, IFIT1), novel_circ_0000004/dre-miR-456/evm.model.Chr11.381(Guanine
nucleotide-binding protein,GBG5), novel_circ_0001880/novel_182/evm.model.Chr15.1085(Glycogen
phosphorylase, PYGL), novel_circ_0000791/dre-miR-22a-3p/evm.model.Chr16.719 (Pumilio homolog 1,
PUMT1), novel_circ_0000342/dre-miR-22b-3p/evm.model.Chr3.156 (Myotubularin-related protein 7,
MTMR7), novel_circ_0001377/novel_215/evm.model.Chr24.291(Neural-cadherin, CADN) etc. These
circRNA-miRNA-mRNA networks can be chosen as candidates for functional analysis in the future.

3.6 Validation of circRNAs, miRNAs and mRNAs by gRT-PCR

In order to verify the authenticity of the DE-circRNAs, DE-miRNAs and DE-mRNAs that identified from the
transcriptome data of S. schlegelii after A. salmonicida, 10 differentially expressed circRNAs were
selected. The gPCR results confirmed that the expression patterns of the selected circRNAs were
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consistent with the sequencing results. We noticed that most of the 10 detected circRNAs were up-
regulated in S. schlegelii after A. salmonicida. For example, the expression of novel_circ_0000298F
increased by 3.23 fold, 3.24 fold and 3.79 fold at 2 h, 12 h and 24 h after infection, respectively.
novel_circ_0000343F expression was up-regulated 4.78 fold at 2 h after infection, 3.51 fold at 12h after
infection, and 2.26 fold at 24h after infection. While, the expression of novel_circ_0000773F was
decreased by 0.55 fold at the initial stage of infection, and showed an upward trend with the increase of
infection time (Figure 6). Meanwhile, the similar expression trends between sequencing analysis and qRT-
PCR of 10 miRNAs were present though there were few differences in the fold change of expressions.
miRNAs changed significantly after infection. For example, the expression of re-let-7b showed an up-
regulation trend at all time points, and the up-regulation rate was 46.49 fold at 2 h after infection, 282.76
fold at 12 h after infection, and 265.06 fold at 24 h after infection. The expression of dre-miR-190a was
down-regulated by 0.34 fold at 2 h after infection, up-regulated by 4.94 fold at 12h after infection, and
down-regulated by 0.59 fold at 24 h after infection (Figure 7). The gRT-PCR results confirmed that the
expression patterns of the mRNAs were consistent with the sequencing results (Figure 8). Different
mMRNAs showed different expression patterns during infection. For example, the expression level of
TCONS_00002961 showed an up-regulated trend at all time points after infection, and was up-regulated
1.07 fold, 1.18 fold, and 2.22 fold at 2 h, 12 h, and 24 h after infection, respectively. However, the
expression of TCONS_00019905 was up-regulated by 1.36fold at 2 h after infection, and down-regulated
at 12 h and 24 h by 0.51 fold and 0.32 fold, respectively.

Discussion

S. schlegeliiis a demersal fish widely distributed in the northwest Pacific along the coast of China, Japan
and the Korean Peninsula (Wang L et al., 2017). The current research on S. schlegelii mainly focuses on
its growth, behavior, physiology, immunity and population genetics (Gao Y et al., 2023; Gao Y et al.,
2023;Yin L et al.,2018; Cao M et al., 2023). It has been reported that bacterial and viral pathogens
threatened the yield of S. schlegelii. Among many pathogenic bacteria, A. salmonicida is the causative
agent to be linked to fish disease that characterized by high mortality and morbidity (Menanteau-
Ledouble S et al,, 2016). It has been mentioned that the liver is the primary immune tissue of teleost in
defensing against pathogentic infections (Nemeth E et al., 2009). In order to understand the immune
response mechanisms of liver in this species, the activities of GPX4, SOD and CTA in the liver, as well

as whole transcriptome analysis in S. schlegelii after challenge with A. salmonicida were

investigated. These results can provide novel knowledge about ncRNAs in immune responses process
in S. schlegelii, and will serve as important resources for further investigating the roles of ncRNAs during
pathogen infections in teleost.

In this study we investigated the effects of A. salmonicida on the livers of S. schlegelii, and detected the
activities of SOD, CAT and GPX4. The present results demonstrated the content of SOD, CAT and GPX4
increased significantly at early infection stage. It has been reported the antioxidant enzyme defense
system involves SOD, CAT, GPX and glutathione reductase (GSR) (Papas M et al., 2019). CAT is the

hallmark enzyme of peroxisome that widely existed in prokaryotes and eukaryotes, accounting for about
Page 10/22



40% of the total peroxisome enzymes, and is one of the key enzymes in the biodefense system
established during the process of biological evolution. The enzyme can work with GPX to remove
hydrogen peroxide produced by superoxide dismutase dismutating superoxide anion from the free
groupand protect cells from the poison of peroxide (Cerutti P et al.,1994). We thus hypothesized that in
the initial stages of infection, the activity of these three enzymes increases rapidly, interacting with
reactive oxygen species in S. schlegelii to protect the liver tissue from excessive damage.

There is increasing evidence demonstrated that activation and termination of immune response are
regulated at multiple levels, including transcriptional and post-transcriptional levels. At transcriptome
level, total 6748 mRNAs were induced differential expression following A. salmonicida challenge. A mass
of them were regarded as immune-related genes, such as apoptosis, C-X-C motif chemokines, cell
adhesion molecules, RIG-Hike receptor, TLR-like receptor, NOD-like receptor etc. The results demonstrated
that these DE mRNAs were induced to participate in a series of biological processes and played immune
roles against the invasion of A. salmonicida. At post-transcriptional level, n\cRNAs (circRNA, miRNA and
IncRNA) were involved in the interactions between pathogens and teleost (Wang M et al., 2018). Among
which, circRNAs or IncRNAs can competitively bind miRNAs to achieve the purpose of regulating mRNA
levels (Robles V et al., 2019). Totally, 622 circRNA-mMiRNAs pairs, 78 miRNA-mRNA pairs were identified in
our study. Among which, several key immune response pathways regulated by circRNAs and miRNAs
were found through functional enrichment analysis. For example, the JAK/STAT signaling pathway, p53
signaling pathway, Wnt signaling pathway and Toll-like receptor signaling pathway play crucial roles in
the immune system (Xin P et al., 2020; Rivas C et al., 2010; EI-Sahli S et al., 2019; Kawasaki T et al.,
2014). Moreover, target genes of DE miRNAs that related with fatty acid degradation, as well as other
glycan degradation also been found in the liver of S. schlegelii. It has been reported that the degradation
of fatty acids is mainly in the liver, mainly because the liver plays a vital role in lipid metabolism (Volpe J
J et al,, 1973). Additionally, we identified several miRNAs that related to SOD, CAT and GPX4 according to
the function of target genes. For example, the downregulation of novel_11, dre-miR-205-5p and dre-miR-
301b-5p may related to the upregulation of SOD, CAT and GPX4, respectively. We thus speculated that
these miRNAs can regulate the expression and content of SOD, CAT and GPX4.

Previous study showed that the liver harbors populations of immune cells that contributing to liver
immune function including monocytes, macrophages, neutrophils, B lymphocytes, T lymphocytes, NK
cells and NKT cells in the body (Freitas-Lopes MA et al., 2017). Based on the transcriptome sequencing
technology, numbers of non-coding RNA and mRNA networks were identified in the liver of teleost. For
example, in the infected liver of blunt snout bream, the parental genes of 106 differentially expressed
circRNAs were enriched in phagocytosis, complement and coagulation cascades, and Fc gamma R-
mediated phagocytosis pathways (Wang G et al., 2021). Cai et al. performed a comprehensive analysis of
whole-transcriptome sequencing in the turbot liver following V. anguillarum infection, and identified 65
circRNA-miRNA-mRNA networks that related with TRI25, NR1D2; CMTA1; and MGLL (Cai X et al., 2023). In
our study, we totally identified 327 circRNA-miRNA-mRNA regulatory networks including 31 circRNAs, 35
miRNAs, and 31 mRNAs. Among which, LMNB1 was predicted to be regulated by novel_circ_0000320 and

dre-let-7b. It has been reported that LMNB1 is a major structural component of the nucleus that appears
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to be involved in the regulation of many nuclear functions (Shimi T et al., 2011). The “up-down-up”
relationships of novel_circ_0000320/dre-let-7b/ LMNB1 suggested that the novel_circ_0000320 can
release the inhibition of dre-let-7b and promote the expression of LMNB1.We also found that the
expression of DMBT1 was regulated by dre-miR-145-3p, whereas dre-miR-145-3p can be sponged by
circRNA novel_circ_0000748. DMBTT1 is a natural defense protein involved in innate immunity,
inflammation and epithelial cell differentiation, and plays an important role in diseases associated with
pathological processes (Miiller H et al, 2015). We found that NAMPT can be induced and regulated

by novel_circ_0000791 and dre-miR-22a-3p in the infected liver. NAMPT, also known as pre-B cell clonal
enhancer factor and visceral adipose hormone, has become a research hotspot in the fields of
nicotinamide adenine dinucleotide biology, metabolism and inflammation due to its various functions in
recent years (Imai S, 2009). Moreover, we found that dre-miR-140-5p acts as an inhibitor of IFIT1, which is
regulated by interferon, a variety of viruses and some pathogen-related molecular patterns, which can
inhibit viral replication and inhibit inflammatory response (Zhou X et al., 2013). Our results showed that
under the regulation of circRNAs and miRNAs, CELSRs participated the cell differentiation and cell
contaction in the liver, which involved in many biological processes during embryonic development, such
as neuronal/endocrine cell differentiation, vascular valve formation, cell adhesion, and control of planar
cell polarity (Wang XJ et al.,2014). Additionally, the “down-up-down” expression patterns of
novel_circ_0001880/novel_182/PYGL indicated that gene related to glycogen metabolism was inhibited,
and circRNAs and miRNAs participate in this regulatory process. GO and KEGG enrichment analyses
showed that differently expressed genes are related with TLR signal pathway, RIG signal pathway, PPAR
signal pathway etc. These results revealed an antibacterial ceRNA network in the liver of S. schlegelii post
A. hydrophila infection, which provided new clues and insights into the immune mechanisms of teleost.

Conclusion

In conclusion, we investigated the circRNA, miRNA and mRNA expression profiles of the S. schlegelii liver
that challenged with A. hydrophila in this study, which expanded our understanding of ceRNAs and their
roles in teleost. We further predicted immune genes are regulated at the transcriptional level and post-
transcriptional level in the process of liver infection by pathogenic bacteria based on the constructed
networks. Meanwhile, activities of antioxidant enzymes, fatty acid metabolism and glycogen metabolism
in the liver are also affected. These results provide new information for the study of the regulatory
mechanisms of immune response of liver in teleost after bacterial infection.
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The CAT, GPX4 and SOD activities in the liver of S. schlegelii following A. salmonicida infection.
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Validation of circRNAs by qRT-PCR. Error bars represent SE of expression levels of each circRNA. The
relative expression level of circRNAs in 2 h, 12 h and 24 h were calculated as the ratio of the gene
expression level (QRT-PCR). * on the bars represent p < 0.05 and ** represent p < 0.01 between A.
salmonicida infected S. schlegelii and control groups (n = 3 for each group).
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expression level (QRT-PCR). * on the bars represent p < 0.05 and ** represent p < 0.01 between A.

salmonicida infected S. schlegelii and control groups (n = 3 for each group).
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Figure 8

Validation of mRNAs by gRT-PCR. Error bars represent SE of expression levels of each mRNA. The relative
expression level of mMRNAs in 2 h, 12 h and 24 h were calculated as the ratio of the gene expression level
(gQRT-PCR). * on the bars represent p < 0.05 and ** represent p < 0.01 between A. salmonicida infected S.

schlegelii and control groups (n = 3 for each group).
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