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Abstract24

Measurement error is present in all quantitative studies, and ensuring proper biological inference requires25

that the effects of measurement error are fully scrutinized, understood, and to the extent possible, minimized.26

For morphometric data, measurement error is often evaluated from descriptive statistics that find ratios27

of subject or within-subject variance to total variance for a set of data comprising repeated measurements28

on the same research subjects. These descriptive statistics do not typically distinguish between random29

and systematic components of measurement error, even though the presence of the latter (even in small30

proportions) can have consequences for downstream biological inferences. Furthermore, merely sampling31

from subjects that are quite morphologically dissimilar can give the incorrect impression that measurement32

error (and its negative effects) are unimportant. We argue that a formal hypothesis-testing framework for33

measurement error in morphometric data is lacking. We propose a suite of new analytical methods and34

visualization tools that more fully interrogate measurement error, by disentangling its random and systematic35

components, and evaluating any group-specific systematic effects. Through the analysis of simulated and36

empirical data sets we demonstrate that our procedures properly parse components of measurement error,37

and characterize the extent to which they permeate variation in a sample of observations. We further confirm38

that traditional approaches with repeatability statistics are unable to discern these patterns, improperly39

assuaging potential concerns. We recommend that the approaches developed here become part of the current40

analytical paradigm in geometric morphometric studies. The new methods are made available in the RRPP41

and geomorph R-packages.42
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Introduction43

Quantitative inferences in evolutionary biology are made by estimating biological signal from empirical44

observations, and evaluating that signal relative to expectation under a particular hypothesis (Houle et al.45

2011). However, this seemingly straightforward endeavor is compromised by the fact that our observations46

are impacted by measurement error (Fleiss and Shrout 1977; Kreutz et al. 2013). Measurement error affects47

one’s ability to distinguish signal from noise, and is a pervasive problem in all quantitative disciplines.48

The field of morphometrics is no exception. Here, the biometer quantifies anatomical shapes from sets49

of linear measurements, or increasingly, from landmark points representing discrete anatomical locations,50

curves and surfaces of structures, as commonly found in geometric morphometric data (Adams et al. 2013;51

Bookstein 1991; Mitterœcker and Schæfer 2022). From these measurements, one may characterize the shape52

of anatomical objects, summarize patterns of shape variation for a sample of observations, and describe53

the covariation of shape with other explanatory variables. Yet our morphometric data contain uncertainty54

associated with the values assigned to each landmark, which can inflate the inter-specimen variation in a55

sample (Arnqvist and Mårtensson 1998; Bailey and Byrnes 1990; Yezerinac et al. 1992). This can have56

potentially serious consequences for making downstream statistical and biological inferences, and thus it is in-57

cumbent upon the biometer to ensure that the effects of measurement error are minimized, as much as possible.58

59

To do so first requires an understanding of the major components of measurement error, and how they60

manifest in a sample of observations. In the field of measurement theory, measurement error is defined as the61

deviation between a measured quantity and its true value (sensu Rabinovich 2005). This deviation exists in62

part because the actual value of any physical attribute is unknown, and thus quantitative values assigned to63

it are inexact estimates (Hand 1996; Krantz et al. 1971; Kyburg 1984; Luce et al. 1990; Rabinovich 2005;64

Suppes et al. 1989). Additionally, imprecision in these estimates — due to instrumentation inaccuracies, how65

observers take readings, or inconsistencies in experimental procedure — further contribute to these deviations.66

Collectively, these deviations result in measurement error (ME). Importantly, measurement error may occur67

randomly across observations, or it may deviate systematically in some manner (Hand 1996; Rabinovich68

2005). Random ME corresponds to stochastic variation in the magnitude or direction of deviations from69

observation to observation. Statistically, random ME has a well-known and obvious effect; it increases the70

variance in a sample, and thus increases the potential for type II errors in hypothesis tests (Yezerinac et71

al. 1992). In other words, random ME impinges on the biometer’s ability to detect a signal when it is72

present in a sample. By contrast, systematic ME corresponds to differences that vary in regular fashion in73
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repeated measurements of the same observations. Because these deviations are non-randomly distributed,74

systematic ME can result in estimation bias of model coefficients and can manifest as a measurable75

signal, thereby altering the actual biological signal present in the dataset. Thus, from a statistical stand-76

point, systematic ME is a far more insidious problem, as it has the potential to lead biological inferences astray.77

78

That measurement error exists in morphometric data is not in dispute. Rather, for the biometer, the concerns79

are: (1) How to detect it? and (2) How to minimize it? With respect to the former, deviations from the80

true value cannot typically be used to estimate ME, because the true value cannot be known precisely81

(Rabinovich 2005). Instead, ME is most commonly characterized by taking repeated measurements of the82

same observations, and summarizing the within-subject (i.e., among-replicate) variation. Here, smaller83

within-subject variation implies less ME, and thus greater repeatability of the estimated measurements84

(Bailey and Byrnes 1990). To assess this, a repeated measures analysis of variance (ANOVA) model may be85

used to attribute variance to model effects, and to isolate the within-subject variance component (Arnqvist86

and Mårtensson 1998; see Fleiss and Shrout 1977). The latter may be conveyed as the intra-class correlation,87

or ICC (Bartko 1966; Fisher 1950; Haggard 1958; Liljequist et al. 2019), which describes the among-subject88

variance relative to the total variation in the sample. The ICC expresses the degree to which repeated89

measurements are similar, and thus, higher values imply lower ME. Multivariate analogs have been proposed90

for ICC using canonical correlation analyses between covariance matrices (e.g., Konishi et al. 1991), but91

these approaches compare the covariance matrices of inherently related subjects (like parents and offspring)92

rather than repeated measurements of the same subjects. Similarly, the within-subject variance component93

itself, or its associated coefficient of determination (R2), may be used as a heuristic to describe the percentage94

of variation attributable to ME in a dataset (Galimberti et al. 2019; Klingenberg et al. 2002). Taken95

together, these summary measures (ICC, R2) are relatively straightforward to calculate, and not surprisingly,96

are used in a wide variety of disciplines. However, it should be recognized that they are agnostic to the97

type of ME present in a sample. As typically implemented, they characterize the overall magnitude of98

ME, but are generally incapable of disentangling any random and systematic components that may be present.99

100

In 1998, Arnqvist and Mårtensson brought the topic of measurement error to the attention of practitioners101

of geometric morphometrics (GM), and highlighted the importance of investigating measurement error102

in landmark data. Their seminal review described in detail how ME permeates the various steps of103

our digitization and analytical pipelines, proposed strategies for minimizing ME, and advocated that104

summary measures such as the ICC be regularly used to gauge the extent of ME in a morphometric105
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sample. Since then, an increasing number of GM studies have incorporated an evaluation of ME as part of106

their data analytic procedures. Typically, these studies leverage repeated measurements of observations,107

and utilize one or more of the summary measures mentioned above. In fact, a survey of the recent108

literature reveals a rather diverse set of publications, which includes studies that assess the overall level109

of ME in a sample (e.g., Fox et al. 2020; Vrdoljak et al. 2020), studies that evaluate the precision of110

particular landmarks (Barbeito-Andrés et al. 2012; Cramon-Taubadel et al. 2007), and studies that evaluate111

inter-observer error and device-specific differences (e.g., Fruciano et al. 2017; Giacomini et al. 2019;112

Marcy et al. 2018; Menéndez 2016; Robinson and Terhune 2017; Shearer et al. 2017). Thus, it appears113

that Arnqvist and Mårtensson’s (1998) call to arms has been heeded by the morphometric community,114

and evaluations of measurement error are now much more routine. We view this to be a positive development.115

116

Since the publication of Arnqvist and Mårtensson’s treatise 25 years ago, the field of geometric morphometrics117

has witnessed a veritable explosion of analytical advances in many topical areas, developed to address a wide118

array of biological hypotheses (Adams 2014; Adams and Collyer 2019; Bookstein et al. 2003; Bookstein119

2015; Collyer and Adams 2013; Conaway and Adams 2022; Gunz et al. 2005; Klingenberg and Gidaszewski120

2010; Mitterœcker et al. 2004; Mitterœcker and Bookstein 2009; Rohlf and Corti 2000, to name a few). Yet121

curiously, little has changed in terms of the recommendations regarding how one should evaluate measurement122

error in GM studies. For instance, a current review of the topic (Fruciano 2016) offers: (1) a careful scrutiny123

of one’s digitizing procedures, (2) visual inspection of one’s data to identify problematic landmarks and124

dispersion among within-subject replicates, (3) the use of summary measures as heuristics to evaluate the125

extent to which ME may be present, and (4) evaluation of differences between observers or devices when such126

data are available. Yet this is essentially the same advice as advocated by Arnqvist and Mårtensson in 1998,127

with a modern focus on available software. Other reviews of the subject (Daboul et al. 2018; Fruciano et al.128

2017) proffer similar suggestions without alteration. In fact, apart from an alternative permutation scheme129

for testing inter-observer or inter-device differences (Fruciano et al. 2017), no new analytical procedures have130

been forwarded that explore aspects of ME from a new perspective. In short, the analytical machinery for131

investigating ME in geometric morphometric data has remained rather static for two and a half decades,132

and has not kept pace with analytical advances achieved in other areas of the field. We feel it is imperative133

to reacquaint the field of GM with analysis of ME, utilizing some of the statistical tools that have been134

developed in the last decade.135

136

We contend that interrogating measurement error in GM studies should have the same degree of quantitative137
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rigor as is currently attained in other areas of the field. To do so requires a more synthetic view of ME that138

is capable of decomposing it into its constituent components, and simultaneously evaluating the attributes of139

ME in terms of their magnitude, and their direction. By relating trends in ME to patterns present in one’s140

data, the biometer can properly discern how ME influences their statistical, and thus biological conclusions.141

142

In this article, we develop a novel set of analytical procedures and visual tools that establish a new paradigm143

for how empiricists should investigate patterns of measurement error in multivariate data. Our approach144

dissects the random and systematic components of ME from one another, and extracts any group-specific145

systematic ME that may be present. Multivariate test measures are proposed to characterize these patterns,146

which are evaluated with appropriate permutation procedures. A set of visualization tools accompanies147

these procedures to provide additional insights. First we formalize the algebra of our approach. Then,148

through a series of motivating examples, we illustrate how different aspects of ME manifest in GM data,149

and demonstrate how our new analytical paradigm detects these patterns. Computer simulations are then150

used to verify that associated permutation tests display appropriate statistical properties. An important151

outcome of these simulations is the observation that Procrustes superimposition buffers against the negative152

impacts of systematic ME, rather than enhancing them. Next, a reanalysis of an empirical dataset illustrates153

the dissection of ME into its random and systematic components, and reveals that the main direction of154

systematic ME in this example coincides with the direction of biological signal; obfuscating interpretation155

of the latter. This highlights the importance of performing a more comprehensive interrogation of ME in156

morphometric datasets, which our analytical and visual tools provide. Finally, all methods developed in this157

article are available in the R-packages geomorph (Adams et al. 2023; Baken et al. 2021) and RRPP (Collyer158

and Adams 2018; Collyer and Adams 2023) libraries.159

Methods and Results160

We present updated and novel methods for the analysis of ME by first introducing the conceptual basis for161

the methods, explaining what systematic and random components of ME mean and how they manifest in162

GM data. We introduce examples for simulation experiments, which create plausible contexts for varied163

amounts of systematic and random ME, based on repeated digitizations of the same landmark configuration.164

The examples covered in the simulation experiments help ground the conceptual basis for the methods we165

propose in a realistic way by syncing graphical patterns to statistical results. Statistical methods include a166

novel resampling procedure used to create empirical sampling distributions of test statistics for Procrustes167
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ANOVA and multivariate ANOVA (MANOVA), plus a graphical tool to assist in assessing and interpreting168

the amounts and patterns of systematic and random ME in a GM-ME experiment. In the work below,169

a GM-ME experiment is any study that selects specimens for digitizing and uses a systematic method of170

repeated digitizations of the same landmark configuration on each specimen, resulting in GM data.171

Conceptual basis for the analysis of ME172

In the purest sense, ME is a quantifiable divergence from a true value or suite of values made by a process173

intended to replicate the true value. An example that might be easy to appreciate for researchers who use174

landmark-based GM data involves several machines in a factory that are used to drill holes in wood planks for175

assembling furniture. Machines are programmed to drill a specific configuration of holes. There is, therefore,176

a known “true” configuration from which departures can be measured for each of the machines. ME is the177

measured result of any tendency for machines to misplace holes in the locations they were programmed178

to be placed. The amount of ME is directly related to the imprecision of hole-placement in the drilling179

process. However, the imprecision can be defined in different ways. One could measure the displacement of a180

particular hole from its target, both in the distance from the true location and the direction in which it was181

displaced. Alternatively, and more relevant for GM data, one could attempt to measure the mismatch of182

the entire configuration to the true configuration. Even if the reason for any ME is localized to one hole183

(landmark), the difference between true and replicated configurations can be observed at every hole, after the184

configurations have been aligned to best match all corresponding holes to each other.185

186

If the drilling of configurations was replicated several times, per machine, ME might be consistent, for187

example, as a displacement of a specific hole to the left of its true location. This would be indicative of a188

systematic bias or prejudice of the machine. Because there is some repeatability of this type of error, the189

resulting displacement of the hole is referred to as systematic ME. This is an obvious trend, unlike random190

ME, a tendency for misplacement of one or more holes, but not in a predictable way. Both systematic and191

random ME could be measured, provided replication in measurements is made on sample planks, for multiple192

individual machines.193

194

The practicality of the machine example breaks down perhaps with the realization that in just about any195

GM study, a true configuration is not known. However, as presented, this example is not the only way to196

assess ME. It can be implied from the example that machines are research subjects and replication of the197
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wood-drilling process occurs for multiple configuration-drillings by each research subject. This might seem198

practical if there is only one configuration of points to consider. If, however, various different configurations199

could be programmed into each machine, a GM-ME experimental design like the one above, repeated for200

every configuration, would require many observations (which might be costly), and would allow inference201

only to be made, configuration by configuration, and machine by machine. Rather, if the configurations202

were considered research subjects and the machines replications of the process applied to each subject, the203

tendency of any one machine to misplace holes could be assessed, irrespective of configurations. Furthermore,204

knowing the true configuration that is programmed into each machine would not be as necessary as205

understanding the tendency for machines to drill the same configurations, especially if evaluating the con-206

sistency of machines to perform the same process – regardless of configuration – was the purpose of the study1
207

208

This alternative design draws more parallels to GM studies. Research subjects are specimens on which209

landmark configurations are placed, and replications are repeated digitizations, that are distinct in some way.210

For example, two or more researchers digitize the same photos; a researcher digitizes the same configuration211

on separate photos of the same specimen; a researcher and automated digitizer digitize the same configuration212

on research specimens; two different scanners are used to collect 3D surface points on the same object; and213

other scenarios are certainly possible. Assessment of ME is consistent with an assessment of the repeatability214

of digitizing a landmark configuration on the same specimen and getting the same results. There is no need215

to have a “true” configuration. Rather, an assessment of the tendency for repeated digitizations on the216

same specimens to produce shapes in a shape space that are in close proximity, compared to the shapes of217

disparately shaped specimens, is the goal. ME is the measurable disparity among replicated measures of the218

same research subjects. Quantifying ME is challenging, because there is no appreciable range of expectation219

without relativizing the variation among replicated measurements to some other source of shape variation.220

Regardless, a design that has the same configuration digitized multiple times on the same specimen — the221

measurements nested within a research subject — also repeated for multiple specimens, allows assessment of222

ME in GM studies.223

224

Unfortunately, the data of landmark-based GM — the Procrustes coordinates2 from generalized Procrustes225

analysis (GPA) (Adams et al. 2013; Rohlf and Slice 1990) — involve transformation that can obfuscate226

1If only one machine was the cause of inconsistency, it would be clear which machine it was, regardless of the exactness of
any machine to produce the true configuration.

2Often the terms, “Procrustes residuals” and “Procrustes coordinates” are used almost interchangeably. Procrustes coordinates
are the mean configuration after GPA, plus the Procrustes residuals, which are the deviations of configuration-specific coordinates
from the mean. Either can be used in most analyses, producing the same results, as the mean shape would be constant for every
research observation.
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specific digitizing phenomena. ME most typically will be measured on Procrustes coordinates, as the elements227

of configuration size, orientation, and position would make an analysis on the raw coordinates of digitized228

landmarks impractical. However, it is the impact that a digitizing prejudice — the tendency of a digitizing229

process to impose a consistent change in the location of one or more landmarks in a configuration compared230

to another — has on the estimation of the shape of specific research subjects or the groups that contain them231

that is probably of most interest. For example, if a researcher digitizes a landmark configuration on 2D232

photos of research specimens (first replicate) and an automated digitizer places the same landmarks on the233

same photos, and it is revealed that the landmarks of the automated digitizer are misplaced in the same234

direction by the same amount (accounting for specimen orientation), then there might be little concern. If235

every landmark was perfectly displaced, the resulting configurations would have the same size and there236

would be no difference between the coordinates after GPA3 However, if the displacement occurs for one or237

few landmarks, only, the configurations would have different size and mismatched coordinates after GPA, but238

not only for the landmarks where the mistake occurred. Even though the digitizing prejudice is an attribute239

of the process that places raw landmarks, it is in most cases the change in Procrustes coordinates that result240

from that process that is a concern. Procrustes coordinates are the data from which ME is measured.241

242

Digitizing prejudice should translate to systematic ME that can be quantified in an analysis of ME performed243

on Procrustes coordinates. If the effect of systematic ME can be measured, the shape change associated244

with this effect can be envisioned by mapping the mean configuration of Procrustes coordinates onto a245

configuration changed by the effect, which might reveal which landmarks are most likely changed as a result246

of a digitizing prejudice. Alternatively, random ME has no specific directional shape change but signifies247

that different shapes are observed among digitizing replicates of the same subject. For example, if the same248

research specimens are digitized by two researchers, one who is meticulous and one who is sloppy, pairs of249

shapes for research subjects might appear displaced in a principal component (PC) plot, but in no consistent250

way. This is in contrast to systematic ME, which would be revealed more so as a tendency for consistent251

displacement. Greater ME, whether systematic or random, will be revealed by greater disparity between252

corresponding points of subject replicates in a PC plot. Random ME might not be of much concern, if small,253

as it might not have much impact on the estimation of subject shapes. Systematic ME can be of great254

concern, however, even if small, as it could lead to biased shape estimates for some but not all research255

subjects, which would have implications for analyses that target estimation of shape change among groups.256

An analysis of ME ideally evaluates the impact of systematic ME, in addition to measuring the amount of257

3Despite the imprecision of the automated digitizer compared to the researcher, the configurations it produces are accurate
with respect to the researcher’s.
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ME, whether random or systematic. As we show below, systematic and random ME can be partitioned,258

and systematic ME tested, with an appropriate analytical paradigm. First we outline a few hypothetical259

examples for the types of systematic ME one might wish to detect.260

261

Motivating examples (and simulation experiment set-up)262

In this paper, we use simulation experiments to assess type I error rates and statistical power for testing263

for systematic ME, based on six examples of varied but realistic systematic and random ME. In each case,264

random landmark configurations were simulated (more detail below) that were practically invariant to265

positional and rotational differences (except if simulated by chance, in which case they would be slight). As is266

typical with most GM-ME experiments, we eventually perform statistical analysis on Procrustes coordinates,267

following generalized Procrustes analysis (GPA) (Rohlf and Slice 1990). However, because our simulation268

experiments did not vary position and rotation of configurations, it was also possible to perform statistical269

tests on raw landmarks for comparison.270

271

The six experiments (Table 1) sought to evaluate the efficacy of ME tests for scenarios that varied the272

amounts of systematic and random ME, whether research subjects were sampled from different groups with273

specific shape differences (like sampling individuals from different species), whether a digitizing prejudice was274

applied to all specimens or specific groups of specimens, and varied how the digitizing prejudice might be275

applied to different groups.276

277

278

Table 1: Explanation of simulation experiments, indicating purpose,

how systematic and random ME were varied, and whether group

differences in shape were included in analysis.

Experiment Systematic ME Random ME Group

differences in

shape

Purpose

11



1 None Progressive,

from small to

large

None To determine if the amount of

random ME (digitizing noise)

influences tests for systematic

measurement error, before or

after GPA.

2 None Constant and

relatively small

Progressively

larger group

differences

To determine if sampling

research subjects from distinctly

different shaped groups could

influence tests of systematic

measurement error, before and

after GPA.

3 Progressive,

from small to

large, applied to

each research

subject

Constant and

relatively small

Three levels: no

group

differences,

small group

differences, and

large group

differences

To determine the responsiveness

of tests for systematic ME based

on the amount of digitizing

prejudice applied, before and

after GPA. Additionally, to

determine whether group

differences affect tests, both for

a global systematic ME and a

systematic ME by group

interaction.
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4 Progressive,

from small to

large, applied to

each research

subject in only

one group

(enhancing

group

difference)

Constant and

relatively small

Three levels: no

group

differences,

small group

differences, and

large group

differences

To determine the responsiveness

of tests for systematic ME based

on the amount of digitizing

prejudice applied, only to a

particular group, in a direction

of group differences (increased

group difference), before and

after GPA. Additionally, to

determine whether group

differences affect tests, both for

a global systematic ME and a

systematic ME by group

interaction.

5 Progressive,

from small to

large, applied to

each research

subject in only

one group

(retarding group

difference)

Constant and

relatively small

Three levels: no

group

differences,

small group

differences, and

large group

differences

To determine the responsiveness

of tests for systematic ME based

on the amount of digitizing

prejudice applied, only to a

particular group, in a direction

opposite of group differences

(decreased group difference),

before and after GPA.

Additionally, to determine

whether group differences affect

tests, both for a global

systematic ME and a systematic

ME by group interaction.

13



6 Progressive,

from small to

large, applied to

each research

subject in only

one group (not

in a direction of

group

difference)

Constant and

relatively small

Three levels: no

group

differences,

small group

differences, and

large group

differences

To determine the responsiveness

of tests for systematic ME based

on the amount of digitizing

prejudice applied, only to a

particular group, in a direction

orthogonal to group differences

(changed group but not in a

direction that defines group

differences), before and after

GPA. Additionally, to determine

whether group differences affect

tests, both for a global

systematic ME and a systematic

ME by group interaction.

Random subjects were simulated via the distortion of a landmark configuration template,279

Yi = Y0Hi, (1)

where Y0 was the p × 2 template (resembling a fish) and Hi was a 2 × 2 symmetric transformation matrix280

for the p points in k = 2 dimensions (x and y Cartesian coordinates) found in Y0. Hi was randomly sampled281

for subject i, by modifying a 2 × 2 identity matrix by adding values sampled from a normal distribution (δ)282

with a mean of 0 to elements of the identity matrix; i.e.,283

Hi =







1 0

0 1






+







δx δxy

δxy δy






, (2)

where δx ∼ N (µ = 0, σx), δy ∼ N (µ = 0, σy = 0.5σx), and δxy ∼ N (µ = 0, σxy = 0.25σx). This approach284

allowed more shape change in the x-direction (lengthening) than in the y-direction (deepening), and allowed285

the covariance between x and y coordinates to remain consistent and comparatively muted to the lengthening286

or deepening of the configuration. By randomly sampling Hi in Equation (2) for each simulated research287

subject, initial (first replicate) inter-subject variation in shape among subjects was simulated. We varied the288
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amount of inter-subject variation by simply changing the value of σx. Fig. 1 demonstrates how variation in289

fish shapes could be generated.290
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Figure 1: Example of simulated research subjects, with different inter-subject variation, based on σx. Top

row: small variation, σx = 0.02. Bottom row: large variation, σx = 0.16. Left column: raw landmarks.

Middle column: Procrustes coordinates, following GPA. Right column: plot of principal component scores.

There are 60 subjects in each case.

To simulate inherent group differences (for example, by sampling research subjects from different species), an292

update to Equation (1) was performed for the first replicate as,293

Yi = Y0Hi, +Gj , (3)

where Gj was a p × 2 matrix comprising mostly 0s (no displacement) except for the elements found at294

(p − 1, 1) and (p, 1) to allow shifting of two tail landmarks, consistently, only along x Cartesian directions,295

pertaining to expected group shape difference for groups. For group a (j = 1), these values were 0. A296

predefined group difference (d) was assigned for (p − 1, 1) and (p, 1) for group b (j = 2), and 2d was assigned297
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for group c (j = 3). In other words, if group differences were included (d > 0), differences in shape were298

attained by shifting x Cartesian coordinates for two landmarks by an amount, d, for group b and 2d for group299

c. If no group differences were assigned, Gj was a matrix of 0s, meaning the simulated Yi was unchanged.300

An example of the outcome of this simulation protocol, based on σx = 0.20 is shown in Fig. 2.301

302
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Figure 2: Example of simulated research subjects, with group differences. Top row: no group differences for 60

research subjects. Bottom row: group differences simulated for three groups of 20 subjects, via tail-lengthing.

Left column: raw landmarks. Middle column: Procrustes coordinates, following GPA. Right column: plot of

principal component scores, with different symbols corresponding to different groups.

To simulate random ME, an update to Equation (3) was performed for the second replicate as,303

Yi = (Y0Hi + Gj) + Ri, (4)

where Rj was a p × 2 matrix comprising 2p random values sampled from a normal distribution, N (µ = 0, σr),304

where σr defined how variable random digitizing error could be. These values were simulated independently305

(isotropic scatter). The parentheses around Y0Hi + Gj indicate the fixed value for the first replicate, changed306
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for the second replicate by the addition of Rj . Fig. 3 shows how random ME as digitizing error can be307

simulated.308

309
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Figure 3: Example of simulated research subjects with second replicates (60 research subjects), with different

levels of random ME. Top row: small random ME (σr = 0.06). Bottom row: large random ME (σr = 0.18).

Left column: raw landmarks. Middle column: Procrustes coordinates, following GPA. Right column: plot of

principal component scores, with black dots representing first replicates and red dots representing second

replicates.

A digitizing prejudice (systematic ME) could also be added to Equation (4) with an additional update,310

Yi = (Y0Hi + Gj) + Ri + Sj , (5)

where Sj resembles Gj but with different displacement of the x or y Cartesian coordinates for the same311

landmarks that are shifted for group differences. In our simulations, either all of Sj were 0, if not simulating312

systematic ME, contained consistent displacements for the p − 1 and p landmarks (in either x or y directions)313

to simulate the same digitizing prejudice applied to all research subjects, or contained displacements only314

for group a (0 values for groups b and c) to simulate a digitizing prejudice applied only to one group (e.g.,315

species). Fig. 4 illustrates how digitizing prejudice in the second replicate can manifest as shape changes316

(without group differences).317
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Figure 4: Example of simulated research subjects with second replicates (60 research subjects), with digitizing

prejudice (systematic ME) and a small amount of random ME. Digitizing prejudice shifted tail landmarks

in the second replicate. Top row: small systematic ME. Bottom row: large random ME. Left column:

raw landmarks. Middle column: Procrustes coordinates, following GPA. Right column: plot of principal

component scores, with black dots representing first replicates and red dots representing second replicates.

By simulating configurations with Equation (5) it was possible to obtain landmarks and Procrustes coordinates319

for the consideration of every scenario in Table 1. Tests of systematic ME for these scenarios involve both320

univariate-like (Procrustes) ANOVA, based on the dispersion of shapes, or multivariate-ANOVA (MANOVA)321

statistics, based on linear model covariance matrices (using principal component scores). We describe these322

in more detail in the next four sections.323

A resampling procedure to test systematic measurement error324

An analysis of ME foremost is a test of systematic ME. A null hypothesis of no systematic ME is not325

exactly the same as a null hypothesis of no difference in shape between replicated measurements of shape326

from the same research subject; it is a null hypothesis of no consistent shape change between replicates,327
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among research subjects. This distinction is important as it distinguishes systematic ME from total ME.328

For a test of systematic ME, it is imperative that an evaluation of within-subject variation in shape329

can be assessed, despite variation among subjects. This might seem counter-intuitive, as the variation330

in shape among subjects is often used a basis for measuring ME in a relative way (as a percentage of331

subject or total variation). Although understanding subject variation might be important, the point made332

here is that a test that generates a sampling distribution of a statistic should not introduce changes in333

subject variation. Randomization of residuals in a permutation procedure (RRPP) has become a common334

method for ANOVA in research using GM data (Collyer et al. 2015; Collyer and Adams 2018), especially335

because of its ability to handle high-dimensional data (number of shape variables exceed the number of336

observations). RRPP generates empirical distributions of various ANOVA or pairwise test statistics, and337

its statistical properties (parameter estimates, empirical sampling distributions, type I error rates and338

statistical power) have been extensively vetted (Adams and Collyer 2018, 2022; Collyer et al. 2022). The339

assertion that subject variation should remain constant in the analysis means that a sampling distribution340

of a statistic for systematic ME is developed for a process that produces the same subject variance in ev-341

ery random RRPP permutation. This is possible by restricting the randomization of residuals within subjects.342

343

For example, for an n×(pk) matrix, Z, containing n vectors, zT
i for the i = 1, 2, ..., n observations of Procrustes344

coordinates containing p points in k dimensions (k = 2 or 3), a linear model to estimate the overall mean takes345

the form, β̂null = z̄
T =

(

X
T
nullXnull

)−1
X

T
nullZ, where T means vector or matrix transposition, and −1 means346

matrix inversion. The linear model design matrix, Xnull, is a vector of 1s. The mean is a vector of coefficients347

(β̂null) that if multiplied times the linear model design matrix produces an n × p matrix of mean values; i.e.,348

Z̄ = Xnullβ̂null. To estimate subject means, Xnull can be updated by concatenating s − 1 columns of dummy349

variables for the s subjects represented in the data. (Dummy variables comprise 0s and 1s, with 1s indicating350

subject match.) We assume that this resulting matrix, Xsubject is balanced4, meaning there are an equal351

number of replicated observations within subjects; i.e., n = sr, where r is the number of replicates. In this352

way, the column sums except the first of Xsubject equal r (the first equals n). We can estimate coefficients for353

subject means as β̂subject =
(

X
T
subjectXsubject

)−1

X
T
subjectZ, and subject means as Ẑsubject = Xsubjectβ̂subject.354

The difference between subject means and the overall mean, Ẑ − Z̄ is the basis for the subject variance.355

The covariance matrix is found as, Σ̂subject = (s − 1)−1

(

Ẑ − Z̄

)T (

Ẑ − Z̄

)

, and its trace (sum of diagonal356

elements equal to the sum of variable variances) is the variance based on dispersion, the summed squared357

differences between the points of subject means and the overall mean. The (s − 1) degrees of freedom rep-358

4There is not a strict need for replicate balance in the research design (see Discussion). However, issues like heterogeneity of
variance among subjects might be more difficult to interpret with replicate imbalance.
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resent the additional parameters in Xsubject required to estimate subject means compared to the overall mean.359

360

RRPP applied to the null model has first- and second moment exchangeability (Adams and Collyer 2018;361

Commenges 2003), meaning if residuals of the null model, Z − Z̄, are randomly shuffled to produce362

random pseudodata, Z = Z̄ +
(

Z − Z̄
)∗

, where ∗ represents a randomized form of the residuals, the mean363

(first moment) and variance (second moment) of the pseudodata, Z, will be the same as for the real364

data, Z, in any random permutation. The same is not true with respect to the subjects model, if it is365

applied to Z. Indeed, this is the basis for ANOVA, and how one might test for subject effects, if this366

would be of interest. The many permutations of Z makes it possible to generate sampling distributions367

of ANOVA statistics, so it is possible to evlauate a null hypothesis for subject variance. Rather, an368

analysis of ME seeks to preserve subject effects, not explicitly test for them. It might seem intuitive to369

randomize the residuals of the subjects model in a similar way; i.e., Z = Ẑsubjects +
(

Z − Ẑsubjects

)∗

, but370

RRPP this way would not have exact first- and second-moment exchangeability, even if approximately371

the same means and variance are found across permutations. However, a slight alteration makes it372

possible to achieve first- and second-moment exchangeability. If RRPP is restricted within subjects,373

subject means and subject variance will remain constant across permutations, for either model. This374

should be obvious. Changing the order of replicates within one subject will not change the subject375

mean or variance among observations for that subject. However, RRPP that randomizes the order of376

replicates many times for every subject makes it possible to evaluate the consistency of replicate changes in377

shape among all subjects. Thus, restricted (within-subject) RRPP makes it possible to test for systematic ME.378

379

A test of systematic ME involves comparison of sums of squares and cross-products between two models: one380

that includes coefficients for subject means, and one that includes coefficients to estimate replicate means in381

addition to subject means. The latter model involves adding r − 1 parameters (dummy variables) to Xsubject382

to form Xsubject+replicate. (We henceforth use Xs to mean Xsubject and Xsr to mean Xsubject+replicate, for383

simplicity.) Coefficients can be estimated with a least-squares criterion, as before, and the fitted values384

compared between the two models, i.e.,385

Sr =
(

Ẑsr − Ẑs)T (Ẑsr − Ẑs

)

=
(

Xsrβ̂sr − Xsβ̂s

)T (

Xsrβ̂sr − Xsβ̂s

)

(6)

where Sr is a pk×pk symmetric sums of squares and cross-products (SSCP ) matrix, with variable (coordinate)386

sums of squares along the diagonal and cross-products between variables in the off-diagonal elements. In every387
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subject-restricted RRPP permutation, Ẑ
T
s Ẑs will be constant. If test statistics require inverting Sr (more on388

this below), a problem arises because Sr will be singular if using Procrustes coordinates, due to invariance in389

size, orientation, and position of configurations imposed by GPA (and potential redundancies due to use of390

sliding semi-landmarks). In such cases, finding vectors of principal component scores (P) of Z (explaining391

either 100% of the shape variation, or as close to 100% as is reasonable) and using these in place of Z in all392

equations above, would be required. The calculation of Sr in Equation (6) with subject-restricted RRPP393

makes it possible to test for systematic ME via univariate-like (Procrustes) ANOVA or multivariate-ANOVA394

(MANOVA). These are discussed in more detail below.395

Procrustes ANOVA396

Procrustes ANOVA (Goodall 1991; Klingenberg and McIntyre 1998) is a term used for analysis that resembles397

univariate ANOVA, based on the dispersion of linear model estimates in either the shape space, or as we398

will assume for our discussion here, an orthogonal projection of values into a space tangent to shape space,399

where Euclidean interpretations of dispersion are appropriate. Four sums of squares (SS) calculations are400

required from four SSCP matrices for Procrustes ANOVA; SS is the trace (sum of diagonal elements) of401

these matrices, each calculated as in Equation (6). Thus, the four SS calculations are as follows:402

SStotal = trace(Stotal) = trace
(

(

Z − Z̄
)T (

Z − Z̄
)

)

, (7)

SSsubject = trace(Ssubject) = trace

(

(

Ẑ
T
sr|r − Ẑr

)T (

Ẑ
T
sr|r − Ẑr

)

)

, (8)

SSreplicate = trace(Ssubject) = trace

(

(

Ẑ
T
sr|s − Ẑs

)T (

Ẑ
T
sr|s − Ẑs

)

)

, (9)

SSresiduals = trace(Sresiduals) = trace

(

(

Z − Ẑsr|s

)T (

Z − Ẑsr|s

)

)

. (10)

The notation is important to define, precisely. The subscripts, sr|r and sr|s in Equations (8) and (9),403

respectively, indicate that fitted values are obtained for combinations of subjects and replicates, but in404

different ways. The |r or |s indicates both the restriction for RRPP and estimates of the appropriate null405

model, for replicates or subjects, respectively. In the formulae above for SSsubject and SSreplicate, Ẑr and406
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Ẑs are constant across RRPP permutations, respectively, because of the RRPP restriction. There is no407

specific need to restrict RRPP permutations within replicate to test for subjects, but this provides some408

consistency for tests. Additionally, it is worth noting that these SS estimates are obtained from SSCP409

matrices, estimated with a type II SSCP method of estimation. This is important, as it ensures that410

assessment of systematic ME is conditioned on the subjects chosen for investigation. As such, the mode of411

restriction and method of estimation are commensurate, even if explicit subject tests are not the principal412

goal. The final formula, for the calculation of SSresiduals does not produce unique values within any RRPP413

permutation. Because the estimates of Ẑsr|r will differ with the different null models used for different terms,414

so too will the residual SS. With respect to random ME, it is the version of SSresiduals that holds constant415

subject means that is used in any calculation requiring SSresiduals.416

417

As with typical ANOVA statistics, the SS values could also be converted to mean-square (MS) values by418

dividing SS by the degrees of freedom, s − 1 or r − 1 for subjects and replicates, respectively. SSsubjects and419

SSreplicates, could also be converted to coefficients of determination as,420

R2
effect =

SSeffect

SStotal
, (11)

where effect refers to the effect of adding either s − 1 subject or r − 1 replicate parameters to their421

corresponding null models. Henceforth, we replace replicates with SystematicME and residuals with422

RandomME to directly associate SS with these types of ME. The R2 statistics are helpful for under-423

standing the partitioning of the total SS by effects. It is important to realize that with type II SSCP s,424

SSsubjects + SSSystematicME + SSRandomME 6= SStotal, because of the non-sequential addition of model425

terms. Therefore, the sum of the R2 values is not expected to equal 1.426

427

Generally for ANOVA, an F -statistic would also be calculated, and most likely used as a test statistic, for which428

an empirical sampling distribution could be generated across all RRPP permutations. Although an F -statistic429

would be appropriate as a test statistic in this procedure, we recommend against it for two reasons. First, an430

F -statistic should not convey any interpretation that one might have with a parametric F -distribution, both431

because the data are not univariate despite the calculation of statistics based on distances (Anderson 2001;432

Anderson and Walsh 2013) and the non-independence of observations would call for adjustment of a typical433

F -statistic, if a parametric probability distribution could be invoked (which is unnecessary). Rather, the434

non-independence of observations is handled by the restricted RRPP strategy, so at best, the distribution of435
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random F -statistics could be used to calculate a P -value, even though the value of F would not make much436

sense. Second, a better statistic that would be perfectly rank-correlated with random F -statistics across437

RRPP permutations could be used. We recommend inclusion of this alternative statistic that has appeal as438

both a descriptive measure and as a test statistic: a signal-to-noise ratio, which is calculated for the effect of439

systematic ME as,440

SNR =
SSSystematicME

SSRandomME
= F

r − 1

n − s − r
. (12)

SNR could be calculated likewise for subject SS and in either case, is a statistic that describes systematic441

variation in shape relative to variation in random ME (noise). As Equation (12) illustrates, SNR is also no442

different as a test statistic than F in a permutation procedure (because r−1

n−s−r would be constant in every ran-443

dom permutation). However, an F -statistic would have a varied expectation based on the number of research444

subjects and replicates, but SNR is a statistic that could more logically be compared across studies. For ex-445

ample, one ME experiment that finds an SNR of 0.5 would elicit more concern than one that finds SNR = 0.1.446

447

It might be of interest to also calculate partial coefficients of determination (η2) just for ME, however, we448

must realize that η2
SystematicME 6= SSSystematicME

SSSystematicME+SSRandomME
and η2

RandomME 6= SSRandomME

SSSystematicME+SSRandomME
,449

because of the type II SS estimation. However, this limitation is easily overcome. By holding constant450

the effect of research subjects, the residuals from a null model with subjects as the only factor can be451

subjected to analysis with a single-factor linear model that contains replicate parameters. By doing this,452

SSǫ|subjectsSystematicME
+ SSǫ|subjectsRandomME

= SSǫ|subjectstotal
, where ǫ|subjects corresponds to residuals453

from the single-factor subjects model. Thus,454

η2

ǫ|subjectsSystematicME
=

SSǫ|subjectsSystematicME

SSǫ|subjectstotal

, (13)

and455

η2

ǫ|subjectsRandomME
=

SSǫ|subjectsRandomME

SSǫ|subjectstotal

, (14)

where SSǫ|Subjectstotal
= trace(ǫT

subjectsǫsubjects), for the matrix of residuals obtained from the single-factor456

subjects model, ǫsubjects. These descriptive statistics simply convey the portion of systematic and random457

components of ME in the absence of subject variation. This might be practical if, for example, R2
SystematicME458
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is small but highly significant, because R2
subjects is large, due to sampling disparately shaped subjects.459

460

The SNR and partial η2 statistics might seem unnecessarily redundant. Indeed, we would expect that461

SNR ≈
η2

SystematicME

η2

RandomME

. Although partial η2 statistics are more commonly associated with ANOVA and462

MANOVA, and SNR might seem like a complicated introduction here, a multivariate generalization of the463

SNR statistic is more consistent with the basis for MANOVA statistics, which we discuss in more detail,464

below. Therefore, despite the redundancy, calculating both statistics is helpful.465

466

A P -value for the SNR statistic for systematic ME is the probability of finding as large or larger SNR, by467

chance, based on the frequency of outcomes that larger SNR is generated, randomly by RRPP, divided468

by the number of RRPP permutations. It is worth re-iterating that R2
SystematicME can be misleading as a469

descriptive statistic. If very great disparity in shape is sampled inherently by the subjects chosen for an470

evaluation of ME – something a researcher could augment to feel better about the impact of ME in their471

study – the observed R2
SystematicME might be deceptively small, but the SNR statistic could be large, as it is472

measured independent of subject variation. Nonetheless, as a test statistic, it remains difficult to adjudicate473

an SNR statistic without understanding the probability of observing as large of a SNR statistic by chance474

(the P -value). As an effect size, this is a bit problematic, since the same SNR could be either signficant or475

not significant in two different studies. However, by normalizing the distribution of random SNR statistics,476

so that θ = f(SNR), a standardized effect size can be calculated as,477

Z =
θobserved − µθ

σθ
, (15)

where, µ and σ are the mean and standard deviation of the normalized distribution, respectively. Z-statistics478

are more reliable for comparison of the effect of systematic ME, both to other sources of variation (more on479

this below) and systematic ME from other ME experiments. For example, a test of systematic ME might be480

performed for different configurations associated with different anatomical structures, digitized on the same481

research specimens, and Z-scores compared to ascertain if a digitizing prejudice is found more so for one482

configuration compared to another.483

484

The statistics calculated for ANOVA can also lend themselves well to calculations of intraclass correlations485

(Arnqvist and Mårtensson 1998; Fruciano 2016), which rather than measuring the amount of ME, provide an486

effect size for the reliability of research subjects to represent themselves in repeated digitizations, in spite487
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of ME. As will be apparent in the subsequent section, however, reliability can be artificially augmented by488

simply choosing subjects with quite different shapes. However, compared to previous descriptions of the489

intraclass correlation for shape data, we provide methods for the calculation of alternative coefficients, which490

can help reveal systematic ME.491

Intraclass correlation492

The intraclass correlation coefficient (ICC) has been proposed previously for use with GM data in studies493

with repeated digitizations, as a measure of “repeatability” or “reliability”, the consistency of research subjects494

to resemble themselves in repeated digitizations (Arnqvist and Mårtensson 1998; Fruciano 2016). ICC has495

been defined for GM data as,496

ICC =
E(MS)A

E(MS)W + E(MS)A
, (16)

where E(MS) is the expected mean squares (variance components), and the subscripts A and W refer to497

among-subject and within-subject variance, respectively. Previous descriptions of ICC have asserted that498

E(MS)A = (MSs − MSW )/r and E(MS)W = MSW . The within-subject variance, MSW , is calculated as499

(SSr + SSresiduals)/(n − s), for the n total observations, which is the cumulative shape variation within500

subjects, disregarding the effect of replicates; i.e., it only measures variance among repeated digitizations501

but is neither concerned with the order of the digitizations nor the classification of digitizations (e.g., unit502

1 vs. unit 2). It should be clear that a balanced design is required for ICC, as r is part of the calculation.503

Equation (16) can be thus updated to define ICC based on MS values rather than E(MS) values as,504

ICC =
MSs − MSW

MSs + (r − 1)MSW
, (17)

as detailed by Liljequist et al. (2019).505

506

By calculating ICC this way, it is clear that if subject variation is large (shapes vary greatly among subjects)507

and the variation among digitizations within subjects is small, ICC will tend toward a maximum value of 1,508

indicating good repeatability. It should also be clear that if the expected within-subject shape variation is509

somewhat constant, despite additional subjects added to the study (adding new subjects does not change the510

expected variation between digitizations, as a practice), then ICC can be inflated by merely sampling a more511
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disparate representation of subject shapes. Because the within-subject variance does not focus on replicate512

assignment, there is no accounting for systematic ME, rather, ME, whether systematic or random, is only a513

measurement of imprecision, MSW , with respect to subject variation. However, ICC can be updated to514

better evaluate the tendency for systematic ME due to digitizing prejudice.515

516

Liljequist et al. (2019) presented two alternative ICC calculations that would not change from the former517

ICC if ME was 100% random ME. The first calculation is,518

ICCA =
MSs − MSresiduals

MSs + (r − 1)MSresiduals + r/s(MSr − MSresiduals)
, (18)

which updates ICC if absolute agreement between different digitizations is desired. MSr is the estimated519

variance due to replicates (systematic ME) and MSresiduals is the estimated residual variance (random ME).520

The second calculation is,521

ICCC =
MSs − MSresiduals

MSs + (r − 1)MSresiduals
, (19)

which updates ICC to focus on the consistency of repeated digitizations. Careful examination of the522

three formulae in Equations (17), (18), and (19), illustrates that MSW can be partitioned into MSr and523

MSresiduals but if there is no systematic ME, then MSr = 0, MSW = MSresiduals, and the three ICC524

values converge. ICCA calculates a weighted average of MSW in the denominator and ICCC excludes525

variation due to systematic ME. If these ICC values diverge, systematic ME can be implicated. It would be526

challenging to find a comfort for how much divergence is alarming, as any ICC value measured this way is527

based on dispersion in perhaps many dimensions, and the number of subjects or number of variables might528

affect the ICC values. However, if a test of systematic ME finds significant systematic ME, disagreement529

among the ICC values should be apparent.530

531

Both ANOVA and ICC calculations performed this way focus on the dispersion of shapes among and within532

subjects, and because distances of vectors are univariate despite the number of dimensions in which they533

are measured, these analyses are univariate solutions for multivariate problems. Statistical tests are not a534

concern if based on RRPP, since a parametric probability density function is not required to obtain P -values.535

However, there may be cases where a fully multivariate analysis that focuses on the covariances among536

landmarks is desired. The analyses above can be generalized with eigenanalysis for such cases.537
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Multivariate generalizations and visualizations538

The SNR statistic introduced with Procrustes ANOVA is a useful statistic because it has a multivariate539

generalization that is commonly used in MANOVA:540

ΦSNR = S
−1

RandomMESSystematicME , (20)

where, S is an SSCP matrix and Φ is the multivariate generalization of the ratio, SNR. Various MANOVA541

statistics can be calculated from eigenanalysis of S
−1

RandomMESSystematicME , the simplest being Roy’s542

maximum root, the largest eigenvalue obtained from eigenanalysis. With respect to MANOVA, a null543

hypothesis for the signal evaluated relative to noise is typically tested with an F -distribution proxy, which is544

not appropriate here for the same reasons F -statistics are discouraged with Procrustes ANOVA. Rather,545

a sampling distribution of Roy’s maximum root can be generated with the same RRPP strategy used for546

Procrustes ANOVA5 P -values for Roy’s maximum root are calculated as the percentile of observed statistics547

in their corresponding sampling distributions and effect sizes are calculated as in Equation (15).548

549

With respect to an ordination plot of SNR, mean-centered Procrustes coordinates can be projected onto the550

eigenvectors of S
−1

RandomMESSystematicME , which have a maximum number of min(s − 1, r − 1), to visualize551

systematic ME patterns. For example, if two replicates are used in the ME experiment, points will fall on552

one line. The paired points for subjects will indicate if there is a consistent left-right pairing, which would553

be indicative of systematic ME. More than two replicates increases the dimensions in which systematic554

ME can manifest, but the principle is the same; systematic ME is a consistent divergence of points in555

such a plot. Multivariate SNR plots will reveal, perhaps better than PC plots, the pattern of systematic556

ME, as the orientation of the vectors is specific to systematic ME, relative to random ME. This could be557

helpful compared to a PC plot, where other factors can influence the rotation of eigenvectors and thus, the558

dispersion of points is a space reduced to the first 2-3 vectors. It might be of interest to standardize the signal559

to noise ratio as, S
−1/2

RandomMESSystematicMES
−1/2

RandomME , which yields a symmetric matrix that produces560

orthogonal eigenvectors. Although eigenanalysis will produce the same eigenvalues, their distribution will561

be different (see Bookstein and Mitteroecker (2014) for details), so caution would be needed to assure the562

order of eigenvectors is appropriate. The concern for orthogonal vectors is not strongly needed, however,563

5It is important to realize that the same strategy (within-subject RRPPP) is used to obtain sampling distributions, whether
Roy’s maximum root or SNR are used as test statistics. Alternative statistics could also be used. Generally, P -values and
Z-scores will be similar in terms of interpretation but not perfectly rank-correlated unless they are linear transformations of
each other, like SNR and F . However, alternative sampling distribution strategies are not needed if different statistics are used.
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as the points in these projections should not be interpreted as shape variation in the space tangent to564

shape space. The plots simply reveal the consistency of signal (systematic ME) relative to noise (random ME).565

566

An example of how SNR plots can be used is shown in Fig. 5. In these example plots, the same digitizing567

prejudice is applied to two sets of data, the second also applying group difference shifts (tail lengthening) to568

the first set. An interesting attribute to this example is that systematic ME seems to differ between the two569

data sets, even though the same digitizing prejudice was simulated. It is difficult to fully appreciate the570

utility of the SNR plots in this example, but this is because the group differences in shape that were also571

simulated obscure interpretation. We will return to this issue after considering how ICC statistics can also572

be generalized.573

574
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Figure 5: Principal component plots (top row) and SNR eigenvector plots (bottom row) for two examples of

systematic ME: no group differences in shape (left) and obvious group differences in shape (right). The same,

per-subject digitizing prejudice was simulated for both data sets. Points are colored by replicates in each

plot and different symbols correspond to different groups. The SNR eigenvector plots contain vectors above

points, showing the connection of subject points in the plot. The scale of the SNR axes are different, with

group differences appearing to make the amount of systmatic ME look smaller than it actually is.

The equations for ICC can also be generalized and eigenanalysis performed in a similar manner. The ICC575
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generalizations are as follows:576

ΦICC = (MSs − MSW )−1(MSs + (r − 1)MSW ); (21)

577

ΦICCA
= (MSs − MSResiduals)−1(MSs + (r − 1)MSresiduals + r/s(MSr − MSresiduals)); (22)

and578

ΦICCC
= (MSs − MSResiduals)−1 (MSs + (r − 1)MSresiduals) ; (23)

where, MS is the covariance matrix form of MS and Φ is the multivariate generalization of a ratio, for ICC.579

However, as a generalization, it is not clear how useful Φ matrices are, since the same covariance matrices580

(MS) are used multiple times in the calculation of these matrix generalizations, meaning they are singular (not581

positive-definite). Eigenanalyses of these matrices might be helpful, producing a distribution of eigenvalues582

that are ICC scores for corresponding eigenvectors, with ICC maximized in the first vector, but this value583

will be most likely inflated compared to an ICC statistic based on dispersion, making it challenging to use as584

descriptive statistic. A generalized ICC value can be found as
∏

|λi| for the distribution of eigenvalues(λi)585

(sensu Bookstein and Mitterœcker 2014), but because the matrices are singular, the generalized statistic is586

certain to be 0. However, we recommend examining the cumulative product by eigenvector, i.e.,
∏i=j

i=1
|λi| for587

eigenvalues, λ1, λ2, ..., λj , allowing the generalized ICC statistic to be examined before it attenuates. It will be588

challenging to garner an appreciation for the values, themselves, but it should still be possible to evaluate the589

divergence between agreement and consistency of ICC values, at least in the first few vectors. For the concerns590

we addressed with these matrices, we do not recommend projection of mean-centered Procrustes coordinates591

on these vectors for graphical results. The SNR eigenvectors explicitly maximize systematic ME relative592

to random ME in the first vector, so a graphical representation cannot be improved with ICC ordination plots.593

594

We have indicated multiple times that ICC values could be improved by sampling disparately-shaped subjects,595

and therefore, caution against reliance on these statistics is warranted. However, it is worth considering how596

sampling research subjects from groups with known shape differences can obfuscate interpretations of ME.597

Just as disparately shaped groups of subjects might be separated in a PC plot, so too might they be separated598

in a SNR eigenvector plot, effectively reducing the length of vectors between subject replicates compared to599

the spread of subject shapes in the plot (see Fig. 5, for example). Additionally, sampling individuals of both600
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sex from sexually dimorphic species, or sampling several individuals from vastly differently shaped species601

can result in rather clustered sets of points in an SNR eigenvector plot, making interpretation of systematic602

ME challenging. Although this might seem like a sampling problem, it is perhaps one to embrace, because it603

is possible that systematic ME as a result to digitizing prejudice is not homogeneous across all specimens;604

digitizing prejudice might differ among groups of specimens. Although previous ME analytical strategies605

have focused on evaluating the amount of ME relative to subject variation, variation in ME associated with606

different groups or strata sampled along with subjects have not been explored, to the best of our knowledge.607

We argue, however, including potential group differences should be a welcomed analytical consideration, and608

can be accomplished with simply adding a grouping factor to analyses and accounting for the grouping factor609

in calculation of ICC or generation of SNR eigenvector plots.610

Accounting for group differences in the analysis of ME611

It is not unreasonable that the subjects used in a GM-ME experiment come from groups with different shapes612

(like species). It is also not unreasonable – rather, recommended – that a GM-ME experiment includes613

disparately-shaped research subjects, so that any pattern of systematic ME that might pertain to research614

subjects of a particular group can be recognized. All the statistics and analysis presented thus far would not615

be easily capable of revealing varied systematic ME by groups, unless data are subsetted to different groups616

for analysis, a practice that is neither needed nor recommended.617

618

If it is known before analysis that subjects are sampled from different groups (as in Fig. 5), a grouping619

factor can be included in all analyses. The subject factor subsumes the effect of group, when holding subject620

variation constant, as research subjects are unique to groups. However, it is possible to test a systematic ME621

× group interaction as part of the analysis. By using type II SSCP , a test of this interaction would hold622

constant the effects of both subjects and replicates, meaning variation that would be normally considered623

random ME could be parsed into a systematic ME × group component and smaller random ME component.624

For calculating ICC, the group effect can be removed from the subject variation by using the residual shapes625

from groups to estimate the subject variation (tantamount to centering all group means at the origin).626

This step can also assist SNR eigenvector plots by removing the scatter due to group differences from627

interpretation of paired differences in shape among subjects.628

629

For the example in Fig. 5, Table 2 provides most of the statistics discussed (excluding multivariate ICC630
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Table 2: Example of results obtained from four different analyses of ME, for two data sets (Fig. 6). One data
set has no inherent group differences in shape (even if there is a presumptive group factor); the other data
set has inherent difference in shape (like species differences). Table columns correspond to: measurement
error analysis for data set 1 (no group structure), not including groups as a factor in the analysis (ME1);
measurement error analysis for data set 1 , including groups as a factor in the analysis (ME1g); measurement
error analysis for data set 2 (group structure simulated), not including groups as a factor in the analysis (ME2);
and measurement error analysis for data set 2, including groups as a factor in the analysis (ME2g). Values in
bold correspond to significant test results (α = 0.05), based on RRPP with 1,000 random permutations.

Statistic ME1 ME1g ME2 ME2g

R2, Systematic ME 0.0076 0.0076 0.0207 0.0207
R2, Systematic ME × groups — 7e-04 — 0.0017
R2, Random ME 0.02 0.0193 0.0112 0.0095
η2, Systematic ME 0.2747 0.2747 0.6503 0.6503
η2, Systematic ME × groups — 0.0254 — 0.0526

η2, Random ME 0.7253 0.6998 0.3497 0.297
SNR, Systematic ME 0.3788 0.3926 1.86 2.1894
SNR, Systematic ME × groups — 0.0363 — 0.1771
ZSNR, Systematic ME 5.9144 5.9 4.0048 4.0274

ZSNR, Systematic ME × groups — 0.1779 — 5.7285

Roy’s λmax, Systematic ME 8.9486 8.9531 11.7138 35.8667
Roy’s λmax, Systematic ME imes groups — 0.5107 — 2.7862
ZRoy, Systematic ME 7.9485 7.6324 10.4763 13.5606

ZRoy, Systematic ME × groups — -0.5596 — 4.2156

ICC 0.9457 0.9457 0.9372 0.9372

ICCA 0.9461 0.9461 0.9385 0.9385
ICCC 0.9597 0.9597 0.9772 0.9772
ICC, group-adjusted 0.9457 0.9444 0.9372 0.8354
ICCA, group-adjusted 0.9461 0.9448 0.9385 0.8437
ICCC , group-adjusted 0.9597 0.9587 0.9772 0.9382

generalized values, which would have to be considered by component) and Fig. 6 provides an updated SNR631

plot for the set of data that have inherent group differences. These data had a consistent digitizing prejudice632

(tail lengthening in one replicate) applied to all research subjects, so no group-specific digitizing prejudice633

was made.634

635
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Figure 6: For the same data with group difference in Fig. 5, plots of subject scores on the SNR eigenvectors

for data that removes group shape differences. Three plots are shown for subjects, by groups, to facilitate an

understanding that systmatic ME tends to be greater for one group.

We start by summarizing results for the data set without group structure, in which a consistent digitizing636

prejudice was simulated. The systematic ME R2 was the same, regardless of whether a group factor was637

included in the linear model, and it was small (R2 = 0.0076). Random ME was also small and together, it638

might not be alarming that only R2 ≈ 0.028 of the shape variation was due to ME. However, systematic639

ME was highly significant and had a fairly large effect, whether using SNR or Roy’s maximum root640

(ZSNR = 5.9144; ZRoy = 7.9485, P = 0.001 in both cases). Approximately 27% of the ME was systematic,641

resulting in a SNR of 0.3788, which changed little by adding groups (0.3926). Although all ICC values were642

≈ 0.94 or higher, there was a little disparity between ICCA and ICCC , perhaps indicative of a systematic643

ME signal, but not as obvious as the ANOVA results. These values were little changed by adjusting for644

groups, meaning the ICC values were not excessively augmented by sampling subjects from different groups.645

646

By contrast, the same digitizing prejudice simulated for subjects that differed much more in shape because647

they were sampled from differently shaped groups resulted in greater systematic ME, overall. Without648

considering group differences in the analysis, the SNR rose to 1.8600; random ME was similar as in the649

previous data so this value indicates an increase in systematic ME. Effect sizes (Z-scores) decreased despite650

the increase in SNR, but ICC values changed little. However, including a group factor in the analysis added651
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a highly significant and large Systematic ME × groups effect (ZSNR = 5.7285; ZRoy = 4.1256, P = 0.001652

in both cases), increasing SNR (to 2.1894). Interestingly, adding group effects substantially increased the653

systematic ME effect size, just for MANOVA (from 10.4763 to 13.5606) and the effect was more pronounced654

for the systematic ME effect for MANOVA, although the systematic ME × groups effect was larger for ANOVA.655

656

ICC values were slightly reduced for ICC and ICCA when including group effects, reflecting the tendency657

for disparately shaped groups to inflate subject variation. The disparity between ICCA and ICCC was also658

larger than for the data set without group structure, suggesting the systematic ME from the same digitizing659

prejudice was larger, which was confirmed with ANOVA and MANOVA.660

661

At first blush, it might be disheartening that an analysis would find both strong systematic ME662

and striong systematic ME × group effects for a consistent digitizing prejudice, irrespective of group.663

However, this result is not surprising. The digitizing prejudice was made by a shift in tail landmarks,664

regardless of whether subjects were sampled from short-tailed or long-tailed groups. The same shift665

in an individual from a short-tailed species will more profoundly increase the relative tail size than666

the same shift in an individual from a long-tailed species. This example elucidates what should be667

a standard principle: digitizing prejudice does not translate to equitable systematic ME; the choice668

of subjects matters. This example also revealed that a digitizing prejudice in the direction of group669

differences can augment or retard estimated group shape differences. Not accounting for group in the670

ME analysis might mean overlooking this phenomenon. A comprehensive evaluation of the methods in671

the ME analysis in this example is explored with simulation experiments for the six scenarios in Table 1, below.672

673

Statistical properties assessed from simulation experiments674

Simulation experiments were performed for every example in the Motivating examples section, above. In every675

experiment, Hi and Ri were randomly simulated for every research subject in every run, varied by the amount676

of inter-subject shape variation and random ME, respectively. The experiments varied the composition of677

elements in Gj and Sj in a non-random, specific way, based on experiment objectives. This model allowed678

us to collectively consider the six experiments for the six examples, described above. We used 20 research679

subjects within 3 groups for all experiments (60 research subjects, total). Landmark configurations contained680

11 landmarks, but only two of which were changed in Gj or Sj . A total of 500 simulation runs were performed681

36



in all cases, and 1,000 RRPP permutations were performed for each ME analysis, for both raw landmarks and682

Procrustes coordinates, following GPA, within every run. The P -value was recorded for the effects, systematic683

ME and systematic ME:groups (if appropriate), and the portion of cases a null hypothesis of no systematic684

ME was rejected at a significance level of α = 0.05 (if P < α) was recorded. For evaluation of type I error685

rates, 95% confidence intervals for a true rejection rate of α = 0.05 were calculated from a binomial proba-686

bility distribution, sensu Anderson and Walsh (2013), using the prop.test function of R (R Core Team 2023).687

688

The results from simulation experiments are too numerous to present comprehensively, but are available in689

the Supplementary Material, in their entirety. The table below summarizes the results in practical terms.690

There are also R scripts in the Supplementary Material that can be used to replicate simulation experiments.691

Table 3: Conclusions from simulation experiments.

Experiment Purpose Conclusions

1 Effect of digitizing

noise on systematic

ME

1. Increasing random ME had no observable effect on ANOVA or

MANOVA effect sizes or SNR statistics.

2. Increasing random ME reduced dispersion-based ICC scores, more

so for Procrustes coordinates than raw landmarks. ICC, ICCA, and

ICCC were all consistent, irrespective of the amount of random ME

or whether GPA was performed.

3. Dispersion-based ICC scores could be reassuringly large despite a

large amount of random ME, provided subjects were different in

shape.

4. Multivariate ICC eigenvector scores were difficult to interpret,

especially because ICCC could become negative (with large ME or

GPA performed), owing to singularities imposed by matrix products.

ICC were nearly all equal to 1 in the first few components, regardless

of the amount of random ME or whether GPA was performed.

5. SNR plots did not reveal any patterns.

6. Type I error rates were appropriate, regardless of the amount of

random ME, or whether GPA was performed.
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2 Effect of sampling

from differently

shaped groups on

systematic ME.

1. Increasing group differences tended not to induce meaningful

changes in SNR, or Z-scores for either systematic ME or the

systematic ME by group interaction of ANOVA, or the Z-scores of

MANOVA, regardless of the amount of group difference or whether

GPA was performed.

2. Type I error rates were appropriate regardless of the amount of

group shape difference, whether GPA was performed, or whether

ANOVA or MANOVA was used.

3. Dispersion-based ICC statistics were consistent among the three

types and increased as group differences increased. These stats were

mitigated by adjusting for group differences, but were still

reassuringly (and perhaps, unreasonably) large

4. Multivariate ICC stats were again difficult to interpret. The

scores were nearly 1 in all cases in the first component. In lower

components, the same trends as the dispersion stats seemed to take

place, unless ICC scores were negative.

5. ICCA and ICCC stats tended to be consistent, when adjusting for

groups.
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3 Effect of the same

digitizing prejudice

applied to different

groups of subjects.

1. When there were no group shape differences, small systematic ME

did not tend to produce a significant systematic ME effect, but large

systematic ME did. No amount of systematic ME tended to induce a

significant systematic ME:group effect. This was true for both

ANOVA and MANOVA.

2. When there were group shape differences, the same tendencies

were observed for systematic ME effects as with no group shape

differences, but larger systematic ME also induced significant

systematic ME:group effects, for Procrustes coordinate data (not for

raw landmarks).

3. The statistical power associated with detecting systematic ME

increased fast with increased distizing prejudice, regardless of method

or data type.

4. The statistical power associated with detecting systematic

ME:group increased more moderately, but only for Procrustes

coordinate data, and more so for ANOVA than MANOVA.

5. ICC stats followed the same trends as before with these

exceptions: disparity between ICCA and ICCC scores increased with

the amount of systematic ME (although all scores were large,

regardless); and, larger group shape differences exacerbated the

disparity.

6. SNR plots revealed that a larger difference between shapes in

digitizations could be found for one group versus another, for

Procrustes coordinates, for the same digitizing prejudice.

— A consistent digitizing prejudice should not be expected to produce

consistent measurement error if speciemns are sampled from

disparately shaped groups.
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4 Effect of a digitizing

prejudice applied to

one group, in the

direction of group

shape differences.

1. ANOVA and MANOVA results were consistent with Experiment 3

with one exception: sytematic ME:group effects were larger than

sytematic ME effects. Nevertheless, a digitizing prejudice applied to

only one group of subjects induced both systematic ME and

systematic ME:group effects, both increasing with the size of the

digitizing prejudice.

2. Increasing group shape difference did not have any appreciable

change in the statistical power curves, even though applying the

digitizing prejudice to only one group would impact the shape

differences among groups, if averaged over replicates.

3. The statistical power increased at a slightly faster rate for the

systematic ME:group effect than the systematic ME effect, also more

so for raw landmarks than Procrustes coordinates, and more so for

ANOVA than MANOVA.

4. There were no appreciable differences between ICC scores from

Experiments 3 and 4, despite large differences between ANOVA and

MANOVA effect sizes. However, the disparity between ICCA and

ICCC scores was reduced, suggesting systematic ME was of little

concern.

5. SNR plots demonstrated a good ability to detect the digitizing

prejudice localized to one group.

6. The ANOVA η2 and SNR statistics remained rather consistent,

despite changing group shape differences, and highlighted well the

tendency for digitizing prejudice to be localized to one group.

— Collectively, the results in this experiment demonstrate that GPA

can buffer systematic error from a digitizing prejudice, and ANOVA

or MANOVA can reveal the extent to which a digitizing prejudice is

varied among different groups of organisms.
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5 Effect of a digitizing

prejudice applied to

one group, in the

direction opposite of

group shape

differences.

1. All conclusions from Experiment 4 are exactly the same for

Experiment 5.

— Collectively, the results in this experiment demonstrate that

digitizing prejudices in a direction of group shape differences –

whether increasing or decreasing shape differences – have similar

analytical results, and can confirm the group to which the digitizing

prejudice was applied.

6 Effect of a digitizing

prejudice applied to

one group, in a

direction orthogonal

to group shape

differences.

1. Most conclusions in Experiments 4 and 5 were retained in

Experiment 6 except for three alternative conclusions: the systematic

ME:group effects were large but only slightly larger than systematic

ME effects, regardless of data type or method; the SNR plot

continued to reveal the greater systematic ME in one group, despite

less ability for digitizing prejudice to change shape differences among

groups; and, the ICC stats became more consistent (between ICCA

and ICCC), suggesting digitizing prejudice was not a problem.

— Collectively, these results elucidate that a digitizing prejudice that

does not augment or retard group shape differences is still detectable,

and the amount of systematic ME applied to one group was still

obvious in SNR plots. These results are not available with ICC

statistics.

Summarizing across experiments, it is clear that ICC statistics are not that valuable for detecting the692

relative portions of systematic and random components of ME, and whether systematic ME varies among693

groups; that SNR statistics and plots are valuable tools for understanding how ME manifests in shape data;694

that GPA can actually buffer the effects of a digitizing prejudice; that ANOVA and MANOVA tend to offer695

consistent interpretation, although the effect sizes can vary a little; and finally, one should not assume a696

consistent digitizing prejudice results in consistent systematic ME, especially if there are subjects sampled697

from disparately shaped groups. Type I error rates were universally appropriate, regardless of the amount698

of random ME or whether there were group shape differences, whether GPA was performed, and whether699

using ANOVa or MANOVA. The analytical paradigm had good statistical power, regardless of data type, for700

detecting effects that were simulated.701

702
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As a more comprehensive demonstration of the methods presented in this paper, an empirical example is more703

practical. We next re-evaluate a previously published example below with the techniques we have outlined,704

discussing the strengths and weaknesses of each approach.705

Empirical Example: Reanalysis of Fruciano et al. (2017)706

To illustrate the utility of the procedures developed here, we performed a reanalysis of the empirical dataset707

found in Fruciano et al. (2017). The original study was conducted to examine the effects of combining708

landmark data from multiple observers and scanning devices. The dataset consisted of three-dimensional709

landmark data obtained from the crania of 23 marsupial species. Surface scans were obtained from710

each cranium using three different scanning technologies (devices), and each scan was digitized by two711

different observers, who recorded the locations of 31 three-dimensional landmarks on each (seven landmarks712

were subsequently removed following initial inspection). Thus, the final dataset contained 138 landmark713

configurations, comprising six replicates (2 observers × 3 devices) for each of 23 species, with 24 landmarks714

digitized on each. Fruciano et al. (2017) correctly noted that this experimental design had the potential for715

ME to be introduced at several levels, and conducted a series of analyses to inspect this possibility. Two of716

their analyses are most relevant here. First, they used an analysis of variance on the Procrustes-aligned717

coordinates to extract variance components (species, side, species × side, device, observer), and to calculate718

R2 values for each model effect. The R2 values for device and observer were then treated as estimates719

of ME for comparison with other model effects. Second, they conducted tests of ‘bias’ on subsets of720

the data using a series of pairwise comparisons (e.g., among devices for the same observer, and between721

observers for the same device). Here they performed separate Procrustes alignments for each subset of722

data, and used a permutation test to evaluate pairwise group differences (Fruciano et al. 2017). Significant723

differences between groups were treated as evidence of systematic digitizing bias between observers or devices.724

725

The analytical approach employed by Fruciano et al. (2017) was not fully capable of interrogating the726

effects of ME in this dataset. One reason is that they utilized a standard symmetry-based ANOVA design727

(as found in Klingenberg 2010), which only described overall ME for each specified error term. That728

is, the procedure implemented by Fruciano et al. (2017) identified variation among devices and among729

observers, but did not parse ME into its random and systematic components, nor consider any group-specific730

systematic ME. In addition, the pairwise comparisons among groups that they calculated were obtained731

from separate Procrustes alignments on different subsets of the data. As such, the resulting summary values732
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were incomparable across tests, rendering any synthetic generalizations based on them inconclusive. Our733

reanalysis below addresses provides additional insights regarding the nature of ME in this dataset that were734

not easy to consider prior to the methodological development in this paper.735

736

For our reanalysis, we first performed a Procrustes alignment of all specimens, and following Fruciano et al.737

(2017) extracted the symmetric component of shape variation (Fig. 7A). We then conducted a principal738

component analysis to inspect patterns of shape variation among species in morphospace, and to visually739

discern whether device differences or observer differences were evident. Next we performed a series of740

measurement error analyses, using the analytical procedures developed in this paper. Our first analysis741

extracted the overall components of systematic and random ME by treating the six repeated observations for742

each species (2 observers × 3 devices) as within-subject replicates. Next we performed analyses that included743

clade as a grouping factor, in which different subjects could be assigned to subclade A, subclade B, or a744

one-species outgroup. (This factor was not included in measurement error analyses by Fruciano et al. (2017)745

but was important for evaluating the effect of measurement error on estimates of phylogenetic signal.) The746

goal in the second analysis was to consider whether random ME as estimated in the first analysis could be747

cloaked as group-specific systematic ME. 10,000 within-subject RRPP permutations were used for these748

analyses. The among-subject effect restricted RRPP permutations within replicates for consistency.749

750

Finally, we examined the extent to which the direction of systematic ME aligned with other aspects of751

biological signal in this dataset, by examining the correlation of principal vectors for different effects.752

The biological signals that could be considered were the effects of species or clade, which are inherently753

correlated as clades comprise species within them (a species or subject effect inherently includes a clade754

effect). Either a species effect or clade effect is constant across RRPP permutations that sample within755

subjects, as subjects are species, in this case. Therefore, the principal eigenvector of the sums of squares756

and cross-products (SSCP) matrix for either species or clade is unchanged across permutations. Adding757

parameters for observers, devices, or observer × device interactions will result in different principal758

eigenvectors for each SSCP across RRPP permutations, as replicates are randomized within species. The759

same RRPP procedure used to evaluate components of systematic and random measurement error allows760

a permutation test of vector correlations between biological signal and sources of systematic ME. For761

these tests, a null hypothesis of vector independence would be rejected if the correlation between vectors762

– the cross-product between unitized eigenvectors – is larger than expected by chance (i.e., the angle763

between vectors, which is the arccosine of the vector correlation, is smaller than expected by chance).764
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We performed permutation tests based on the 10,000 RRPP fits used in the previous analysis (not765

including clade as a factor that interacts with replicates), parsing the parameters for replicates into oper-766

ator, device, and interaction parameters, in order to calculate separate SSCP matrices, and thus, eigenvectors.767

768

For all tests, a level of significance of α = 0.05 was used. The functions, measurement.error and769

plot.measurement.error from the RRPP R package (Collyer and Adams 2023) were employed, along with770

gpagen in the geomorph R package to perform GPA (Baken et al. 2021). We also used the functions,771

focusMEonSubjects, interSubVar and plot.interSubVar from the RRPP R package to evaluate how ME772

for specific subjects might cause concerns for estimates of species shapes.773

774

Empirical Results: The principal component plot (Fig. 7 B) was identical to that presented by Fruciano775

et al. 2017 (Figure S4), and revealed that replicate observations within species were generally tightly776

clustered compared to inter-species variation. The visual evidence was also supported by traditional777

Procrustes ANOVA statistics. For instance, 96.6% of the total variation was described by among-species778

differences, but only 3.4% of the variation was attributable to ME (Table 4). Additionally, there was779

high repeatability across replicate observations (ICC > 0.960). (The three ICC statistics were also780

consistent, and the multivariate generalized ICC statistic was 0.9996 for each of the three statistic types781

in the first component of each generalized matrix.) Nevertheless, using the novel statistics and their782

evaluation, as presented in this paper, revealed some reason for concern. First, 15.5% of the ME was783

systematic ME, which was significant and displayed a large effect, whether for the univariate analysis of784

dispersion (Z = 7.4545; P = 0.0001; Table 4) or the multivariate analysis (Z = 7.8823; P = 0.0001; Table 5).785

Additionally, the signal to noise ratio (SNR) was 18.4%, which was only small if compared to the SNR786

of subjects (3,338.4%), illustrating how sampling from disparately shaped groups can obfuscate interpretation.787

788

Moreover, adding clade as a grouping factor to the measurement error analysis had an interesting effect.789

First, the subject variation reduced from R2 = 0.9658 to R2 = 0.7082. (This is the shape variation among790

subjects, accounting for clade differences.) The amount of variation explained as systematic ME remained the791

same, R2 = 0.0053, however, the former R2 = 0.0289 for random ME was now partitioned into R2 = 0.0065792

and R2 = 0.0224, for the systematic ME:clade interaction and random ME, respectively. Thus, 18.9% of793

the total ME could be explained by the systematic ME:clade interaction, meaning the SNR statistics for794

systematic ME and systematic ME:clade were 23.7% and 28.9%, respectively. The effect sizes for systematic795

ME were slightly changed by adding clades (increased for ANOVA but decreased for MANOVA). However,796
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the effect of adding clades meant that a significant systematic ME:clade effect was observed for both797

dispersion (Z = 2.8630; P = 0.0014) and multivariate analysis (Z = 3.3087; P = 0.0001). That comparatively798

the systematic ME effect size increased for ANOVA but decreased for MANOVA, but the effect size for the799

systematic ME:clade effect was greater in MANOVA, suggests that the group effect was more associated with800

the changes in covariances among Procrustes coordinates; i.e., differences between replicates could be more801

associated with the direction of replicate vectors rather than the length of the vectors in a PC plot.802

803

ICC statistics were again misleading. Accounting for clades reduced ICC dispersion statistics, but only804

slightly (ICC = 0.943 − 0.949, for all three types.) ICC statistics were all 0.999 in the first component for805

the multivariate analysis. The ICC statistics merely confirmed that subjects were so different in shape that806

even obvious differences from digitizing could be dismissed. This was not a consistent interpretation when807

viewing SNR plots (Fig. 7 C:F).808

809

The SNR plots revealed that in three cases, ME was a concern for the subjects sampled compared to other810

subjects: Dendrolagus goodfellowi, Setonix brachyurus, and Aepyprymnus rufescens. The concerns were811

not as apparent in the PC plot, or were not strongly apparent compared to other clusters of points for812

subjects. For example, in the PC plot, point-scatter for Onychogalea fraenata and O. unguifera compared813

to most other subjects might elicit some concern, but it was apparent in the PC plot that the scanning814

devices clustered as pairs, meaning the spread of points was comparatively reduced for these two species in815

the SNR plots. The three species that stood out tended to have inconsistent patterns compared to other816

species, which might explain why a significant systematic ME:clade interaction was observed. For both817

Dendrolagus goodfellowi and Aepyprymnus rufescens, there was a strong operator difference associated with818

the first SNR eigenvector, but additionally, the most divergent (A. rufescens) or nearly most divergent819

(D. goodfellowi) estimates of shape came between the two operators while using photogrammetry as the820

method of data acquisition (even more so than between operators with different devices). By contrast, only821

one operator had a divergent estimate of shape with photogrammetry for Setonix brachyurus, otherwise822

the estimates of shape were rather clustered (Fig. 7 F). Interestingly, these three species were all found823

in a similar portion of the shape space, divergent in shape from most other species. These results suggest824

that systematic ME can be localized (appear only for certain subjects) because of divergent digitizing825

prejudices only for certain subjects, and as resoundingly suggested already, sampling from a broader set826

of subjects can hide such concerns, if conclusions are based on statistics that relativize ME by subject variation.827

828
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These results allude to shape estimation concern because the choice of operator-scanner combination829

that can affect the estimates of shape differences among subjects. Although neither vectors for operator830

digitizing prejudices nor device digitizing prejudices were significantly correlated with either species or831

clade vectors, the interaction between operator and device was significantly correlated with both species832

(Z = 3.1220; P = 0.0001) and clade (Z = 2.3068; P = 0.0011) (Fig. 8 A). Furthermore, a heat map of833

variances (Fig. 8 B) among inter-species (Euclidean) shape distances revealed concern about the estimates834

of Dendrolagus goodfellowi and Aepyprymnus rufescens shapes, as there was greater variability in shape835

distances between these and other species, meaning choice of an operator-device combination could affect836

estimates of shape, and thus, shape variation. The concern for Setonix brachyurus was not as evident in this837

plot, suggesting that outside of the one aberrant estimate, shape estimates were consistent.838

839
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Table 4: Analysis of variance tables evaluating random and systematic components of measurement error, for

the empirical example.

Df R2 η2 SNR Z P

A: Analysis without clade effect

Subjects 22 0.9658 33.3843 20.0540 0.0001

Systematic ME 5 0.0053 0.1551 0.1835 7.5934 0.0001

Random ME 110 0.0289 0.8449

Total 137

B: Analysis with clade effect

Subjects 22 0.7082 31.5462 23.4077 0.0001

Systematic ME 5 0.0053 0.1551 0.2365 7.7152 0.0001

Systematic ME:Groups 10 0.0065 0.1892 0.2885 2.0120 0.0216

Random ME 100 0.0225 0.6557

Total 137

Table 5: Multivariate analysis of variance tables evaluating random and systematic components of measurement

error, for the empirical example.

λmax Z P

A: Analysis without clade effect

Subjects / Random ME 3015.3400 9.0960 0.0001

Systematic ME / Random ME 5.5374 7.8823 0.0001

B: Analysis with clade effect

Subjects / Random ME 1939.6671 2.6229 0.0001

Systematic ME / Random ME 7.7918 6.3449 0.0001

Systematic ME:Groups / Random ME 20.6687 3.3087 0.0001
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Figure 7: A: Set of 138 Procrustes-aligned specimens, representing the skulls of 23 individuals whose landmarks

were digitized by two different observers on each of three separate 3D scans. B: Principal components plot

of 138 shapes, colored by operator and with symbols representing different scanning devices. C-F: SNR

plots of systematic ME versus random ME, shown uniquely for different clades and focused on problematic

specimens. The SNR plots are clade-centered, so the origin represents the clade mean. G-H: Thin-plate

spline (TPS) transformation grids (scaled 2x to facilitate interpretation) for one specimen, and one device

(photogrammetry), but differing by operators in the two plots. Both dorsal and ventral grids are shown. The

reference configuration is the clade-adjusted mean.
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Figure 8: A: The same PC plot as in the previous figure, however, color coded by clade, and with vectors

illustrating principal eigenvectors of SSCP matrices for different effects. The vectors for operator, device,

and interaction are appropriately scaled in a relative sense (longer vectors mean large effect). These vectors

have also been scaled 10× with respect to species and clade vectors, to faciliate interpretation. Species with

substantial measurement error are labeled with abbreviations: Dendrolagusgoodfellowi, Setonixbrachyurus,

and Aepyprymnusrufescens. B: A heat map showing the relative amount of variability (variance) for

inter-species shapae differences, based on the six different replicates. Darker colors mean more variable

estimates.
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Discussion840

This article provides a conceptual and mathematical investigation of the subject of measurement error as841

it pertains to geometric morphometric data. We argued that the current state of the field does not arm842

empiricists with the tools required for determining whether ME should be of concern in their datasets,843

largely because of their inability to distinguish between systematic and random ME. Through several844

motivating examples we developed a set of analytical procedures and visualization tools that dissect the845

random and systematic components of ME from one another, and extracts any group-specific systematic ME846

that may be present. Through simulation and empirical example we demonstrated that relying on simple847

summary measures such as the ICC or R2 is insufficient for determining whether ME is a problem, and that848

inter-subject variation can obfuscate the effects of systematic ME in a sample. By contrast, we illustrated849

that our new procedures are capable of detecting how and where ME affects patterns of shape variation,850

and thus downstream biological inferences made from such data. Overall our procedures provide a deeper851

interrogation of ME than is currently accessible, thereby formalizing a new paradigm for how empiricists852

should investigate the effects of measurement error in multivariate data.853

854

From the extensive simulations performed here, we can conclude that the analytical paradigm we have855

proposed does not produce spurious results and has appropriate statistical properties. We were able to856

determine from the simulation experiments that (1) random ME does not produce significant patterns of857

systematic ME, irrespective of the amount of ME, but (2) the same digitizing prejudice applied to subjects858

sampled from groups with disparate shapes might not only produce significant systematic ME in a hypothesis859

test, but also a significant systematic ME by group interaction. This possibility is important. It means860

that as a practice, a consistent digitizing prejudice might not be negligible for GM data, if applied to all861

research specimens. It made sense that with the simulation experiments the digitizing prejudice could862

have varied results, as the groups differed in tail shape and the prejudice of lengthening or shortening a863

tail by an absolute amount with respect to landmark placement would impact short-tailed and long-tailed864

species differently. It is perhaps no surprise that a consistent digitizing prejudice could spur varied types of865

systematic ME. Researchers familiar with generalized Procrustes analysis (GPA) are probably universally866

aware of the “Pinocchio effect”, whereby a displacement of a single landmark (e.g., tip of Pinocchio’s nose)867

in one landmark configuration, in which all alternative landmarks are in the same location in a replicate868

configuration, will result in different locations of every Procrustes coordinate in the configuration, following869

GPA (Klingenberg 2021). If a nose tip was shifted exactly x units in the same direction for two landmark870
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configurations – but the configurations already differed in terms of nose length – the changes in relative nose871

length would differ between the configurations and distribution of change across all landmarks should not be872

expected to be the same.873

874

However, for GM studies, measurement error should be focused on the precise estimate of shapes, and thus,875

shape differences, so a direct link between process and pattern is not required (so long as it can be ascertained876

how a process produces a pattern). Therefore, that a consistent digitizing prejudice can produce varied877

amounts of systematic ME is not a worry, as much as one should be worried that subject-specific systematic878

ME can lead to spurious estimates of shape. Furthermore, relativizing ME, whether systematic or random,879

by subject variation can minimize concern for ME, and (3) relying on statistics that find a ratio of subject880

variation and within-subject replicate variation (like ICC statistics) should be avoided. Both our simulated881

and empirical results emphasized this. ICC statistics measure repeatability, and strong repeatability might882

seem to be associated with lack of ME, but such interpretations depend on the scale of subject variation.883

A researcher might be comforted to recognize that despite digitizing prejudices and potential (random)884

instrument ME, their ability to measure species differences in shape is substantial, as species are much more885

different in shape than replicated measurements on the same species. This line of thinking is probably okay,886

provided the data set does not comprise any similarly shaped species. Alternatively, if some species have887

recent evolutionary divergence and are more similar in shape, and these species are compared to other888

disparately shaped species with longer periods of divergence, it should be imperative to have precise estimates889

of shape differences between the similar species, especially if within-clade rates of evolutionary divergence890

could be measured. Reducing concern for ME in such cases based on a more global perspective of shape891

variation would be unfortunate.892

893

Foremost, ME studies should be considered experimental. They might not sample from all specimens that894

would be used in broader study but understanding the impact of using different researchers, different cameras,895

different scanning devices, etc., would likely be an early-step, exploratory procedure (preliminary experiment)896

rather than a hopeful confirmation after all data have been collected, haphazardly. Therefore, with a careful,897

balanced design that employs all possible replicate measurements on the same set (or subset) of subjects,898

a concomitant analytical paradigm with the statistical power to detect subtle but meaningful sources of899

shape variation should be desired. The simulated and empirical results in this paper confirm that (4) large900

effect sizes can be measured for systematic ME, even if the amount of variation is small compared to subject901

variation. Furthermore, (5) SNR plots can help elucidate the localized problems that trigger large systematic902
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ME effect sizes. The SNR plots are especially helpful, as they find eigenvectors that maximize systematic903

ME relative to random ME. Both simulated and empirical results illustrated how these plots can reveal904

patterns that might be missed with PCA, alone. If one wishes to identify potential sources of systematic ME905

rather than reassure themselves that it is not an issue, then the methods we presented appear to facilitate906

this goal.907

908

One inadvertent suggestion we might have made is that a GM-ME experiment needs to be balanced. This909

implication is more so related to the calculation of ICC scores that use the number of replicates in their910

calculation. Although imbalance of replicate sampling does not necessarily preclude ICC calculation, its911

value as an effect size would certainly be compromised without balanced replication. Alternatively, the912

RRPP strategy we have used does not require replicate balance. By restricting RRPP permutations within913

subjects, it is possible to generate distributions of statistics based on uneven replicate sampling within914

subject. (Even subjects with only one replicate could be technically included in the analysis, although915

any inference about systematic ME with regard to such subjects would not be possible.) For GM-ME916

studies, we do not recommend designs that are greatly imbalanced, as it would be difficult to rely on the917

eigenvectors produced for replicate effects if some replicates are poorly represented. However, provided918

all replicates are suitably sampled from most subjects, it would still be possible to make subject-specific919

evaluations in SNR plots, in spite of missing replicates. Further research would be required to develop a920

better understanding of how sampling problems could cause misinterpretations of systematic ME. With the921

methods we have developed here, such research should be possible to explore (in terms of statistical properties).922

923

One outcome that we did not anticipate is that GPA can mitigate the systematic ME caused by a digitizing924

prejudice. This phenomenon was evidenced by the comparatively, substantially lower statistical power to925

detect general or group-specific systematic ME in simulation experiments that applied a digitizing prejudice to926

one group. By having simulation experiments where the general locations of landmarks were somewhat fixed927

because of ivariance to translation and rotation (small random displacements, notwithstanding), we could928

perform ME analyses on raw landmarks. Furthermore, because type I error rates were appropriate, the larger929

statistical power associated with analysis on landmarks cannot be explained by random size, orientation, or930

location results of configurations. Rather, in the case of using landmarks, systematic ME was akin to a931

Pinocchio effect, and more evident by the change in location of just two landmarks between replicates. GPA932

mitigated this effect. This is an interesting result, as recent concerns whether GPA can induce spurious933

results in terms of variable covariances (e.g., Cardini 2019) could lead one to be concerned whether GPA934
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could induce systematic ME. Our results found no evidence of this, but just the opposite. A consistent935

digitizing prejudice that misplaces one or few landmarks might not be as profound for Procrustes coordinates936

as for the raw landmarks. Furthermore, GPA cannot induce spatial covariances of Procrustes coordinates937

within configurations that are different than the original configurations, unless a sliding algorithm is used for938

semilandmarks. GPA will necessarily alter the covariances among landmarks for a set of configurations. It939

remains possible that a digitizing prejudice applied to just one or few configurations could grossly alter the940

covariance structure of a set of Procrustes coordinates for many specimens, but for such a case in reality, an941

aberrant specimen in terms of shape or extreme systematic changes to landmarks only in a few specimens942

would likely be needed to provoke such results. The methods we have introduced would probably not be943

needed to identify the inherent problems with such data.944

945

One practical issue we have not considered is what might be a plan of action, given results from an946

analysis of data from an GM-ME experiment. For example, with the empirical data collected by Fruciano947

et al. (2017) it could be decided that obtaining the means of the six replicates for each species is a safe948

endeavor for further analysis (see Arnqvist and Mårtensson 1998). Alternatively, a research team might949

wish to revisit the operator-device combinations for the few exceptional species, especially to learn why950

photogrammetry produced disparate results. The analytical results and plots we produced indicate potential951

sources of problems but do not necessarily have to alarm researchers that these problems are substantial. By952

contrast, relying on ICC statistics could have the opposite problem of assuaging researchers’ concerns when953

concerns are warranted. The especially useful tool of using points in SNR plots to generate thin-plate spline954

transformation grids can allow one to decide if shape changes associated with systematic ME are minor955

or major. We provided one example of such exploration of shape differences between replicates (Fig. 7 G,956

H). Whether this warrants re-digitization is a decision the researcher can make. Alternatively, one might957

consider in the empirical example which operator and scanning device combinations tended to yield the958

most consistent results. (For example, the combination of operator 1 and Solutionix laser scanner tended to959

produce shape estimates nearest to the means of replicate measurements for most species, in the SNR plots.)960

The analytical paradigm we propose here makes such determinations possible.961

962

Nevertheless, one motion we wish to make in this paper is that researchers should not assuage concern for963

ME by focusing strongly on subject variation. The large statistical power from our simulation experiments964

(Supplementary Material) is possible by having a statistical method that preserves subject variation across965

random permutations, allowing a precise, focused test of replicate variation, capable of discerning trends966
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independent of and despite subject variation. This is important. It should be possible to detect these trends,967

even if a PC plot fails to reveal them (because the first few principal components are strongly associated968

with inter-subject shape variation). Fruciano et al. (2017) also observed significant variation in shape969

estimates based on scanning device but suggested using fewer principal components of the data alleviated970

these concerns. Naturally, using a subset of principal components that largely reveal trends in subject shape971

variation could eliminate concern for ME. But this a biased statistical approach. Our results suggest, by972

contrast, that using a better method of inquiry and evaluation pinpoints the concerns that could be addressed973

rather than swept under the rug with data reduction. As a research tool, the results of this example indicate974

a path for addressing measurement error. The researchers can (1) identify which subjects are of concern, (2)975

visualize the shape difference associated with the first few SNR eigenvectors, (3) ascertain whether it is an976

operator or device digitizing prejudice that is a concern, or (4) whether it is an interaction of these preju-977

dices that are a concern, and (5) identify whether systematic ME is localized to a portion of the sample shapes.978

979

Naturally, there will be an inherent desire for researchers to reconcile whether ME (especially systematic ME,980

but random ME, as well) impedes their ability to test hypotheses that address biological questions. There981

might also be a natural inclination to wish to assuage fears about ME, if the amount of overall ME variation982

is small compared to subject variation. We have indicated that sampling from a diverse population of shapes983

can mitigate concerns for ME using the methods that have been traditionally employed to measure ME. We984

do not wish to suggest that sampling from a diverse population of shapes is bad idea; quite the contrary,985

we recommend it! However, if one wishes to evaluate whether ME is an attribute that can be disregarded,986

it is imperative that honest assessments of components of ME are made independent of subject variation.987

The analytical paradigm we present makes it possible to produce sampling distributions of statistics, found988

independent of the subject variation sampled, meaning one need not be concerned with how subject variation989

impacts interpretation of ME.990

991

An interesting juxtaposition arises with these new methods. We could consider, for example, a research team992

that performs a GM-ME experiment with a small portion of the taxa they wish to examine in a full study, to993

investigate whether non-unique digitizing strategies could impact their results. Upon obtaining results, they994

decide to add a few more subjects, especially adding representation of more divergently shaped taxa, and995

re-evaluate the data. With traditional statistics like ICC, results seem to improve. With the ME test we996

introduce here, perhaps the systematic ME × groups effect size increases. How would one deal with this997

possible outcome? With the methods we introduce, it becomes possible with broad sampling to determine998
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if digitizing prejudices can manifest as localized systematic ME. This has not been an easily achievable999

inference to attain with traditional methods. The biometer retains the capacity to decide if ME is negligible1000

but now with methods that do not conflate subject and digitizer variation. More importantly, the biometer is1001

not dissuaded from investigating possible sources of digitizing prejudices, even if subtle, unlike the false1002

reassurance that might be found from simple descriptive statistics.1003

1004

To the best of our knowledge, there has not been statistical development as rigorous as we have covered1005

in this paper, for ME studies with GM data. Although we do not expect that the methods we present1006

here represent the possible panoply of methods that could be developed on this subject, we believe the1007

development of appropriate statistical methods (that test systematic ME, independent of subject variation) and1008

visualization tools advance the scientific endeavor of measurement error analysis in GM studies considerably1009

more than it has advanced in the last few decades. We suspect that a future research direction could be the1010

development of better experimental designs for GM-ME experiments, another area that has not received1011

strong consideration. Coupled with an appropriate and expandable method of analysis (in terms of factorial1012

models), this development should be easily achievable.1013
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