Adamsen, F. J., Pinter, P. J., Barnes, E. M., LaMorte, R. L., Wall, G. W., Leavitt, S. W., Kimball, B. A., 1999. Measuring wheat senescence with a digital camera. Crop Sci. 39(3), 719–724. https://doi.org/10.2135/cropsci1999.0011183X003900030019x
Ali, M. M., Al-Ani, A., Eamus, D., Tan, D. K. Y. A., 2012. New image processing based technique to determine chlorophyll in plants. American-Eurasian J. Agric. & Environ. Sci. 12, 1323–1328. https://doi.org/10.5829/idosi.aejaes.2012.12.10.1917
Amani, M., Foroushani, S., Sultan, M., Bahrami, M., 2020. Comprehensive review on dehumidification strategies for agricultural greenhouse applications. Appl. Therm. Eng. 181. https://doi.org/10.1016/j.applthermaleng.2020.115979
Bai, G, Jenkins, S, Yuan, W, Graef, G. L., Ge, Y., 2018. Field-Based Scoring of Soybean Iron Deficiency Chlorosis Using RGB Imaging and Statistical Learning. Front. Plant Sci. 9, 1002-1011. https://doi.org/10.3389/fpls.2018.01002
Barbedo, J. G. A., 2019. Detection of nutrition deficiencies in plants using proximal images and machine learning: A review. Comput. Electron. Agr. 162, 482-492. https://doi.org/10.1016/j.compag.2019.04.035
Barker, J., Zhang, N. Q., Sharon, J., Steeves, R., Wang, X., Wei, Y., Poland J., 2016. Development and evaluation of a field-based high-throughput phenotyping platform. Comput. Electron. Agr. 122, 74–85. https://doi.org/10.1016/j.compag.2016.01.017
Bresson, J., Bieker, S., Riester, L., Doll, J., Zentgraf, U., 2018. A guideline for leaf senescence analyses: from quantification to physiological and molecular investigations. J Exp Bot. 69, 769–786. https://doi.org/10.1093/jxb/erx246
Cai, J. H., Okamoto, M., Atieno, J., Sutton, T., Li, Y. L., Miklavcic, S. J., 2016. Quantifying the onset and progression of plant senescence by color image analysis for high throughput applications. PLOS One. 11(6): e0157102. https://doi.org/0.1371/journal. pone.0157102
Chaerle, L., Hagenbeek, D., Vanrobaeys, X., Van, D. S. D., 2007. Early detection of nutrient and biotic stress in Phaseolus vulgaris. Int. J. Remote Sens. 28, 3479-3492. https://doi.org/10.1080/01431160601024259
Chand Singh, M., Singh, J. P., Kumar Pandey, S., Gladwin Cutting, N., Sharma, P., Shrivastav, V., Sharma, P., 2018. A review of three commonly used techniques of controlling greenhouse microclimate, Int. J. Curr. Microbiol. App. Sci. 7 (1), 3491–3505. https://doi.org/10.20546/ijcmas.2018.701.411.
Chen, D. J., Neumann, K., Friedel, S., Kilian, B., Chen, M., Altmann, T., et al., 2014. Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. Plant Cell. 26, 4636–55. https://doi.org/10.1105/tpc.114.129601
Chen, Z. M., Wang, F. Z., Zhang, P., Ke, C. D., Zhu, Y., Cao, W. X., Jiang, H. D., 2020. Skewed distribution of leaf color RGB model and application of skewed parameters in leaf color description model. Plant Methods. 16, 23. https://doi.org/10.1186/s13007-020-0561-2
Dey, A. K., Sharma, M., Meshram, M. R., 2016. An analysis of leaf chlorophyll measurement method using chlorophyll meter and image processing technique. Procedia Comput. Sci. 85, 286-292. https://doi.org/10.1016/j.procs.2016.05.235
Fukuoka, N., Suzuki, T., Minamide, K., Hamada, T., 2014. Effect of shading on anthocyanin and non-flavonoid polyphenol biosynthesis of Gynura bicolor leaves in midsummer. HortScience. 49(9), 1148-1153.
Gai J. Y., 2000. Experimental statistical method. Beijing: China Agriculture Press, 2000, 193-208.
Gitelson, A.A., Gritz, Y., Merzlyak, M.N., 2003. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 160, 271–282. https://doi.org/10.1078/0176-1617-00887
Gous, P. W., Meder, R., Fox, G. P., 2015. Near Infrared Spectral Assessment of Stay-Green Barley Genotypes under Heat Stress. J. Near Infrared Spec. 23, 145-153. https://doi.org/10.1255/jnirs.1163
Gracia-Romero, A., Kefauver ,S. C., Vergara-Diaz, O., Zaman-Allah, M. A., Prasanna, B. M., Cairns, J. E., Araus J. L., 2017. Comparative performance of ground vs. Aerially assessed RGB and multispectral indices for early-growth evaluation of maize performance under phosphorus fertilization. Front. Plant Sci. 8, 2004. https://doi.org/10.3389/fpls.2017.02004
Grosskinsky, D. K., Syaifullah, S. J., Roitsch, T., 2018. Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants. J. Exp. Bot. 69, 825-844. https://doi.org/10.1093/jxb/erx333
Guo, Y., Zhao, H. J., Zhang, S.H., Wang, Y., Chow, D., 2021. Modeling and optimization of environment in agricultural greenhouses for improving cleaner and sustainable crop production, J. Clean. Prod. 285. https://doi.org/10.1016/j.jclepro.2020.124843
Han, W. T., Sun, Y., Xu, T. F., Chen, X. W., Su, K. O., 2014. Detecting maize leaf water status by using digital RGB images.Int. J. Agric. Biol. Eng. 7, 45–53. https://doi.org/10.3965/j.ijabe.20140701.005
Hand, D.W., 1988. Effects of atmospheric humidity on greenhouse crops. Acta Hortic. 229, 143–158, https://doi.org/10.17660/ActaHortic.1988.229.12.
He, J. Q., Harrison, R. J., Li, B., 2017. A novel 3D imaging system for strawberry phenotyping. Plant Methods, 13, 93. https://doi.org/10.1186/s13007-017-0243-x
Hu, H., Liu, H. Q., Zhang, H., Zhu, J. H., Yao, X. G., Zhang, X. B., Zheng K. F., (2010). Assessment of chlorophyll content based on image colour analysis, comparison with SPAD-502. In: Proceedings of 2nd International conference on information engineering and computer Science (ICIECS), Wuhan, China. 476-478. doi:10.1109/ICIECS.2010.5678413
Humplík, J. F., Lazár, D., Husičková, A., Spíchal, L., 2015a. Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses - a review. Plant Methods. 11, 29. https://doi.org/10.1186/s13007-015-0072-8
Humplík, J. F., Lazár, D., Fürst, T., Husičková, A., Hýbl, M., Spíchal, L., 2015b. Automated integrative high-throughput phenotyping of plant shoots: a case study of the cold-tolerance of pea (Pisum sativum L.). Plant Methods. 11, 20. https://doi.org/10.1186/s13007-015-0063-9
James, A. B., 2000. Responses of stomatal conductance to light, humidity and temperature in winter wheat and barley grown at three concentrations of carbon dioxide in the field. Global Change Biol. 6, 371-382. https://doi.org/10.1046/j.1365-2486.2000.00314.x
Kempkes, F., de Zwart, H.F., Munoz, P., Montero, J.I., Baptista, F.J., Giuffrida, F., Gilli, C., Stepowska, A., Stanghellini, C., 2017. Heating and dehumidification in production greenhouses at northern latitudes: energy use, Acta Hortic. 1164, 445–452. https://doi.org/10.17660/ActaHortic.2017.1164.58.
Li, G., Tang, L., Zhang, X., Dong, J., Xiao, M., 2018. Factors affecting greenhouse microclimate and its regulating techniques: a review, IOP Conf. Ser.: Earth Environ. Sci. 167, 012019, https://doi.org/10.1088/1755-1315/167/1/012019.
Li, L., Zhang, Q., Huang, D., 2014. A review of imaging techniques for plant phenotyping. Sensors-Basel. 14, 20078-20111. https://doi.org/428 10.3390/s141120078
Liu, Z.Q, Hu, H. B., Yu, H., Yang, X., Yang, H. L., Ruan, C. X., Wang, Y., Tang, J. W., 2015. Relationship between leaf physiological traits and canopy color indices during the spring leaf-expansion period in an oak forest. Ecosphere. 259, 1-9. https://doi.org/10.1890/ES14-00452.1.
Li,Y. N., Cao, Z. G., Lu H., Xiao Y., Zhu,Y. J., Cremers, A. B., 2016. In-field cotton detection via region-based semantic image segmentation. Comput. Electron. Agr. 127, 475-486. https://doi.org/10.1016/j.compag.2016.07.006
Min-Wha, J., Mohammad, B. A., Eun-Joo, H., Kee-Yoeup, P., 2006. Photosynthetic pigments, morphology and leaf gas exchange during ex vitro acclimatization of micropropagated CAM Doritaenopsis plantlets under relative humidity and air temperature. Environ. Exp. Bot. 55, 183–194. https://doi.org/10.1016/j.envexpbot.2004.10.014
Nawaz, R., Abbasi, N. A., Hafiz, I. A., Khalid, A, 2020. Impact of climate variables on growth and development of Kinnow fruit (Citrus nobilis Lour x Citrus deliciosa Tenora) grown at different ecological zones under climate change scenario. Sci. Hortic-Amsterdam. 260. https://doi.org/10.1016/j.scienta.2019.108868
Neilson, E. H., Edwards, A. M., Blomstedt, C. K., Berger, B., Moller, B. L., Gleadow, R. M., 2015. Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C4 cereal crop plant to nitrogen and water deficiency over time. J Exp Bot. 66(7), 1817-1832. https://doi.org/10.1093/jxb/eru526
Ren, J., Guo, S. S., Xin, X. L., Chen, L., 2014. Changes in volatile constituents and phenols from Gynura bicolor DC grown in elevated CO2 and LED lighting. Sci. Hortic-Amsterdam. 175, 243-250. https://doi.org/ 10.1016/j.scienta.2014.06.023
Sancho-Adamson, M., Trillas, M. I., Bort, J., Fernandez-Gallego, J. A., Romanyà, J., 2019. Use of RGB Vegetation Indexes in Assessing Early Effects of Verticillium Wilt of Olive in Asymptomatic Plants in High and Low Fertility Scenarios. Remote Sens. 11, 607. https:// doi.org/10.3390/rs11060607
Schmalko, M. E., Scipioni, P. G., Ferreyra, D. J., 2005. Effect of water activity and temperature in color and chlorophylls changes in Yerba Mate leaves. Int. J Food Prop. 8, 313-322. https://doi.org/10.1081/JFP-200060250
Shamshiri, R. R., Jones, J.W., Thorp, K.R., Ahmad, D., Man, H.C., Taheri, S., 2018. Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: a review, Int. Agrophys. 32 (2), 287–302. https://doi.org/10.1515/intag-2017-0005
Shibayama, M., Sakamoto, T., Takada, E., Inoue, A., Morita, K., Takahashi, W., Kimura, A., 2011. Estimating paddy rice leaf area index with fixed point continuous observation of near infrared reflectance using a calibrated digital camera. J. Plant Prod. Sci. 14(1), 30–46. https://doi.org/10.1626/pps.14.30
Shimizu, Y., Maeda K., Kato M., Shimomura K., 2010a. Methyl jasmonate induces anthocyanin accumulation in Gynura bicolor cultured roots. In Vitro Cell Dev Biol Plant, 46, 460-465. https://doi.org/ 10.1007/s11627-010-9294-7
Sritarapipat, T., Rakwatin P., Kasetkasem, T., 2014. Automatic Rice Crop Height Measurement Using a Field Server and Digital Image Processing. Sensors, 14, 900-926. https://doi.org/10.3390/s140100900
Sun Y. Y., Shen S. H., 2019. Research progress in application of crop growth models. Chinese Journal of Agrometeorology, 40(7): 444-459. http s://doi.org/10.3969/j.issn.1000-6362.2019.07.004
Tester, M., Langridge P., 2010. Breeding technologies to increase crop production in a changing world. Science. 327: 818–822. https://doi.org/10.1126/science.1183700
Urban, J., Ingwers, M.W., Mcguire, M.A., Teskey, R.O., 2017. Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra. J. Exp. Bot. 68, 1757–1767. https://doi.org/10.1093/jxb/erx052
Vasseur, F., Bresson, J., Wang, G., Schwab, R., Weigel, D., 2018. Image‑based methods for phenotyping growth dynamics and fitness components in Arabidopsis thaliana. Plant Methods. 14, 63. https://doi.org/https://doi.org/10.1101/208512
Wang, B., Cai, W. W., Li, J. L., Wan, Y. F., Li, Y. E., Guo, C., Wilkes, A., You, S. C., Qin, X. B., Liu, K. W., 2020. Leaf photosynthesis and stomatal conductance acclimate to elevated [CO2] and temperature thus increasing dry matter productivity in a double rice cropping system. Field Crop. Res. 248, 107735. https://doi.org/10.1016/j.fcr.2020.107735
Wu, C. C., Chang, Y. P., Wang, J. J., Liu, C. H., Wong, S. L., Jiang, C. M., Hsieh, S. L., 2015. Dietary administration of Gynura bicolor (Roxb. Willd.) DC water extract enhances immune response and survival rate against Vibrio alginolyticus and white spot syndrome virus in white shrimp Litopeneaus vannamei. Fish Shellfish Immun. 42(1) :25-33. https://doi.org/10.1016/j.fsi.2014.10.016
Yadav, S. P., Ibaraki, Y., Dutta, G. S., 2010. Estimation of the chlorophyll content of micropropagated potato plants using RGB based image analysis. Plant Cell Tiss. Org. 100, 183–188. doi:10.1007/s11240-009-9635-6
Yu, Z.H., Cao. Z. G., Wu X., Bai X. D., Qin Y. M., Zhuo W., Xiao Y., Zhang X. F., Xue H. X., 2013. Automatic image-based detection technology for two critical growth stages of maize: Emergence and three-leaf stage. Agr. Forest Meteorol. 174-175: 65-84. http://dx.doi.org/10.1016/j.agrformet.2013.02.011
Zhang, S. H., Guo, Y., Zhao, H. J., Wang, Y., Chow, D., Fang, Y., 2020. Methodologies of control strategies for improving energy efficiency in agricultural greenhouses. J. Clean. Prod. 274. https://doi.org/10.1016/j.jclepro.2020.122695
Zhou, H. L., Zhou, G. S., He, Q. J., Zhou, L., Ji, Y. H., Zhou, M. Z., 2020. Environmental explanation of maize specific leaf area under varying water stress regimes. Environ. Exp. Bot. 171, 103932. https://doi.org/10.1016/j.envexpbot.2019.103932
Zhu, J., Deng, J., Shi, Y., Chen, Z., Han, N., Wang, K., 2009. Diagnoses of rice nitrogen status based on characteristics of scanning leaf. Spectrosc. Spect. Anal. 29: 2171–2175. doi:10.3964/j.issn.1000-0593(2009)08-2171-05