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 25 

Abstract 26 

Climate change has been the main environmental challenge in recent years. In this research, the impact of 27 

climate change on the Arjan Wetland, Iran, has been investigated. The global climate models of canESM2 28 

and hadGEM2 were used to predict the air temperature and precipitation for 2025-2066 in scenarios of RCP 29 

2.6, 4.5, and 8.5. Temperature and precipitation data were downscaled using SDSM and LARS-WG software, 30 

respectively. Then, the wetland area was measured by processing the Landsat satellite images using the 31 

MNDWI algorithm. Forecast data were applied to estimate the wetland area for 2025-2066 and the scPDSI 32 

drought index. The results indicate that the estimated areas of the future period will slightly decrease; as a 33 

result, 90% of the areas in the years 2045-2066 are less than 800 hectares, and more than1100 hectares have 34 

not been dried in these years. The reduction of the area compared to the observation period is due to climate 35 

change and it shows the Arjan wetland is going towards drought. In 2039-2036, 2042, 2052, 2056-2058, and 36 

2062, severe droughts will occur in wetlands under three scenarios with an area of less than 200 ha. 37 

Furthermore, the wetland will experience severe wet years in 2025, 2044, and 2045. 38 

Keywords: Climate Change, scPDSI, SDSM, LARS-WG, Remote Sensing, MNDWI   39 
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1. Introduction 40 

In recent years, industrialization and overuse of fossil fuels have raised global air temperature and changed 41 

the pattern of precipitation. Drought, one of the most important consequences of climate change, has long-42 

term and undeniable environmental effects (Vrochidou et al. 2013). Wetlands are more sensitive to rainfall 43 

than other surface water sources due to their shallow depth. Analyzing the impact of climate change requires 44 

investigating the hydrological characteristics of wetlands. In this regard, the water volume change is inspected 45 

for at least three decades. Therefore, the water balance equation is usually used to calculate the difference in 46 

the volume of incoming and outgoing water (Sadeghi and Raisi Ardakani, 2018). Remote sensing (RS) is a 47 

low-cost tool that uses different algorithms to accurately classify wet and dry regions and calculate the 48 

wetland area. The general circulation model (GCM) and climate change scenarios, known as representative 49 

concentration pathways (RCPs), are standard tools for assessing future changes in rainfall regime, runoff, and 50 

temperature that dramatically affect wetland water budgets. 51 

Previous studies indicate the increasing trends of precipitation and runoff in different regions such as Tonga 52 

Bhadra River, India (Meenu et al. 2013), Malaysia (Tan et al. 2017), and Lar Dam, Iran (Javaherian et al. 53 

2021). Other researchers have also reported a reduction in runoff in several regions: British Columbia, Canada 54 

(Schnorbus and Cannon, 2014), Kermanshah, Iran (Rajabi et al. 2012; Salajegheh et al. 2016), and the 55 

Yarmouk River, Jordan, and Syria (Al-Shurafat and Abdullah, 2020). In contrast to these studies, 56 

Gebrechorkos et al. (2020) showed no significant precipitation trend in the Ethiopian Great River Basin. 57 

One of the challenging concerns in climate change studies is how to convert large-scale climate data into 58 

local scale, known as downscaling. Researchers have applied several methods such as the statistical 59 

downscaling model (SDSM), long Ashton research station-weather generator (LARS-WG), and artificial 60 

neural network (ANN). These methods perform differently in estimating precipitation and temperature. Most 61 

researchers recommend the SDSM for temperature downscaling (Khan et al. 2006; Lopes, 2009; King et al. 62 

2009; B.M. et al. 2012; Tukimat et al. 2019; Salajegheh et al. 2016). In addition, it has also been reported 63 

LARS-WG model is more efficient in precipitation downscaling (Lopes, 2009; King et al. 2009; Salajegheh 64 

et al. 2016; Shagega et al. 2019).  65 

Identifying drought periods and runoff change regimes based on climatic variables/indices is also one of the 66 

critical issues in wetland climate change studies. The most important indices are the Palmer Drought Severity 67 

Index (PDSI), Standardized Precipitation Index (SPI), Standardized Runoff Index (SRI), Standardized Soil 68 
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Water Index (SSWI), Self-Calibrated PDSI (scPDSI),  Original PDSI (orPDSI), Standardized Precipitation-69 

Evapotranspiration Index (SPEI),  and Standardized Precipitation Actual Evapotranspiration Index (SPAEI). 70 

Rezvanfar and Heidarzadeh (2017) used SPI, scPDSI, orPDSI, and SPEI drought indices to study the climate 71 

of the Arjan wetland in Iran. The results showed that the scPDSI had the best correlation with the reduction 72 

of wetland water volume. Ogunrinde et al. (2020) used the scPDSI to study the drought in the Niger River 73 

Basin from 1981 to 2015, with the maximum drought reported in 1998–2001. Based on their result scPDSI 74 

showed long-term hydrological drought of the Niger River with acceptable accuracy. Zhao et al. (2020) 75 

reviewed the North American watershed's climatic and hydrological drought periods. They used SPI to 76 

estimate meteorological drought and the Streamflow Drought Index (SDI) for hydrological drought. They 77 

anticipated that SPI would increase and decrease in the future, which is almost in line with the precipitation 78 

pattern. However, SDI indicated an extreme increase in drought in the coming years due to rising 79 

temperatures. Abbasiana et al. (2021) studied the drought in the Urmia Basin. They attributed the 80 

meteorological drought to the simultaneous occurrence of low precipitation and high temperatures. 81 

Accordingly, they recommendeda bivariate index called Precipitation-Temperature Deciles Index (PTDI). 82 

Rehana and Sireesha Naidu (2021) stated that univariate drought indices do not accurately reflect climate 83 

change drought. They used the SPAEI and three general circulation models to predict severe drought in the 84 

Krishna River Basin, India. In southern India, Satish Kumar et al. (2021) compared Drought Severity Index 85 

Gravity Recovery and Climate Experiment (GIACE-DSI), SPI, scPDSI, SPEI, Combined Climatological 86 

Deviation Index (CCDI), and GRACE Total Water Storage Anomalies (GRACE-TWSA) in all seasons 87 

during 2002–2016. The result shows a high correlation between GRACE-TWSA, GIACE-DSI, scPDSI, and 88 

CCDI. Lashkari et al. (2021) used the Power Dissipation Index (PDI) to estimate drought in arid and semi-89 

arid regions of Iran to evaluate the impacts of precipitation changes. They found that PDI could demonstrably 90 

describe the annual drought in Iran.  91 

Various innovative tools, such as RS and geographic information systems (GIS), have recently been widely 92 

applied to identify, monitor, and classify natural resources. Huang et al. (2011) used the Normalized 93 

Difference Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI) algorithms, and the 94 

5th band Landsat satellite band to simulate the water level of Cottonwood Lake Wetland in North Dakota 95 

from 1984 to 2009 (one image per year) and then to calculate the area of the wetland. Ghebrezgabher et al. 96 

(2016) used Landsat images and the Modified NDWI (MNDWI), NDVI, Voluntary Cooperation Program 97 

(VCP), and Soil-Adjusted Vegetation Index (SAVI) algorithms from 1970 to 2014 to increase the accuracy 98 
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of Earth objects in Google Maps for the Eritrean region. They used MNDWI to determine the boundary 99 

between water and land. They reported 68 square kilometers of decrease in water level in the period. Sarp 100 

and Ozcelik (2017) also used Landsat images to analyze the Spatio-temporal changes of Boudoir Lake from 101 

1987 to 2011. Support Vector Machine (SVM), MNDWI, NDWI, and Automated Water Extraction Index 102 

(AWEI) were applied in this study. The SVM with MNDWI was identified as the better method. The area of 103 

the lake reduced in 2000 to one-fifth of its area in 1987. Other studies also confirmed the better performance 104 

of MNDWI (Zhang et al. 2011; Gautam et al. 2015; Yang et al. 2011). Moreover, Li et al. (2021) used RS 105 

images from various methods, such as Comprehensive Drought and Waterlogging Index (CDWI), Shadow 106 

Difference Water Index (SDWI), MNDWI, Background Difference Water Index (BDWI), Total Column 107 

Water (TCW), Automated Water Extraction Index (AWEInsh, AWEIsh) and 2015 Water Index (2015WI) for 108 

Jiangsu Province, China. In these methods, BDWI with 97% correlation was the best, and MNDWI with 95% 109 

correlation was a reliable method. Furthermore, Wen et al. (2021) investigated different Thresholding Single 110 

Water Index image (TSWI) methods to detect surface water from land. The results showed that MNDWI was 111 

the best among NDWI, AWEI, and WI2015 methods. Cordeiro et al. (2021) also investigated the different 112 

methods such as MNDWI, NDWI, A robust Multi-Band Water Index (MBWI), Band 8, and Band 12 to 113 

identify pixels in inland waters based on multi-spectral satellite data; NDWI and MNDWI were the best 114 

methods, respectively.  115 

This research investigates the effects of climate change on the Arjan wetland. It is conducted by forecasting 116 

the air temperature and precipitation data from 2025 to 2065 and calculating the drought index for the next 117 

period. Then, the wetland area in the future is calculated and compared with the observed area. After verifying 118 

the data, the temperature and precipitation were predicted using the two models of canESM2 and hadGEM2 119 

and downscaled by SDSM and LARS-WG software in three RCP scenarios (2.6, 4.5, and 8.5). The drought 120 

was evaluated using the PDI, PNPI, and scPDSI from 1986 to 2018. The wetland area was estimated using 121 

the MNDWI algorithm on Landsat 5, 7, and 8 satellite images for 1986-2018. Finally, the relationship 122 

between wetland area and climatic parameters of the region was investigated to predict the wetland area for 123 

better management of water resources in the future. 124 

2. Materials and methods 125 

2.1. Study area 126 
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The Arjan Wetland is located in Fars province, Iran (Figure 1). The Arjan plain has an average temperature 127 

of 13.9 °C with an average annual precipitation of 671.4 mm. The maximum watershed area of the wetland 128 

has been 1663 hectares, with water depth reaching 1 meter in some areas. Its maximum volume was 43 million 129 

cubic meters in 2011 (Sadeghi and Raisi Ardakani, 2018). With an approximate area of 90 square kilometers 130 

and a height of 1990 meters, it is part of the Arjan-Parishan biosphere reserve. Due to the importance of 131 

tourism, the environment, and the creation of job opportunities for its inhabitants, reducing the water level in 132 

summer has been a paramount concern. Rain and snow in its enclosed basin are the only inflow water sources 133 

for the Arjan wetland (National Commission for UNESCO-Iran, 2017). 134 

 135 

Fig.1 The geographical location of the Arjan wetland in Iran 136 

2.2. Data 137 

Minimum and maximum temperature and daily precipitation data were collected from the Arjan wetland 138 

evaporation station provided by the Fars Regional Water Department of Iran. Monthly temperature and 139 

precipitation data for the historical and next period in three scenarios of RCP 2.6, 4.5, and 8.5, was received 140 

from the Earth System Grid Federation (ESGF) website. Moreover, National Centers for Environmental 141 

Prediction (NCEP), historical, and RCP daily data of the canESM2 model were obtained from the model 142 
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support website (climate-scenarios.canada.ca). In addition, Landsat satellite images were downloaded from 143 

the U.S. Geological Survey website from 1986 to 2018. 144 

2.3. Methods 145 

As the location of the wetland is located in a semi-arid region, the canESM2 model was used based on the 146 

previous researchers’ suggestion (Javaherian et al. 2021; Al-Shurafat and Abdullah, 2020; Chim et al. 2021; 147 

Zhao et al. 2020, Tukimat et al. 2019). The Hadley Center Global Environment Model version 2 (hadGEM2) 148 

was also used to improve the results (Morid et al. 2020; Almagroa et al. 2020; Khazaei et al. 2019). The 149 

selected scenarios are RCP 2.6, 4.5, and 8.5, which are optimistic, moderate, and pessimistic, respectively. 150 

The large-scaled daily temperature and precipitation data of the CanESM2 model in RCP scenarios 2.6, 4.5, 151 

and 8.5 were respectively downscaled by SDSM and LARS-WG for 2025–2065. Because many researchers 152 

reported that the SDSM and LARS-WG models are more suitable for downscaling daily temperature and 153 

precipitation, respectively (Salajegheh et al. 2016; Sobhani et al. 2014; Dehghan et al. 2014; and King et al. 154 

2009). 155 

2.3.1. Validation 156 

 The root-mean-square error (RMSE) and relative error of observational data (E) were used to compare 157 

downscaled predicted data with the observations in the same period. 158 

2
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−
=

+                                                                                        (2)                          160 

where xi is the average monthly temperature or precipitation, yi is the average monthly predicted temperature 161 

or precipitation, and n is the number of months (n=12). 162 

2.3.2. Drought intensity 163 

To evaluate the drought intensity, three drought indices of PNPI (Mir Yaghoubzadeh and Khosravi, 2018; 164 

Mohamadian et al. 2010; Mahmoudi et al. 2019; and Karimi et al. 2010), PDI (Lashkari et al. 2021; Mir 165 

Yaghoub Zadeh and Khosravi, 2018; Mohammadian et al. 2010; and Karimi et al. 2010), and scPDSI 166 

(Almagroa et al. 2020; Satish Kumar et al. 2021; Mir Yaghoubzadeh and Khosravi, 2018; Rezvanfar and 167 
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Heidarzadeh, 2017; and Huang et al. 2011) were applied from 1984 to 2018. The DIP software was used to 168 

calculate the PNPI and PDI (Morid et al. 2007). This software receives precipitation monthly data and 169 

provides an output on a monthly, seasonal, and annual basis. R programming software version 4.0.2 was also 170 

used to estimate the scPDSI (Wells et al. 2004). 171 

2.3.3. Calculation of the wetland area 172 

As the MNDWI is the best algorithm proposed by previous studies for classifying wet and terrestrial areas, it 173 

was implemented on the Landsat 5, 7, and 8 satellite images to calculate the wetland area for each year. Each 174 

satellite image represents one year and corresponds to the summer months of July, August, and September 175 

(Sarp and Ozcelik, 2017; Ghebrezgabher et al. 2016; Yang et al. 2011; Zhang et al. 2011; Cordeiro et al. 176 

2021; Li et al. 2021; Wen et al. 2021). 177 

2.4. Modeling changes in wetland area by drought indices 178 

The area of the wetland has been calculated using ArcGIS 10 software. After computing the drought indices 179 

for the corresponding years for available satellite images, linear and non-linear regression have been used to 180 

find the highest correlation between drought indices and wetland areas as described below.  181 

2.4.1. Simple linear regression 182 

To evaluate the individual effect of climate change without direct human influence, the outlier data between 183 

2013 and 2018 were not considered. During this period, a part of the wetland water has been used for 184 

agriculture and then causes disturbances in the natural wetland area. Moreover, two different annual periods 185 

were assessed to find the best one for evaluating the simple linear model efficiency. The first period is the 186 

common Julian year (JY) and the second is the suggested AD year as described below. The model individually 187 

uses the drought indices and precipitation calculated for both mentioned periods. Then, the wetland area for 188 

the current year was linearly modeled resulting in the drought indices and precipitation. AD year starts from 189 

August of the previous year to July of the current year.   190 

2.4.2. Non-Linear regression 191 

In the study of Mohseni et al. (1998), a four-parameter non-linear function was used to estimate the river flow 192 

temperature by utilizing air temperature. Since wetland water evaporation depends on the water temperature, 193 

a modified relationship was proposed to calculate the wetland area as shown in Eq. (3). 194 
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max min
min ( )1

S scPDSI

A A
A A

e
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+
                                                   (3) 195 

where AS is the wetland area, scPDSI is the self-calibrated Palmer Drought Severity Index, Amin and Amax 196 

are the minimum and maximum wetland areas in the observational data, respectively, γ is a slope at the turning 197 

point, and β is the wetland area at the turning point. There are 30 corresponding data for AS and scPDSI in 198 

this study. To obtain γ and β values, the known parameters were replaced in the equation and were solved to 199 

minimize the RMSE and the Nash-Sutcliffe model Efficiency (NSE) by a trial-error procedure. Equations 4 200 

and 5 were used to acquire the percentage of reliability of this correlation method. 201 
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where AS is the wetland area (via Eq.3), and Aobs is the wetland area calculated by the ArcGIS software as 204 

explained before. 205 

2.4.3. Linear regression with modified WWAI 206 

The Wetland Water Area Index (WWAI) using PDSI was developed by Huang et al. (2011) in the study of 207 

Cottonwood Lake in North Dakota. A modified version of WWAI was used to predict the area of the Arjan 208 

wetland in the present study by replacing the scPDSI with the PDSI. Since the wetland's area does not 209 

completely depend on precipitation and temperature in the current year and precipitation in the previous year 210 

has accumulated, the cumulative scPDSI (scPDSICUM) was calculated which can show a better correlation 211 

than scPDSI. Nevertheless, since small changes are not expressed well, a weighting factor (Wi) should be 212 

defined with a range of 0 –1. 213 

min

max min

i

i

scPDSICUM scPDSICUM
W

scPDSICUM scPDSICUM

−
=

−
                                             (6)                                                                  214 
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where scPDSICUMi is the cumulative scPDSI, and scPDSICUMmin and scPDSICUMmax are the minimum 215 

and maximum cumulative scPDSI, respectively.  216 

When scPDSICUM is close to the minimum, W is nearly zero, indicating that the previous conditions were 217 

arid. When scPDSICUM is close to maximum, W is approximately equal to one, indicating that previous 218 

conditions were very wet. W values were calculated to obtain the area of the Arjan wetland after computing 219 

the cumulative drought index. Moreover, the scPDSICUM was divided into three classifications: 220 

scPDSICUMi <-10, -10 < scPDSICUMi <-5, and scPDSICUMi >-5. As Huang’s study (Huang et al. 2011), 221 

this method requires five parameters (a, b, c, d, e) obtained by trial and error and needs calibration to predict 222 

the wetland area. Therefore, it is necessary to proceed according to the flowchart in Figure 2. 223 

 224 

Fig.2 The steps of forming the wetland water level index 225 

 226 

3. Results 227 

3.1. Predicting air temperature  228 

Figure 3(a) shows the annual maximum, minimum, and average temperature in the RCP 2.6, 4.5, and 8.5 for 229 

the historical and future periods. As indicated in Figure 3(a), the maximum temperature under RCP2.6 has 230 

reached 23.3˚C from 22.4 ˚C with an average slope of 1.5%. It means that the temperature has increased by 231 

1.1 ˚C on average. In addition, according to RCP4.5 and 8.5, the maximum temperature increased with an 232 
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average slope of 4.2% and 6.4%, and the temperature increased by 2.1 ˚C and 3.3˚C on average, respectively. 233 

Based on RCP 2.6, the annual minimum temperature has increased from 9.9 with an average slope of 1.6% 234 

and is expected to reach 10.9 in 2065. The minimum temperature has also increased by 1.7 ˚C under the RCP 235 

4.5 and 3.1 ˚C under the RCP 8.5 scenarios. Figure 3(a) also indicates the amount of average annual 236 

temperature increase, which is acquired from the average maximum and minimum temperatures. 237 

 238 

 239 
Fig.3 Air temperature (a) and annual precipitation (b) changes of the Arjan wetland in the 240 
observation and future periods, the minimum, maximum, and average annual  241 

 242 

3.2. Predicting precipitation  243 

Figure 3(b) demonstrates the results of precipitation predictions in the past and future. Table 1 also presents 244 

the statistical analysis of the predicted precipitation data for the future in different scenarios compared to the 245 
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observed data using the t-test results. The average future precipitation in the three scenarios is higher than the 246 

average of the observed values. 247 

According to Table 1, as the p-value for RCP2.6 and RCP8.5 were greater than 0.05, no significant correlation 248 

between precipitation data and observed precipitation was found, and only in RCP 4.5, the p-value was 0.029, 249 

which showed a meaningful correlation. The down-scaled precipitation in the future does not show a 250 

considerable increasing or decreasing trend compared to the observation period. However, the predicted 251 

precipitation under the three scenarios does not have the same trend. Similar results were presented in the 252 

research of Zhao et al. (2020), and Rezvanfar and Heidarzadeh, (2017). In Figure 3(b), the slope of 253 

precipitation changes under RCP 4.5 in the years 2025 to 2065 is positive (+0.09). While the predicted 254 

precipitation slope under RCP 2.6 and RCP 8.5 scenarios during 2025-2065 are -3.3 and -1.9, respectively. 255 

Since precipitation extremes are critical in water resources management, it is essential to specify them. Very 256 

low precipitation will occur in 2041 and 2060 under all three scenarios, and very high precipitation will 257 

happen in 2043, 2045, 2052, 2053, and 2059 under RCP 4.5. Based on the results of three future scenarios, 258 

the lowest precipitation will occur in 2041 and 2061 at about 380 mm per year compared to 340 mm in the 259 

observation period. 260 

Table 1. The t-test results for comparing predicted precipitation under RCP scenarios with 261 

observational data (mean 786 and standard deviation 311 mm per year) 262 

Scenarios Mean Standard deviation P-value T-value 

RCP2.6 824 233 0.532 -0.63 

RCP4.5 933 310 0.029 -2.23 

RCP8.5 821 241 0.571 -0.57 

 263 

3.3. Prediction of dry and wet years using drought indices 264 

The drought was analyzed by calculating three indices of PNPI, PDI, and scPDSI. Figure 4 shows that the 265 

intensity of drought is not the same for these indices in each year; this could be due to the difference in the 266 

analysis of climatic parameters in each index. However, similar drought periods can be seen in all three 267 

indices including 1991 to 1997, 1983 to 1985, and 2008 to 2010. The results of PNPI and scPDSI seem better 268 

while the scPDSI usually indicates the drought period with a one-year delay. It is probably because of the 269 

different definitions of the indices since the PNPI is based on meteorological drought, while the scPDSI is 270 

applicable for hydrological drought estimation and is measured based on soil moisture. Hydrological drought 271 

may occur after meteorological drought. In the last ten years, scPDSI has estimated drier years than PNPI and 272 
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PDI; this could be due to the use of the temperature in this index which is an increase in the average annual 273 

temperature compared to the previous year(s) showing more drought, despite the almost acceptable 274 

precipitation. For example, the PNPI shows severe draught in 2004 while this year is considered a normal 275 

year based on the scPDSI. In addition, the year 2001 is a normal year based on both the PNPI and PDI indices, 276 

unlike the severe drought calculated by the scPDSI. Like our results, Zhao et al. (2020) also reported more 277 

intense drought due to increasing temperature. 278 

 279 

 280 

 

 281 

 282 

 283 

 284 

 285 

 286 

Fig.4 Changes in the drought indices of Arjan wetland during the years 1982-2018 (In all figures, the 287 
orange lines show moderate drought, and the blue lines show moderate wet) 288 

3.4. Changes in the area of the Arjan wetland 289 

Figure 5 shows the selected satellite images in summer between 1986 and 2018. The wetland area in summer 290 

is also shown in Figure 5 using the MNDWI algorithm on Landsat satellite images. In recent years, the 291 

wetland area has significantly decreased and it was almost dried in 2018. The results showed the scPDSI is 292 

more accurate than the PNPI and PDI drought indices to estimate the Arjan wetland area. As seen in Figure 293 

4 the scPDSI shows more drought than other indices in recent years so it can be more reliable. The first reason 294 

is the use of both temperature and precipitation, and the second is the use of the climate data of the previous 295 

year in calculating this drought index. These results confirm that the wetland area for each year is also affected 296 

by both precipitation and the area in the previous year. Similar findings were reported by Rehana and Sireesha 297 

Naidu (2021), Abbasiana et al. (2021), and Zhao et al. (2020).  298 
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Fig.5 Selected satellite images and the area changes of the Arjan wetland 299 

3.5. Modeling level changes 300 

3.5.1. Simple linear regression 301 

Table 2 shows the result of the simple linear regression between different climatic parameters and the Arjan 302 

wetland area. As indicated in Table 2, the PDI has no significant correlation with the Arjan wetland area. 303 

Although this index was used and confirmed by Lashkari et al. (2021), it was not suitable for this research. 304 

Based on the study of Mahmoudi et al. (2019) for the PDI, if the duration of the statistical period is short, this 305 

index will not describe drought conditions well. Despite the approval of many studies, such as Mahmoudi et 306 

al. (2019), Miryaghoubzadeh et al. (2019), and Karimi et al. (2010), the PDI was not compatible with 307 

modeling the area of the Arjan wetland, whereas scPDSI correlates well. Because the PNPI and PDI are 308 

univariate indices rather than the scPDSI. Single-variable drought indices seem not suitable for describing 309 

drought under climate change (Rehana and Sireesha Naidu, 2021; Abbasian et al. 2021; Zhao et al. 2020). 310 

However, all drought indices as well as precipitation demonstrate a better correlation with AD year than JA 311 

year. It is suggested that assuming AD year can be a suitable choice for such modeling. Table 2 also indicates 312 

the correlation coefficient of scPDSI of AD year and scPDSI of JY year are higher than in the rest of the 313 
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parameters. Since the scPDSI of the AD year is higher than the scPDSI of the JY, the scPDSI of the AD year 314 

is selected for the non-linear regression in the next step. 315 

Table 2. Coefficient of determination (R2) of the linear regression between different climatic 316 

parameters and the Arjan wetland area in the past period 317 

Climatic parameter  Period in concern R2 

Precipitation 
JY 0.29 

AD 0.51 

Drought index 

PDI 
JY 0.2 

AD 0.32 

PNPI 
JY 0.28 

AD 0.46 

scPDSI 

JY 0.67 

AD 0.76 

Summer average 0.57 

 318 

The final equation of linear regression scPDSI of the AD year for Arjan wetland shows in Equation 7. 319 

175.85( ) 725.7
i i

A scPDSI= +                                                                            (7)      320 

3.5.2. Non-linear regression 321 

 After using observational data, γ, β, NSE, and RMSE were obtained through a trial-and-error procedure using 322 

Eq. (3) and the scPDSI as the independent variable, which were 0.59, 0.79, 206.91, and 0.78, respectively, 323 

yielding Eq. (8). The NSE value shows a proper efficiency of this method but it did not significantly increase 324 

compared to linear regression. Figure 6(a) also shows the areas calculated by Eq. (8). 325 

0.59(0.79 )

1541
92

1
s scPDSI

A
e

−= +
+

                                                                                       (8) 326 

Figure 6(a) illustrates that the scPDSI is a reliable model to estimate the wetland area, especially in the years 327 

with low precipitation. 328 
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 329 

 330 
Fig.6 Comparison of the observed wetland area with the area obtained from equation 7, 8, and the 331 
area modeled by the WWAI (a) and scPDSI changes of Arjan wetland during the years 1983-2065 (b) 332 
3.5.3. Linear regression with the modified WWAI  333 

The values obtained for the unknown coefficients (a, b, c, d, e) obtained by trial and error equal 8.5, 3.2, -1.6, 334 

6.7, and 2.3, respectively. The linear regression of the wetland water area index using the computed 335 

coefficients compared to the observed area showed that the R2 is equal to 0.88, which indicates a significant 336 

correlation. Figure 6(a) compares the area modeled by the modified WWAI with the observed area. 337 

3.6.1. Calculation of scPDSI 338 

Before estimating the wetland area, it is necessary to calculate the scPDSI for RCPs 2.6, 4.5, and 8.5. As seen 339 

in Figure 6(b), in 2025 and the years 2044-2045 will experience severe wet under three scenarios. Whereas 340 

there are three periods of severe drought including 2036-2039 2052, 2055-2058, and 2062. However, the 341 

drought in 2056 will be very severe under RCP 8.5. As seen in Figure 6(b), the number of extremely wet 342 

years in the observation period is 14%, whereas it will be 6% in the future. However, our estimations indicate 343 

that the number of severe drought years will not significantly change compared to the observation period, 344 

showing the decreased domain of changes compared to the past due to the longer period. Moreover, the trend 345 
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of the scPDSI in scenarios RCP 2.6 and 8.5 is decreasing similar to the past period whereas RCP 4.5 slightly 346 

experiences an increasing pattern. A similar pattern can be observed for precipitation shown in Figure 3(b). 347 

Scenarios RCP 2.6 and 8.5, and the past period have a slightly decreasing trend in contrast with RCP 4.5 with 348 

a drastically increasing trend. Hence, it can guide us that precipitation has a lower effect on the scPDSI than 349 

temperature. 350 

3.6.2. Estimation of wetland area in the future period using linear regression 351 

As predicted by the simple linear regression method (Figure 7(a)), the wetland area will be under 200 ha and 352 

near zero for many years. In this method, the minimum and maximum area of the wetland were respectively 353 

predicted in 2062 (5 ha) and 2025, and 2044 (1400 ha). 354 

3.6.3. Estimating the area of wetland in the future period using non-linear regression 355 

Figure 7(b) shows that the non-linear regression for four years (2037, 2052, 2056, and 2057) has estimated 356 

an area below 200 ha, the lowest for 2056 with 173 ha. Comparing the observed area with this model (Figure 357 

6(b)), the modeled area is over-estimated than the observed area in severe drought years such as 2008-2010. 358 

Therefore, it is likely that the areas that will report in the future in these years will be less than predicted in 359 

this method. The maximum area predicted according to this method will be roughly 1400 ha and it will happen 360 

in 2025 and 2044. Except for the minimum wetland areas mentioned above, the whole pattern of this method 361 

is similar to the linear model. 362 

3.6.4. Estimating the wetland area in the future period using linear regression with the modified 363 

WWAI 364 

The results of estimating the wetland area in the future period using the linear regression with the modified 365 

WWAI are shown in Figure 7(c). The minimum area of Arjan wetland in 2036 is estimated to be 22 ha. In 366 

addition, the maximum area in 2045 is 1610 ha, then in 2044 and 2025 with 1400 ha. The mentioned modeling 367 

of the wetland area are valid for the conditions without the other anthropogenic effects. As mentioned before, 368 

during 2014–2018, the wetland area decreased to less than 200 ha, which could be due to water abstraction 369 

for agriculture or other anthropogenic factors. 370 

  371 
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 372 

 373 

 374 

Fig. 7 Changes in the area of Arjan wetland during the years 2025-2065 according to a) the linear 375 

regression, b) the non-linear regression, and c) the modified WWAI model 376 

 377 

4. Conclusions 378 

This study tried to assess the climate change effect on the water budget in a natural wetland, especially in 379 

terms of wetland area.  380 
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Temperature evaluation from 2025 to 2065 under RCP 2.6, 4.5, and 8.5 scenarios revealed that the 381 

temperature increased by 1˚C, 1.7 ˚C, and 3.1 ˚C compared to the average historical value, respectively. 382 

Moreover, the precipitation for the mentioned period shows a small increasing or decreasing trend compared 383 

to the observation period. 384 

Comparing drought indices of the PNPI and scPDSI showed that since 2000, the PNPI had estimated normal 385 

or wet years, while the scPDSI had estimated drought or normal years. As this index uses both temperature 386 

and precipitation to estimate drought conditions, it seems more reliable for modeling the wetland area. This 387 

fact was proved by comparing all three drought indices during the simple linear modeling of the wetland area. 388 

The modeling of the Arjan wetland area in the future period was conducted by the scPDSI using three methods 389 

of simple linear, non-linear, and modified WWAI. Results showed that if the future period is divided into two 390 

parts, including 2025-2045 and 2045–2065, 90% density of modeled areas in the second period has less than 391 

800 ha. Moreover, no areas are larger than 1100 during this period. It indicates that the major effect of climate 392 

change is significantly increased temperature for the mentioned period. The modeling also reveals that the 393 

Arjan wetland experiences severe droughts, an area below 200 ha, in years from 2036 to 2039 and 2042, 394 

2052, 2058-2056, and 2062. Furthermore, the wetland will severe wet years 2025, 2044, and 2045. 395 

However, this result holds if the Arjan wetland is affected only by climate change. These results are not valid 396 

when anthropogenic factors are also involved in this basin. If water is used for agriculture, the Arjan wetland 397 

may be entirely dried, much earlier than 2065, making its restoration so costly. 398 
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