
CNF Encodings of Symmetric Functions
Gregory Emdin

ITMO University

Alexander Kulikov
St. Petersburg Department of Steklov Institute of Mathematics

Ivan Mihajlin
St. Petersburg Department of Steklov Institute of Mathematics

Nikita Slezkin
St. Petersburg Department of Steklov Institute of Mathematics

Research Article

Keywords: encoding, parity, majority, lower bounds, circuits, CNF

Posted Date: July 26th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3171444/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

Version of Record: A version of this preprint was published at Theory of Computing Systems on March
26th, 2024. See the published version at https://doi.org/10.1007/s00224-024-10168-w.

https://doi.org/10.21203/rs.3.rs-3171444/v1
https://doi.org/10.21203/rs.3.rs-3171444/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00224-024-10168-w

CNF Encodings of Symmetric Functions

Gregory Emdin1, Alexander S. Kulikov2, Ivan Mihajlin2, Nikita

Slezkin2

1ITMO University.
2Steklov Mathematical Institute at St. Petersburg, Russian Academy of

Sciences.

Contributing authors: egd03072000@gmail.com;
kulikov@logic.pdmi.ras.ru; ivmihajlin@gmail.com; ne.slezkin@gmail.com;

Abstract

Many Boolean functions that need to be encoded as CNF in practice, have only
exponential size CNF representations. To avoid this effect, one usually introduces
nondeterministic variables. For example, whereas the minimum number of clauses
in a CNF computing the parity function x1 ⊕ x2 ⊕ · · · ⊕ xn is 2

n−1, one can
use n − 1 nondeterministic variables to get a CNF encoding with 4n clauses.
In this paper, we prove tradeoffs between various parameters (the number
of clauses, the width of clauses, and the number of nondeterministic variables)
of CNF encodings of various symmetric functions. In particular, we show that
a folklore way of encoding parity as CNF is provably optimal. We do this by using
a tight connection between CNF encodings and depth-3 circuits. This connection
shows that CNF encodings is an interesting computational model for Boolean
functions: on the one hand, it is routinely used in practice when translating
a practical computational problem to a format acceptable by a SAT solver, on the
other hand, lower bounds on the size of CNF encodings imply depth-3 circuit
lower bounds.

Keywords: encoding, parity, majority, lower bounds, circuits, CNF

1 Introduction

A popular approach for solving a difficult combinatorial problem in practice is
to encode it in conjunctive normal form (CNF) and to invoke a SAT solver. There are

1

two main reasons why this approach works well for many hard problems: the state-
of-the-art SAT solvers are extremely efficient and many combinatorial problems are
expressed naturally in CNF. At the same time, a CNF encoding is not unique. More-
over, there is no such thing as the best way to translate a problem to CNF: different
encodings have different number of clauses, number of variables, and width of clauses.
For many real-world problems (e.g., product configuration [15], radio frequency assign-
ment [4], or reconstructing images form computed tomographs [2]), a chosen encoding
affects the time of solving them. The reason is that a straightforward representation for
many Boolean functions has many clauses. To reduce the number of clauses, one can
use nondeterministic variables (also known as guess or auxiliary variables). However,
introducing nondeterministic variables forces a SAT solver to make potentially larger
number of decisions. Thus, the best ratio between the number of variables and the
number of clauses is determined experimentally. In [17], it is shown that modifications
to a SAT solver can mitigate the drawbacks associated with the introduction of non-
deterministic variables. Prestwich [21] gives an overview of various ways to translate
a problem into CNF and discusses their desirable properties, both from theoretical
and practical points of view.

Two of the most popular constraints that arise when translating a problem to CNF
in practice are parity (x1 + x2 + · · · + xn mod 2) and at-least (x1 + · · · + xn ≥ k).
The latter Boolean function is usually called a threshold function in the field of circuit
complexity and is called a cardinality constraint in the field of SAT solving. A well
known representative of the at-least class is the majority function (x1+· · ·+xn > n/2).
The pysat module [10] allows a user to select one of ten ways to encode the at-
least constraint. See [6, 3, 13] for an experimental evaluation of different encodings of
cardinality constraints.

The parity (PAR) and majority (MAJ) functions are also among the most fre-
quently used in circuit lower bounds proofs. For example, many techniques for proving
that parity and majority require constant depth circuits of exponential size are known
(see [11, chapters 11 and 12] for an overview). At the same time, not much is known
about CNF encodings from theoretical point of view. Sinz [22] proves lower and upper
bounds on the number of clauses in a CNF encoding of at-least function: any CNF
encoding has at least n clauses and there exists an encoding with 7n clauses. Kucera,
Savický, Vorel [14] prove a lower bound 2n + o(n) on the number of clauses for
at-most-one.

In this paper, we prove tradeoffs between the number m of clauses, the width k
of clauses, and the number s of nondeterministic variables of CNF encodings of the
parity and majority functions. With s = O(n), the minimum number of clauses in
a CNF encoding of parity is between 3n and 4n, whereas any symmetric function can
be encoded with at most 18n clauses. For any s = s(n), the minimum k such that
parity can be encoded as a k-CNF is n

s+1 , up to a constant additive factor. Finally,
when s = nα (where 0 ≤ α ≤ 1 is a constant) the minimum number of clauses in

a CNF encoding of both parity and majority is about 2n
1−α

.
The upper bounds are well-known and follow from a simple strategy: partition the

input variables into blocks and encode the computed function for each block naively
(we make it formal later in the text). Hence, our main contribution is lower bounds.

2

We derive them by using a tight connection between CNF encodings and depth-3
circuits as well as Satisfiability Coding Lemma due to Paturi, Pudlák, and Zane [19].
This lemma allows to prove a 2

√
n lower bound on the size of depth-3 circuits comput-

ing the parity function. Interestingly, our lower bound on the number m of clauses (in
any CNF encoding of parity) in terms of the number s of nondeterministic variables
implies a lower bound 2Ω(

√
n) for depth-3 circuits computing parity almost immedi-

ately, though it is not clear whether a converse implication can be easily proved. This
connection provides an additional motivation for studying CNF encodings as a compu-
tational model for Boolean functions: on the one hand, it is routinely used in practice
when translating a practical computational problem to a format acceptable by a SAT
solver, on the other hand, lower bounds on the size of CNF encodings imply depth-3
circuit lower bounds.

2 General Setting

2.1 Computing Boolean Functions by CNFs

For a Boolean function f(x1, . . . , xn) : {0, 1}n → {0, 1}, we say that
a CNF F (x1, . . . , xn) computes f if f ≡ F , that is, for all x1, . . . , xn ∈ {0, 1},
f(x1, . . . , xn) = F (x1, . . . , xn). We treat a CNF as a set of clauses and by the size of
a CNF we mean its number of clauses. It is well known that for every function f , there
exists a CNF computing it. One way to construct such a CNF is the following: for
every input x ∈ {0, 1}n such that f(x) = 0, populate a CNF with a clause of length n
that is falsified by x.

This method does not guarantee that the produced CNF has the minimal number
of clauses: this would be too good to be true as the problem of finding a CNF of min-
imum size for a given Boolean function (specified by its truth table) is NP-complete
as proved by Masek [18] (see also [1] and references herein). For example, for a func-
tion f(x1, x2) = x1 the method produces a CNF (x1 ∨ x2) ∧ (x1 ∨ x2) whereas the
function x1 is already in CNF format.

It is well known that for many functions, the minimum size of a CNF is exponential.
The canonical example is the parity function PARn(x1, . . . , xn) = x1 ⊕ · · · ⊕ xn. The
property of PARn that prevents it from being computable by short CNFs is its high
sensitivity : by flipping any bit in any input x ∈ {0, 1}n, one flips the value of PARn(x).
Lemma 1. The minimum size of a CNF computing PARn is 2n−1.

Proof. An upper bound follows from the method above by noting that |PAR−1
n (0)| =

2n−1.
A lower bound is based on the fact that any clause of a CNF F computing PARn

must contain all variables x1, . . . , xn. Indeed, if a clause C ∈ F did not depend on xi,
one could find an input x ∈ {0, 1}n that falsifies C (hence, F (x) = PARn(x) = 0)
and remains to be falsifying even after flipping xi. As any clause of F has exactly
n variables, it rejects exactly one x ∈ {0, 1}n. Hence, F must contain at least
|PAR−1

n (0)| = 2n−1 clauses.

3

2.2 Encoding Boolean Functions by CNFs

We say that a CNF F encodes a Boolean function f(x1, . . . , xn) if the following two
conditions hold.

1. In addition to the input bits x1, . . . , xn, F also depends on s bits y1, . . . , ys called
guess inputs or nondeterministic inputs.

2. For every x ∈ {0, 1}n, f(x) = 1 iff there exists y ∈ {0, 1}s such that F (x, y) = 1.
In other words, for every x ∈ {0, 1}n,

f(x) =
∨

y∈{0,1}s

F (x, y) . (1)

Such representations of Boolean functions are widely used in practice when one
translates a problem to SAT. For example, the following CNF encodes PAR4:

(x1 ∨ x2 ∨ y1) ∧ (x1 ∨ x2 ∨ y1) ∧ (x1 ∨ x2 ∨ y1) ∧ (x1 ∨ x2 ∨ y1) ∧ (y1 ∨ x3 ∨ y2)∧
(y1 ∨ x3 ∨ y2) ∧ (y1 ∨ x3 ∨ y2) ∧ (y1 ∨ x3 ∨ y2) ∧ (x4 ∨ y2) ∧ (x4 ∨ y2) . (2)

This example generalizes as follows. To encode x1⊕· · ·⊕xn as CNF, one introduces
s nondeterministic variables y1, . . . , ys and partitions the set of input variables into
s+1 blocks of size at most ⌈n/(s+1)⌉: {x1, x2, . . . , xn} = X1⊔X2⊔· · ·⊔Xs+1. Then,
one writes down the following s+ 1 parity functions in CNF:

(

y1 =
⊕

x∈X1

x

)

,

(

y2 = y1 ⊕
⊕

x∈X2

x

)

, . . . ,

(

ys = ys−1 ⊕
⊕

x∈Xs

x

)

,

1 = ys ⊕
⊕

x∈Xs+1

x

 . (3)

The value for the parameter s is usually determined experimentally. For example,
Prestwich [20] reports that taking s = 10 gives the best results when solving the
minimal disagreement parity learning problem using local search based SAT solvers.

The construction above allows one to encode parity as a CNF with the following
upper bounds on the number m of clauses, the number s of nondeterministic variables,
and the width k of clauses.

Limited nondeterminism: using s nondeterministic variables, one can encode parity
either as a CNF with at most

m ≤ (s+ 1)2⌈n/(s+1)⌉+2−1 ≤ 4(s+ 1)2n/(s+1) (4)

clauses or as a k-CNF, where

k = 2 + ⌈n/(s+ 1)⌉ ≤ 3 + n/(s+ 1) . (5)

4

Unlimited nondeterminism: one can encode parity as a CNF with at most

m ≤ 4n (6)

clauses (to do this, use s = n− 1 nondeterministic variables; then, each of n functions
in (3) can be written in CNF using at most four clauses).

2.3 Boolean Circuits and Tseitin Transformation

A natural way to get a CNF encoding of a Boolean function f is to take a Boolean
circuit computing f and apply Tseitin transformation [23]. We describe this transfor-
mation using a toy example. The following circuit computes PAR12 with three gates:
the fan-in of y2 and y3 is equal to five whereas the fan-in of y1 is four. It has twelve
inputs and three gates (one of which is an output gate), its depth is equal to three.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

⊕
y1 ⊕

y2 ⊕
y3

y1 = x1 ⊕ x2 ⊕ x3 ⊕ x4

y2 = y1 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8

y3 = y2⊕x9⊕x10⊕x11⊕x12

To the right of the circuit, we show the functions computed by each gate. One can
translate each line into CNF. Adding a clause (y3) to the resulting CNF gives a CNF
encoding of the function computed by the circuit. In fact, the CNF (3) can be obtained
this way (after propagating the value of the output gate).
Observation 2. If a function f : {0, 1}n → {0, 1} can be computed by a circuit of fan-
in two with g gates, then f can be encoded as a 3-CNF with s = g nondeterministic
variables and m = 4g clauses.

Proof. For every gate g computing g1 ◦ g2, where ◦ is a binary Boolean operation and
g1 and g2 are direct predecessors of g, one writes down four 3-clauses expressing the
fact that g = g1 ◦ g2. (More formally, one considers a Boolean function h(g, g1, g2) =
[g = g1 ◦ g2]. Then, |h−1(0)| = 4 and it can be encoded as four 3-clauses.)

2.4 Upper Bounds for Symmetric Functions

The parity and majority are symmetric functions. Recall that a Boolean function
is called symmetric if its value depends on the sum (over integers) of the input bits
only. To encode in CNF a symmetric function f(x1, . . . , xn), one can use a construc-
tion similar to (3). Namely, partition the input variables into t blocks of size n/t:
{x1, x2, . . . , xn} = X1⊔X2⊔· · ·⊔Xt. Let Y1, . . . , Yt be t blocks each consisting of log n
nondeterministic variables. Let Yi be the bits of an integer 0 ≤ yi ≤ n. We then expand
as a naive CNF each of the following identities:

(

y1 =
∑

x∈X1

x

)

,

(

y2 = y1 +
∑

x∈X2

x

)

, . . . ,

(

yt = yt1 +
∑

x∈Xt

x

)

.

5

Then, ys is equal to
∑n

i=1 xi. Then, in at most 2|Ys| = 2logn = n additional clauses
one can enforce the value of f(x1, . . . , xn). Thus, the total number of clauses is

m ≤ t · log n · 2n/t+logn + n .

Thus, for any integer t, one can use s = t log n nondetermenistic variables to encode
a symmetric function as a CNF with

m ≤ s · n · 2n log n
s + n

clauses.
It is known that every symmetric Boolean function can be computed by a circuit

(over the full binary basis) of size 4.5n + o(n) [5]. Observation 2 then implies that
every Boolean function admits a 3-CNF encoding with 4.5n + o(n) nondeterministic
variables and 18n+ o(n) clauses.

2.5 Depth-3 Circuits

A CNF can be viewed as a depth-2 circuit where the output gate is an AND, all other
gates are ORs, and the inputs are variables and their negations. For example, the
following circuit corresponds to the CNF (2). Such depth-2 circuits are also denoted
as AND ◦OR circuits.

x1 x2 y1 x1 x2 y1 x1 x2 y1 x1 x2 y1 y1 x3 y2 y1 x3 y2 y1 x3 y2 y1 x3 y2 y2x4 y2 x4

∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨

∧

Depth-3 circuits is a natural generalization of CNFs: a Σ3-circuit is simply an OR
of CNFs. In a circuit, these CNFs are allowed to share clauses. A Σ3-formula is a Σ3-
circuit whose CNFs do not share clauses (in other words, it is a circuit where the
out-degree of every gate is equal to one).

Equation (1) shows a tight connection between CNF encodings and depth-3 cir-
cuits of type OR ◦AND ◦OR. Namely, let F (x1, . . . , xn, y1, . . . , ys) = {C1, . . . , Cm}
be a CNF encoding of a Boolean function f : {0, 1}n → {0, 1}. Then, f(x) =
∨y∈{0,1}sF (x, y). By assigning y’s in all 2s ways, one gets an Σ3-formula that
computes f :

f(x) =
∨

j∈[2s]

Fj(x) , (7)

where each Fj is a CNF. We call this an expansion of F . For example, an expansion
of the CNF (2) looks as follows. It is an OR of four CNFs.

6

x1 x2x1 x2 x3 x4 x1 x2x1 x2 x3 x4 x1 x2x1 x2 x3 x4 x1 x2x1 x2 x3 x4

∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨

∧ ∧ ∧ ∧

∨

An expansion is a formula: it is an OR of CNFs, every gate has out-degree one. One
can also get a circuit-expansion: in this case, gates are allowed to have out-degree
more than one; alternatively, CNFs are allowed to share clauses. For example, this is
a circuit-expansion of (2).

x1 x2 x1 x2 x1 x2 x1 x2 x3 x3 x4 x4

∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨

∧ ∧ ∧ ∧

∨

Below, we show that CNF encodings and depth-3 circuits can be easily transformed
one into the other. It will prove convenient to define the size of a circuit as its number
of gates excluding the output gate. This way, the size of a CNF formula equals its
number of clauses (a CNF is a depth-2 formula). By a Σ3(t, r)-circuit we denote a Σ3-
circuit having at most t ANDs on the second layer and at most r ORs on the third
layer (hence, its size is at most t+ r).
Lemma 3. Let F (x1, . . . , xn, y1, . . . , ys) be a CNF encoding of size m of a function
f : {0, 1}n → {0, 1}. Then, f can be computed by a Σ3(2

s,m · 2s)-formula and by
a Σ3(2

s,m)-circuit.

Proof. Let F = {C1, . . . , Cm}. To expand F as
∨

j∈[2s] Fj , we go through all 2s assign-
ments to nondeterministic variables y1, . . . , ys. Under any such assignment, each clause
Ci is either satisfied or becomes a clause C ′

i ⊆ Ci resulting from Ci by removing all
its non-deterministic variables. Thus, for each j ∈ [2s], Fj ⊆ {C ′

1, . . . , C
′
m}. The corre-

sponding Σ3-formula contains at most 2s+m2s gates: there are 2s gates for Fj ’s, each
Fj contains no more than m clauses. The corresponding Σ3-circuit contains no more
than 2s + m gates: there are 2s gates for Fj ’s and m gates for C ′

1, . . . , C
′
m (each Fj

selects which of these m clauses to contain).

Below, we show a converse transformation.
Lemma 4. Let C be a Σ3(t, r)-formula (circuit) computing a Boolean function
f : {0, 1}n → {0, 1}. Then, f can be encoded as a CNF with ⌈log t⌉ nondeterministic
variables of size r (2rt, respectively).

Proof. Let C = F1 ∨ · · · ∨ Ft be a Σ3-formula (hence, r = size(F1) + · · · + size(Ft)).
Introduce s = ⌈log t⌉ nondeterministic variables y1, . . . , ys. Then, for every assignment

7

to y1, . . . , ys, take the corresponding CNF Fi (1 ≤ i ≤ 2s is the unique integer corre-
sponding to this assignment) and add yi’s with the corresponding signs to every clause
of Fi. Call the resulting CNF F ′

i . Then, F = F ′
1 ∧ · · · ∧ F ′

2s encodes f and F has at
most r clauses.

If C is a Σ3-circuit, we need to create a separate copy of every gate corresponding
to a clause in each of 2s CNFs. Hence, the size of the resulting CNF encoding is
at most r2s ≤ 2rt.

3 Lower Bounds for CNF Encodings

3.1 Connection to Circuit Lower Bounds

Before proving lower bounds for CNF encodings of parity and majority, we argue that
establishing strong lower bounds for CNF encodings is a challenging task. Indeed,
Lemma 4 and Tseitin transformation provide a simple way to transform a circuit
into a CNF encoding. Through this transformation, lower bounds for CNF encodings
translate to circuit lower bounds.

For the parity function, the best known lower bound on depth-3 circuits
is Ω(2

√
n) [19]. If one additionally requires that a circuit is a formula, i.e., that every

gate has out-degree at most 1, then the best lower bound is Ω(22
√
n) [9]. Both lower

bounds are tight up to polynomial factors. For the majority function, there is a depth-3
circuit lower bound 2Ω(

√
n) [7, 8] and a depth-3 formula upper bound 2O(

√
n logn) [9, 12].

Interestingly, these lower bounds show that the parameters of Lemma 4 cannot be sub-
stantially improved. Indeed, by plugging in a CNF encoding of PARn with s =

√
n

and m = O(
√
n2

√
n) (see (3)), one gets a Σ3-formula and a Σ3-circuit of size 22

√
n

and 2
√
n, respectively, up to polynomial factors. As discussed above, these bounds are

known to be optimal.
Below (see (15)), we prove that, for any CNF encoding of PARn with s non-

deterministic variables and m clauses, m ≥ Ω
(

s+1
n · 2n/(s+1)

)

. Now, let C be
a Σ3(t, r)-formula computing PARn. Lemma 4 guarantees that PARn can be encoded
as a CNF of size r with ⌈log t⌉ nondeterministic variables. Then,

size(C) = t+ r ≥ t+Ω

(

1

n
· 2 n

log t+2

)

≥ 1

n

(

t+Ω
(

2
n

log t+2

))

≥ Ω

(

2
√
n

n

)

.

Similarly, if C is a Σ3(t, r)-circuit, Lemma 4 guarantees that PARn can be encoded
as a CNF of size 2rt with ⌈log t⌉ nondeterministic variables. Then,

size(C) = t+ r ≥ t+Ω

(

1

2tn
· 2 n

log t+2

)

≥ Ω

(

2
√

n/2

n

)

.

Thus, lower bounds for CNF encodings imply lower bounds for depth-3 circuits. Note
that for no Boolean function from NP, we know how to prove a 2ω(

√
n) lower bound

on the size of a depth-3 circuit computing it. (When saying that a Boolean function

8

belongs to the class NP, we mean that we have an infinite sequence of functions
{fn}∞n=1 such that the language

⋃∞
n=1 f

−1
n (1) is in NP.)

Open Problem 5. Find a Boolean function from NP that cannot be computed
by depth-3 circuits of size 2O(

√
n).

Another challenging open problem is to find a Boolean function that has no depth-
3 circuits of size 2O(n/ log logn) where the bottom fan-in is bounded by nε for some
constant ε < 1. As proved by Valiant [24], such a function cannot be computed by cir-
cuits having fan-in 2, size O(n), and depth O(log n). This is a notoriously hard open
problem in circuit complexity. Interestingly, in this reduction, Valiant essentially shows
that a function that can be computed by a linear size and logarithmic depth binary
circuit, admits a non-trivial CNF encoding.
Open Problem 6. Find a Boolean function from NP that cannot be computed binary
circuits of depth O(log n) and size O(n).

In fact, for fan-in two circuits, the best known lower bound is 3.1n [16] (even if one
restricts depth to O(log n)).
Open Problem 7. Find a Boolean function from NP that cannot be computed fan-in
two circuits of size 3.2n.

Below, we show that these open problems can be attacked from the CNF encodings
angle.
Lemma 8. Let f : {0, 1}n → {0, 1} be a function from NP.

1. If f admits no CNF encoding with s non-deterministic variables and m = O(2n/s),
then f has no depth-3 circuits of size 2O(

√
n) (thus resolving Open Problem 5).

2. If f admits no CNF encoding with s = O(n
log logn) and m = O(n

log logn2
nε

) for any

constant ε > 0, then f has no fan-in two circuits of size O(n) and depth O(log n)
(thus resolving Open Problem 6).

3. If f admits no CNF encoding with s = 3.2n and m = 13n, then f cannot
be computed by fan-in two circuits of size 3.2n (thus resolving Open Problem 7).

Proof. 1. Consider a Σ3(t, r)-circuit C of size t+ r. Lemma 4 guarantees that C can
be encoded as a CNF of size m = 2rt with s = ⌈log t⌉ nondeterministic variables.
Since m = O(2n/s), r = 1

2tO(2n/ log t). Hence,

size(C) = t+ r = t+
1

2t
·O(2n/ log t) = 2O(

√
n)

(either t ≥ 2
√

n/2 or 1
2t ·O(2n/ log t) ≥ 2

√
n/2).

2. We show that any circuit of size O(n) and depth O(log n) can be transformed into
a CNF with desired parameters. Take a circuit C of depth d = O(log n) with O(n)
fan-in 2 gates. Since each gate has fan-in 2, the number R of wires is at most O(n).

As proved by Valiant [25], for any directed graph of depth d (where the depth
is the length of a longest path in the graph) with R edges and any integer 1 ≤ r ≤
log d, it is possible to remove r

log dR edges so that the depth of the resulting graph

is at most d/2r.
For a parameter r to be specified later, apply Valiant’s lemma to the circuit C.

For each eliminated wire, we introduce a nondeterministic variable and to justify

9

its value, we add at most 22
d/2r

clauses. This way, we obtain a CNF encoding with

at most O(nr
log d) nondeterministic variables, and at most O(nr

log d2
2d/2

r

) clauses.

Since d = O(log n) and by taking r ≈ log(1/ε) (a constant), we obtain a CNF
encoding with O(n

log logn) nondeterministic variables, and O(n
log logn2

nε

) clauses.
3. If f had a fan-in two circuit of size 3.2n, then, using Observation 2, it could

be encoded as CNF with s = 3.2n and m = 4 · 3.2n ≤ 13n.

To conclude this section, we note that, as it usually happens, proving non-
constructively the existence of a Boolean function with no small CNF encoding is easy.
Hence, the main challenge is to find an explicit such function, where by an explicit
one usually means a function from NP (or ENP). Indeed, there are

2(2n+2s)m

CNF encodings with n input variables, s nondeterministic variables, and m clauses:
there arem clauses, each of them is a subset of n input and s nondeterministic variables
as well as their negations. Since there are 22

n

Boolean functions, as long as

(2n+ 2s)m < 2n,

there exists a Boolean function that cannot be encoded as CNF with s nondeterministic
variables and m clauses.

3.2 Isolated Solutions

In this section, we prove two technical lemmas needed in the proof of lower bounds.
The essential property of PAR and MAJ functions used in our lower bound proofs

is that they have a lot of isolated solutions. An assignment x ∈ f−1(1) is called isolated
in direction i if flipping the i-th bit of x gives an assignment x′ ∈ f−1(0). We say that
x is d-isolated if there are d such directions. By If,x we denote the set of directions
for x. If a CNF F computes f , then for each d-isolated x ∈ f−1(1) and for each
direction i ∈ If,x, F must contain a clause that is satisfied by xi only. Following [19],
we call such a clause critical with respect to (x, i). Fix a shortest critical clause w.r.t.
(x, i) and denote it by CF,x,i. Then, for a d-isolated satisfying assignment x, define its
weight w.r.t. F as

wF (x) =
∑

i∈If,x

1

|CF,x,i|
.

The following lemma shows that a CNF cannot accept too many assignment of large
weight. It was proved by [19] for the case d = n. In the Appendix, we show that minor
modifications of the proof allows to extend the result to any d.
Lemma 9. For any µ > 0 and any integer 0 ≤ d ≤ n, a CNF F over n variables has
at most 2n−µ d-isolated satisfying assignments of weight at least µ.

The notion of isolated solution extends to CNF encodings in a natural way. Namely,
consider a function f and d-isolated assignment x ∈ f−1(1). Let F (x, y) be a CNF
encoding of f , and y ∈ {0, 1}s be such that F (x, y) = 1. Then, for any i ∈ If,x,

10

F contains a clause that becomes falsified if one flips the bit xi. We call it critical
w.r.t. (x, y, i).
Lemma 10. Let F (x1, . . . , xn, y1, . . . , ys) be a CNF encoding of f : {0, 1}n → {0, 1}
with m clauses. Let d ∈ [n] and S = {x ∈ f−1(1) : x is d-isolated}. Then, for every
0 < ε ≤ d ln 2− s− 1,

m ≥ (s+ 1 + ε)2
d

s+1+ε (|S|2−n − 2−1−ε).

Proof. Consider an expansion of F :

f(x) =
∨

j∈[2s]

Fj(x) .

We extend the definitions of CF,x,i and w(x) to CNFs with nondeterministic vari-
ables as follows. Let x ∈ f−1(1) be d-isolated with directions I = {i1, i2, . . . , id}. Let
j ∈ [2s] be the smallest index such that Fj(x) = 1. For i ∈ I, let C ′

F,x,i = CFj ,x,i (that
is, we simply take the first Fj that is satisfied by x and take its critical clause w.r.t.
(x, i)). Then, the weight w′

F (x) of x w.r.t. to F is defined as wFj
(x):

w′
F (x) := wFj

(x) =
∑

i∈I

1

|C ′
(Fj ,x,i)

| =
∑

i∈I

1

|C ′
(F,x,i)|

.

For l ∈ [n], let also Nl,F (x) = |{i ∈ [n] : |C ′
F,x,i| = l}| be the number of critical clauses

(w.r.t. x) of length l. Clearly,

w′
F (x) =

∑

l∈[n]

Nl,F (x)

l
. (8)

For a parameter ε, split S ⊆ f−1(1) into light and heavy parts:

H = {x ∈ S : w′
F (x) ≥ s+ 1 + ε} ,

L = {x ∈ S : w′
F (x) < s+ 1 + ε} .

We claim that

|H| ≤ 2s · 2n−s−1−ε . (9)

Indeed, for every x ∈ H, w′
F (x) = wFj

(x) for some j ∈ [2s], and by Lemma 9,
Fj cannot accept more than 2n−s−1−ε isolated solutions of weight at least s+ 1 + ε.

Now we show that

|L| ≤ m · 2n2 −d
s+1+ε (1/(s+ 1 + ε)) (10)

Let F = {C1, . . . , Cm}. For every k ∈ [m], let C ′
k ⊆ Ck be the clause Ck with

all nondeterministic variables removed. Hence, for every j ∈ [2s], Fj ⊆ {C ′
1, . . . , C

′
m}.

For l ∈ [n], let ml = |{k ∈ [m] : |C ′
k| = l}| be the number of such clauses of length l.

Consider a clause C ′
k and let l = |C ′

k|. Then, there are at most l2n−l pairs (x, i), where

11

x ∈ S and i ∈ [n], such that C ′
F,x,i = C ′

k: there are at most l choices for i, fixing i fixes
the values of all l literals in C ′

k (all of them are equal to zero except for the i-th one),
and there are no more than 2n−l choices for the other bits of x. Recall that Nl,F (x)
is the number of critical clauses w.r.t. x of length l. Thus, we arrive at the following
inequality:

ml · l · 2n−l ≥
∑

x∈S

NF,l(x) ≥
∑

x∈L

NF,l(x) .

Then,

m =
∑

l∈[n]

ml ≥
∑

l∈[n]

∑

x∈L NF,l(x)

l2n−l
=
∑

x∈L

∑

l∈[n]

NF,l(x)

l2n−l
=
∑

x∈L

d2−n
∑

l∈[n]

NF,l(x)

d
· 2

l

l
.

(11)
To estimate the last sum, let

T (x) =
∑

l∈[n]

NF,l(x)

d
· 2

l

l
=
∑

l∈[n]

NF,l(x)

d
· g(l) ,

where g(l) = 2l

l . Since g(l) is convex (for l > 0) and
∑

l∈[n]
NF,l(x)

d = 1, Jensen’s
inequality gives

T (x) ≥ g

∑

l∈[n]

NF,l(x)

d
· l

 . (12)

Further, Sedrakyan’s inequality1 (combined with (8) and
∑

l∈[n] NF,l(x) = d) gives

∑

l∈[n]

lNF,l(x) =
∑

l∈[n]

N2
F,l(x)

NF,l(x)/l
≥

(
∑

l∈[n] NF,l(x))
2

∑

l∈[n] NF,l(x)/l
=

d2

w′
F (x)

. (13)

Since g(l) is monotonically increasing for l ≥ 1/ ln 2 and w′
F (x) < s+ 1 + ε for every

x ∈ L, combining (12) and (13), we get

T (x) ≥ g

(

d

w′
F (x)

)

≥ g

(

d

s+ 1 + ε

)

, (14)

Last inequality is true since ε ≤ d ln 2− s− 1.
Thus,

m ≥
∑

x∈L

d2−nT (x) ≥ (11 and 14)

≥
∑

x∈L

d2−ng

(

d

s+ 1 + ε

)

= (definition of g)

1Sedrakyan’s inequality is a special case of Cauchy–Schwarz inequality: for all a1, . . . , an ∈ R and

b1, . . . , bn ∈ R>0,
∑n

i=1 a2
i /bi ≥

(
∑n

i=1 ai

)2 /
∑n

i=1 bi.

12

= |L|2−n2
d

s+1+ε (s+ 1 + ε) .

Using (9), (10) and fact that |H|+ |L| = |S| we have

m ≥ (|S| − |H|)2−n2
d

s+1+ε (s+ 1 + ε)

≥ (|S| − 2n−1−ε)2−n2
d

s+1+ε (s+ 1 + ε)

= (s+ 1 + ε)2
d

s+1+ε (|S|2−n − 2−1−ε).

3.3 Lower Bounds for Parity

In this section, we prove that the upper bounds (4)–(6) onm and k shown in Section 2.2
are essentially optimal.
Theorem 11. Let F be a CNF encoding of PARn with m clauses, s nondeterministic
variables, and maximum clause width k.

1. The parameters s and m cannot be too small simultaneously: if s = O(n), then

m ≥ Ω

(

s+ 1

n

)

· 2 n
s+1 . (15)

2. The parameters s and k cannot be too small simultaneously:

k ≥ n

s+ 1
. (16)

3. The parameter m cannot be too small:

m ≥ 3n− 9 . (17)

3.3.1 Limited Nondeterminism

The first inequality is a straightforward consequence of Lemma 10.

Proof of (15), m ≥ Ω((s+ 1)2n/(s+1)/n). Consider two cases.

1. s ≤ n/2. Let S be a set of n-isolated solutions of PARn. Note that |S| = 2n−1. By
Lemma 10, if

0 < ε ≤ n ln 2− s− 1 , (18)

then

m ≥ (s+ 1 + ε)2
n

s+1+ε (1/2− 2−1−ε) = (s+ 1 + ε)2
n

s+1 2
−nε

(s+1)(s+1+ε) (1/2− 2−1−ε) .

Set ε = 1/n (the inequalities (18) are satisfied, since s ≤ n/2). Then,

(

1

2
− 1

2
1
n+1

)

= Θ

(

1

n

)

.

13

Also,
1

2
≤ 2

−1
(s+1)(s+1+1/n) ≤ 1 ,

as 2−1/x is increasing for x > 0. Thus,

m ≥ Ω

(

s+ 1

n
· 2 n

s+1

)

.

2. n/2 < s = O(n). In this case, the lower bound becomes obvious.

3.3.2 Width of Clauses

To prove the lower bound k ≥ n/(s + 1), we use the following corollary of the
Satisfiability Coding Lemma.
Lemma 12 (Lemma 2 in [19]). Any k-CNF F (x1, . . . , xn) has at most 2n−n/k isolated
satisfying assignments.

Proof of (16), k ≥ n/(s+ 1). Consider a k-CNF F (x1, . . . , xn, y1, . . . , ys) that
encodes PARn. Expand F to an OR of 2s k-CNFs:

PARn(x) =
∨

j∈[2s]

Fj(x) .

By Lemma 12, each Fj accepts at most 2n−n/k isolated solutions. Hence,

2s ≥ 2n−1

2n−n/k
= 2n/k−1

and thus, k ≥ n/(s+ 1).

3.3.3 Unlimited Nondeterminism

In this subsection, we prove the lower bound m ≥ 3n− 9.

Proof of (17), m ≥ 3n− 9. We use induction on n. The base case n ≤ 3 is clear.
To prove the induction step, assume that n > 3 and consider a CNF encod-
ing F (x1, . . . , xn, y1, . . . , ys) of PARn with the minimum number of clauses. Below,
we show that one can find k deterministic variables (where k = 1 or k = 2) such
that assigning appropriately chosen constants to them reduces the number of clauses
by at least 3k, respectively. The resulting function computes PARn−k or its negation.
It is not difficult to see that the minimum number of clauses in encodings of PAR and
its negation are equal (by flipping the signs of all occurrences of any deterministic
variable in a CNF encoding of PAR, one gets a CNF encoding of the negation of PAR,
and vice versa). Hence, one can proceed by induction and conclude that F contains
at least 3(n− k)− 9 + 3k = 3n− 9 clauses.

14

To find the required k deterministic variables, we go through a number of cases.
In the analysis below, by a d-literal we mean a literal that appears exactly d times
in F , a d+-literal appears at least d times. A (d1, d2)-literal occurs d1 times positively
and d2 times negatively. Other types of literals are defined similarly. We treat a clause
as a set of literals (that do not contain a literal together with its negation) and a CNF
formula as a set of clauses.

Note that for all i ∈ [s], yi must be a (2+, 2+)-literal. Indeed, if yi (or yi) is a 0-
literal, one can assign yi ← 0 (y1 ← 1, respectively). It is not difficult to see that the
resulting formula still encodes PAR. If yi is a (1, t)-literal, one can eliminate it using
resolution: for all pairs of clauses C0, C1 ∈ F such that yi ∈ C0 and yi ∈ C1, add
a clause C0 ∪ C1 \ {yi, yi} (if this clause contains a pair of complementary literals,
ignore it); then, remove all clauses containing yi or yi. The resulting formula still
encodes PARn, but has a smaller number of clauses than F (we remove 1 + t clauses
and add at most t clauses).

In the case analysis below, by li we denote a literal that corresponds to a deter-
ministic variable xi or its negation xi.

1. F contains a 3+-literal li. Assigning li ← 1 eliminates at least three clauses from F .
2. F contains a 1-literal li. Let li ∈ C ∈ F be a clause containing li. C cannot contain

other deterministic variables: if li, lj ∈ C (for i ̸= j ∈ [n]), consider x ∈ {0, 1}n
such that PARn(x) = 1 and li = lj = 1 (such x exists since n > 3), and its
extension y ∈ {0, 1}s such that F (x, y) = 1; then, F does not contain a critical
clause w.r.t. (x, y, i). Clearly, C cannot be a unit clause, hence it must contain
a nondeterministic variable yj . Consider x ∈ {0, 1}n, such that PARn(x) = 1 and
li = 1, and its extension y ∈ {0, 1}s such that F (x, y) = 1. If yj = 1, then F does not
contain a critical clause w.r.t. (x, y, i). Thus, for every (x, y) ∈ {0, 1}n+s such that
F (x, y) = 1 and li = 1, it holds that yj = 0. This observation allows us to proceed
as follows: first assign li ← 1, then assign yj ← 0. The former assignment satisfies
the clause C, the latter one satisfies all the clauses containing yj . Thus, at least
three clauses are removed.

3. For all i ∈ [n], xi is a (2, 2)-literal. If there is no clause in F containing at least two
deterministic variables, then F contains at least 4n clauses and there is nothing
to prove. Let li, lj ∈ C1 ∈ F , where i ̸= j, be a clause containing two deterministic
variables and let li ∈ C2 ∈ F and lj ∈ C3 ∈ F be the two clauses containing
other occurrences of li and lj (C1 ̸= C2 and C1 ̸= C3, but it can be the case that
C2 = C3).

Assume that C2 contains another deterministic variable: lk ∈ C2, where k ̸= i, j.
Consider x ∈ {0, 1}n, such that PARn(x) = 1 and li = lj = lk = 1 (such x exists
since n > 3), and its extension y ∈ {0, 1}s such that F (x, y) = 1. Then, F does not
contain a critical clause w.r.t. (x, y, i): C1 is satisfied by lj , C2 is satisfied by lk. For
the same reason, C2 cannot contain the literal lj . Similarly, C3 cannot contain other
deterministic variables and the literal li. (At the same time, it is not excluded that
lj ∈ C2 or li ∈ C3.) Hence, C2 ̸= C3. Note that each of C2 and C3 must contain
at least one nondeterministic variable: otherwise, it would be possible to falsify F
by assigning li and lj .

15

(a) At least one of C2 and C3 contains a single nondeterministic variable. Assume
that it is C2:

{li, y1} ⊆ C2 ⊆ {li, lj , y1} .
Assign lj ← 1. This eliminates two clauses: C1 and C3 are satisfied. Also, under
this substitution, C2 = {li, y1} and li is a 1-literal. We claim that in any satis-
fying assignment of the resulting formula F ′, li = y1. Indeed, if (x, y) satisfies
F ′ and li = y1, then li = y1 = 1 (otherwise C2 is falsified). But then there
is no critical clause in F ′ w.r.t. (x, y, i). Since in every satisfying assignment
li = y1, we can replace every occurrence of y1 (y1) by li (y1, respectively). This,
in particular, satisfies the clause C2.

(b) Both C2 and C3 contain at least two nondeterministic variables:

{li, lj} ⊆ C1, {li, y1, y2} ⊆ C2, {lj , y3, y4} ⊆ C3 .

Here, y1 and y2 are different variables, y3 and y4 are also different, though
it is not excluded that some of y1 and y2 coincide with some of y3 and y4. Let
Y ⊆ {y1, . . . , ys} be nondeterministic variables appearing in C2 or C3.

Recall that for every (x, y) ∈ {0, 1}n+s such that F (x, y) = 1 and li = lj = 1,
it holds that y = 0 for all y ∈ Y . This means that if a variable y ∈ Y appears
in both C2 and C3, then it has the same sign in both clauses. Consider two
subcases.
(i) Y = {y1, y2}:

{li, lj} ⊆ C1, {li, y1, y2} ⊆ C2, {lj , y1, y2} ⊆ C3 .

Assume that y1 ̸∈ C1. Assign li ← 1, lj ← 1. Then, assigning y1 ← 0
eliminates at least two clauses. Let us show that there remains a clause that
contains y2. Consider x ∈ PAR−1

n (1), such that li = lj = 1, and its extension
y ∈ {0, 1}s, such F (x, y) = 1. We know that y1 and y2 must be equal to 0.
However, flipping the value of y2 results in a satisfying assignment. Thus, it
remains to analyze the following case:

{li, lj , y1, y2} ⊆ C1, {li, y1, y2} ⊆ C2, {lj , y1, y2} ⊆ C3 .

Assume that lj ̸∈ C2 and li ̸∈ C1. Assign li ← 1, then assign y1 ← 0 and
y2 ← 0. Under this assignment, C3 = {lj} (recall that C3 cannot contain other
deterministic variables, see Case 3). This would mean that lj = 1 in every
satisfying assignment of the resulting CNF formula which cannot be the case
for a CNF encoding of parity. Thus, we may assume that either lj ∈ C2 or
li ∈ C1. Without loss of generality, assume that lj ∈ C2.

Let us show that for every (x, y) ∈ {0, 1}n+s, such that F (x, y) = 1 and
li = 1, it holds that lj ̸= y1 and lj ̸= y2. Indeed, if there is (x, y) ∈ {0, 1}n+s

such that F (x, y) = 1 and li = lj = 1, then y1 and y2 must be equal to 0. If
there is (x, y) ∈ {0, 1}n+s, such that F (x, y) = 1, li = 1, lj = 0, then y1 and
y2 must be equal to 0, otherwise F does not contain a critical clause w.r.t.

16

(x, y, i). Thus, assigning li ← 1 eliminates two clauses (C1 and C2). We then
replace y1 and y2 with lj and delete the clause C3.

(ii) |Y | ≥ 3, {y1, y2, y3} ⊆ Y :

{li, lj} ⊆ C1, {li, y1, y2} ⊆ C2, {lj , y1, y3} ⊆ C3 .

Assigning li ← 1, lj ← 1 eliminates C1, C2, C3. Assigning y1 ← 0 elim-
inates at least one more clause (y1 appears positively at least two times,
but it may appear in C1). There must be a clause with y2 (otherwise we
could assign y2 ← 1). Assigning y2 ← 0 eliminates at least one more clause.
Similarly, assigning y3 ← 1 eliminates another clause. In total, we eliminate
at least six clauses.

3.4 Lower Bounds for Majority

Theorem 13. Let F be a CNF encoding of MAJn with m clauses and s =
O(n) nondeterministic variables. Then the parameters s and m cannot be too small
simultaneously:

m ≥ Ω

(

s+ 1 + log n√
n

· 2
n

2(s+1+log n)

)

. (19)

Proof. Consider two cases.

1. s ≤ n/2. Let S = {x :
∑n

i=1 xi = ⌈n/2⌉}. Note that S ⊆ MAJ−1
n (1), and

|S| =
(

n

⌈n/2⌉

)

≥ 2n√
n
.

By Lemma 10, if

ε ≤ n

2
ln 2− s− 1, (20)

then

m ≥ (s+ 1 + ε)2
n/2

s+1+ε (
1√
n
− 2−1−ε)

Set ε = 1
2 log n (the inequalities 20 are satisfied, since s ≤ n/2). Then,

(

1√
n
− 2−1−1/2 logn

)

=
(

2−1/2 logn − 2−1/2 logn/2
)

= 2−1/2 logn/2 =
1

2
√
n
= Θ

(

1√
n

)

.

Hence,

m ≥ Ω

(

s+ 1 + log n√
n

· 2
n

2(s+1+log n)

)

.

2. n/2 < s = O(n). In this case, we need to show thatm ≥ Ω(
√
n). Indeed, the number

of clauses must be at least n
2 , otherwise we would be able to satisfy a formula by

assigning less than n
2 variables.

17

4 Appendix

Here, we prove Lemma 9. Let F (x1, . . . , xn) be a CNF computing f : {0, 1}n → {0, 1}
and x ∈ f−1(1). For a permutation σ ∈ Sn, define an encoding Φσ : {0, 1}n → {0, 1}≤n

of x as follows. Permute the bits of x according to σ. For each i ∈ [n], delete the i-th
bit of the permuted string, if there is a critical clause CF,x,σ(i) such that the variable
σ(i) occurs after all other variables in this clause (according to the ordering σ).

Recall that an encoding function Φ: S → {0, 1}∗ is called prefix-free, if f(s1) is not
a prefix of f(s2) for any s1 ̸= s2 ∈ S. In [19, Fact 1], it is proved that for a prefix-free
encoding Φ with average code length l =

∑

s∈S Φ(s)/|S|, it holds that |S| ≤ 2l. It is
also shown that Φσ is a prefix-free encoding.

Proof of Lemma 9. We show that there exists a permutation σ such that the average
description length under the encoding Φσ of a d-isolated solution of weight at least µ
is at most n− µ.

Take a random permutation σ. Let x be a d-isolated solution of weight w(x) ≥ µ.
Since the bit in x corresponding to a variable i is deleted with probability at least
1/|C(F,x,i)| while constructing the encoding Φσ, the expected number of bits deleted
is at least

∑

i∈If,x
1/|C(F,x,i)| ≥ µ. Hence, there exists a permutation σ such that

the average (over all isolated solutions of weight greater than or equal to µ) of the
description length under the encoding Φσ is at most n − µ. Thus, the number of
isolated solutions of weight at least µ is at most 2n−µ.

References

[1] Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Michael E.
Saks. Minimizing disjunctive normal form formulas and AC0 circuits given a
truth table. SIAM J. Comput., 38(1):63–84, 2008. doi:10.1137/060664537.

[2] Olivier Bailleux and Yacine Boufkhad. Efficient cnf encoding of boolean cardinal-
ity constraints. In Francesca Rossi, editor, Principles and Practice of Constraint
Programming – CP 2003, pages 108–122, Berlin, Heidelberg, 2003. Springer Berlin
Heidelberg.

[3] Paul Maximilian Bittner, Thomas Thüm, and Ina Schaefer. SAT encodings
of the at-most-k constraint - A case study on configuring university courses.
In Peter Csaba Ölveczky and Gwen Salaün, editors, Software Engineering and
Formal Methods - 17th International Conference, SEFM 2019, Oslo, Norway,
September 18-20, 2019, Proceedings, volume 11724 of Lecture Notes in Computer
Science, pages 127–144. Springer, 2019. doi:10.1007/978-3-030-30446-1_7.

[4] Bertrand Cabon, Simon de Givry, Lionel Lobjois, Thomas Schiex, and Joost P.
Warners. Radio link frequency assignment. Constraints An Int. J., 4(1):79–89,
1999. doi:10.1023/A:1009812409930.

[5] Evgeny Demenkov, Arist Kojevnikov, Alexander S. Kulikov, and Grigory
Yaroslavtsev. New upper bounds on the boolean circuit complexity of symmetric
functions. Inf. Process. Lett., 110(7):264–267, 2010. doi:10.1016/j.ipl.2010.
01.007.

18

https://doi.org/10.1137/060664537
https://doi.org/10.1007/978-3-030-30446-1_7
https://doi.org/10.1023/A:1009812409930
https://doi.org/10.1016/j.ipl.2010.01.007
https://doi.org/10.1016/j.ipl.2010.01.007

[6] Alan M. Frisch and Paul A. Giannaros. SAT encodings of the at-most-k con-
straint: Some old, some new, some fast, some slow. In Proceedings of the 9th
International Workshop on Constraint Modelling and Reformulation, 2010.

[7] Johan H̊astad. Almost optimal lower bounds for small depth circuits. In Juris
Hartmanis, editor, Proceedings of the 18th Annual ACM Symposium on Theory
of Computing, May 28-30, 1986, Berkeley, California, USA, pages 6–20. ACM,
1986. doi:10.1145/12130.12132.

[8] Johan H̊astad, Stasys Jukna, and Pavel Pudlák. Top-down lower bounds for depth
3 circuits. In 34th Annual Symposium on Foundations of Computer Science,
Palo Alto, California, USA, 3-5 November 1993, pages 124–129. IEEE Computer
Society, 1993. doi:10.1109/SFCS.1993.366875.

[9] Shuichi Hirahara. A duality between depth-three formulas and approximation
by depth-two. Electron. Colloquium Comput. Complex., page 92, 2017. URL:
https://eccc.weizmann.ac.il/report/2017/092.

[10] Alexey Ignatiev, António Morgado, and Joao Marques-Silva. Pysat: A python
toolkit for prototyping with sat oracles. In International Conference on Theory
and Applications of Satisfiability Testing, 2018.

[11] Stasys Jukna. Boolean Function Complexity - Advances and Frontiers, vol-
ume 27 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/

978-3-642-24508-4.
[12] Maria Klawe, Wolfgang J. Paul, Nicholas Pippenger, and Mihalis Yannakakis. On

monotone formulae with restricted depth. In Proceedings of the Sixteenth Annual
ACM Symposium on Theory of Computing, STOC ’84, page 480–487, New York,
NY, USA, 1984. Association for Computing Machinery. doi:10.1145/800057.

808717.
[13] Stepan Kochemazov, Oleg Zaikin, and Alexander Semenov. The comparison

of different sat encodings for the problem of search for systems of orthogo-
nal latin squares. In International Conference Mathematical and Information
Technologies-MIT, pages 155–165, 2016.

[14] Petr Kucera, Petr Savický, and Vojtech Vorel. A lower bound on CNF encodings
of the at-most-one constraint. Theor. Comput. Sci., 762:51–73, 2019. doi:10.

1016/j.tcs.2018.09.003.
[15] Wolfgang Kuechlin and Carsten Sinz. Proving consistency assertions for auto-

motive product data management. J. Autom. Reasoning, 24:145–163, 02 2000.
doi:10.1023/A:1006370506164.

[16] Jiatu Li and Tianqi Yang. 3.1n - o(n) circuit lower bounds for explicit functions.
In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM
SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022,
pages 1180–1193. ACM, 2022. doi:10.1145/3519935.3519976.

[17] Joao Marques-Silva and Inês Lynce. Towards robust cnf encodings of cardinality
constraints. In Christian Bessière, editor, Principles and Practice of Constraint
Programming – CP 2007, pages 483–497, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg.

[18] William J. Masek. Some NP-complete set covering problems. Unpublished
Manuscript, 1979.

19

https://doi.org/10.1145/12130.12132
https://doi.org/10.1109/SFCS.1993.366875
https://eccc.weizmann.ac.il/report/2017/092
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1145/800057.808717
https://doi.org/10.1145/800057.808717
https://doi.org/10.1016/j.tcs.2018.09.003
https://doi.org/10.1016/j.tcs.2018.09.003
https://doi.org/10.1023/A:1006370506164
https://doi.org/10.1145/3519935.3519976

[19] Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding lemma.
Chic. J. Theor. Comput. Sci., 1999, 1999. URL: http://cjtcs.cs.uchicago.edu/
articles/1999/11/contents.html.

[20] Steven David Prestwich. SAT problems with chains of dependent variables.
Discret. Appl. Math., 130(2):329–350, 2003. doi:10.1016/S0166-218X(02)

00410-9.
[21] Steven David Prestwich. CNF encodings. In Armin Biere, Marijn Heule, Hans

van Maaren, and Toby Walsh, editors, Handbook of Satisfiability, volume 185 of
Frontiers in Artificial Intelligence and Applications, pages 75–97. IOS Press, 2009.
doi:10.3233/978-1-58603-929-5-75.

[22] Carsten Sinz. Towards an optimal CNF encoding of boolean cardinality con-
straints. In Peter van Beek, editor, Principles and Practice of Constraint
Programming - CP 2005, 11th International Conference, CP 2005, Sitges, Spain,
October 1-5, 2005, Proceedings, volume 3709 of Lecture Notes in Computer
Science, pages 827–831. Springer, 2005. doi:10.1007/11564751_73.

[23] G. S. Tsejtin. On the complexity of derivation in propositional calculus. Semin.
Math., V. A. Steklov Math. Inst., Leningrad 8, 115-125 (1970); translation from
Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 8, 234-259 (1968)., 1968.

[24] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In
International Symposium on Mathematical Foundations of Computer Science,
1977.

[25] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In Jozef
Gruska, editor, Mathematical Foundations of Computer Science 1977, 6th Sym-
posium, Tatranska Lomnica, Czechoslovakia, September 5-9, 1977, Proceedings,
volume 53 of Lecture Notes in Computer Science, pages 162–176. Springer, 1977.
doi:10.1007/3-540-08353-7_135.

20

http://cjtcs.cs.uchicago.edu/articles/1999/11/contents.html
http://cjtcs.cs.uchicago.edu/articles/1999/11/contents.html
https://doi.org/10.1016/S0166-218X(02)00410-9
https://doi.org/10.1016/S0166-218X(02)00410-9
https://doi.org/10.3233/978-1-58603-929-5-75
https://doi.org/10.1007/11564751_73
https://doi.org/10.1007/3-540-08353-7_135

	Introduction
	General Setting
	Computing Boolean Functions by CNFs
	Encoding Boolean Functions by CNFs
	Boolean Circuits and Tseitin Transformation
	Upper Bounds for Symmetric Functions
	Depth-3 Circuits

	Lower Bounds for CNF Encodings
	Connection to Circuit Lower Bounds
	Isolated Solutions
	Lower Bounds for Parity
	Limited Nondeterminism
	Width of Clauses
	Unlimited Nondeterminism

	Lower Bounds for Majority

	Appendix

