
Argumentation-Based Multi-Agent Distributed
Reasoning in Dynamic and Open Environments
Helio Monte-Alto

Federal University of Paraná

Mariela Morveli-Espinoza
Federal University of Technology – Paraná

Cesar Tacla
Federal University of Technology – Paraná

Research Article

Keywords: multi-agent reasoning, distributed reasoning, contextual reasoning, defeasible logic,
argumentation, open environments

Posted Date: July 31st, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3204100/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: Competing interest reported. This work was supported by Conselho Nacional de
Desenvolvimento Cientí�co e Tecnológico (CNPq) under Grant Agreement CNPq 409523/2021-6.

Version of Record: A version of this preprint was published at Knowledge and Information Systems on
April 15th, 2024. See the published version at https://doi.org/10.1007/s10115-024-02101-x.

https://doi.org/10.21203/rs.3.rs-3204100/v1
https://doi.org/10.21203/rs.3.rs-3204100/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10115-024-02101-x

Argumentation-Based Multi-Agent Distributed

Reasoning in Dynamic and Open Environments

Helio Monte-Alto1*, Mariela Morveli-Espinoza2† and Cesar Tacla2†

1*Federal University of Paraná, Jandaia do Sul, PR, Brazil.
2*Federal University of Technology - Paraná, Curitiba, PR, Brazil.

*Corresponding author(s). E-mail(s): heliohenrique@ufpr.br;
Contributing authors: morveli.espinoza@gmail.com; tacla@utfpr.edu.br;

†These authors contributed equally to this work.

Abstract

This work presents an approach for distributed and contextualized reasoning
in multi-agent systems, considering environments in which agents may have
incomplete, uncertain and inconsistent knowledge. Knowledge is represented by
defeasible logic with mapping rules, which model the capability of agents to
acquire knowledge from other agents during reasoning. Based on such knowl-
edge representation, it is proposed an argumentation-based reasoning model that
enables distributed building of reusable argument structures to support con-
clusions. Conflicts between arguments are resolved by an argument strength
calculation that considers the trust among agents and the degree of similarity
between knowledge of different agents, based on the intuition that greater simi-
larity between knowledge defined by different agents implies in less uncertainty
about the validity of the built argument. Contextualized reasoning is supported
through sharing of relevant knowledge by an agent when issuing queries to other
agents, which enable the cooperating agents to be aware of knowledge not known
a priori but that is important to reach a reasonable conclusion given the con-
text of the agent that issued the query. A distributed algorithm is presented and
analytically and experimentally evaluated asserting its computational feasibility.
Finally, our approach is compared to related work, highlighting the contributions
presented, demonstrating its applicability in a broader range of scenarios, and
presenting perspectives for future work.

Keywords: multi-agent reasoning, distributed reasoning, contextual reasoning,
defeasible logic, argumentation, open environments

1

1 Introduction

Distributed reasoning is a central aspect required by many applications proposed in
the last decades, including mobile and ubiquitous systems, smart spaces and Ambient
Intelligence systems [1–3] – and more recently the Internet of Things (IoT) [4, 5] – and
the Semantic Web [6]. In these types of systems, distributed entities, called agents, are
able to capture or receive information from their environment and from other agents,
and are often able to derive new knowledge or making decisions based on the available
knowledge.

We consider multi-agent systems (MAS) in environments in which agents may have
imperfect knowledge, which may be incomplete, uncertain or inconsistent knowledge
[7]. Incomplete knowledge concerns the possibility of an agent not having a complete
knowledge about the environment and thus may require knowledge defined by other
agents in order to reach conclusions. For example: assume a robot agent a that can
feel the wind but is blind, and that has knowledge expressed by the following rule:
“I may conclude that it is going to rain (conclusion) if it is windy (premise 1) and
cloudy (premise 2)”. Agent a cannot reach the conclusion that it is going to rain by
itself, because it cannot find the truth value of premise 2 by itself. But suppose there
is another agent b. Then a can ask b if it is cloudy. If b answers positively, then a is
able to conclude that it is going to rain.

An agent can also have uncertain and/or conflicting knowledge due to imperfect
sensing capabilities or badly intentioned or unreliable agents, which can lead to a global
inconsistent state of knowledge. For example, an agent c has a damaged visual sensor.
If a asks c whether it is cloudy or not, it is possible that c cannot inform correctly,
thus returning an answer that contradicts the answer from agent b. Therefore, a has
to decide which agent to believe when receiving both answers. Such decision could be
based on a trust degree – or preference – an agent has to another.

Another concern in distributed settings, especially open, dynamic and
knowledge-intensive ones, is seeking knowledge from arbitrary sources. For example,
suppose d and e entered the environment very recently, so that a does not know what
kind of knowledge they hold. Suppose again that a wants to know whether it is going to
rain, but agents b and c, which previously used to answer about whether it is cloudy or
not, have left the system. Then, the only way to know about it is asking the newcomer
agents, d and e, even not knowing whether they hold such knowledge or not.

Furthermore, in many settings, agents have to reason based on heterogeneous
knowledge with different degrees of certainty regarding the equivalence of pieces of
information coming from different sources. Suppose d answers that there are clouds in
the sky but e answers that it is overcast. Considering that the premise cloudy of a’s
rule have a greater similarity to overcast (a sky covered with clouds) than with simply
having clouds in the sky, a could give preference to e’s answer based on the similarity
of the information. Another interesting and easy to understand example: suppose a
drone robot is in front of an open window, but it does not know if he is able to pass
through it only by its own knowledge. Than it asks other robots in the environment,
one of which, which is a terrestrial robot, knows that it can pass through an open
door. Supposing the drone robot has learned beforehand that doors and windows are

2

quite similar, it can possibly use the other robot’s knowledge to conclude that it can
pass through that window.

Finally, a very important feature to have in distributed settings is enabling agents
to share relevant information about their current situation, location, activity or object
of interest when querying other agents. We call this kind of information focus. For
example, suppose an agent f in a city distant from where a is. It looks at the sky and
sees the clouds, and is also able to feel the wind, but it does not know if this means
it is going to rain (it does not have the same rule as a). Thus, it asks other agents it
knows. The only agent it is able to talk to at the moment is a, so it sends a message to
a asking if it is going to rain. However, a, living in another city, is totally unaware of
the weather conditions of f ’s location. Then, f must send two rules without premises
(i.e., facts) stating that there are clouds in the sky and it is windy in the location f is
in. Therefore, when a receives the query, it is able to conclude that it is going to rain
in f ’s location, answering it to f . This is, in fact, a kind of contextual reasoning, as
defined in classical work such as [8] and [9].

Structured argumentation is a prominent approach to formalize non-monotonic –
or defeasible – reasoning by means of the construction and comparison of arguments
for and against certain conclusions based on an underlying logic [10], enabling reso-
lution of inconsistent knowledge between agents. Additionally, incomplete knowledge
can be represented by means of mapping rules [1, 11], which enables agents to acquire
knowledge from other agents in order to support a conclusion. However, there is no
work based on argumentation that enables agents to acquire knowledge from arbi-
trary agents based on the similarity of different pieces of knowledge. Some related
work, like [1], assume that agents always know the exact source of a given piece of
knowledge and that there is no possibility of knowledge being accepted based on its
similarity. Furthermore, no work was found that proposes a solution for the problem
of reasoning with focus knowledge not known a priori by the cooperating agents in a
fully distributed setting. More details about related work are discussed in Section 6.

This paper presents a distributed reasoning approach, including the formal model
and an operational algorithm that enable agents to build rule-based structured argu-
ments for and against some conclusion in an open and dynamic environment setting.
The distributed algorithm, its analytical and experimental evaluation, as well as fur-
ther discussions compared to related works, haven’t been previously published. The
formal model in an earlier stage of development was previously presented in [12],
but this paper presents a revised version of it that defines some parts in a more
straightforward and flexible way, in addition to useful definitions that enable a more
natural connection with the presented algorithm. More specifically, the main differ-
ences regarding the formal model are the following: (i) the definitions of localization of
focus rules and instantiation of il-literals; (ii) the definition of arguments has been sim-
plified and now includes externally dependent arguments as external subarguments, as
well as properties that are later used in other definitions; and (iii) the strength calcu-
lation formula now considers the concept of direct external subarguments and is based
on a weighted average instead of summation. In summary, the previous work focused
on the argumentation formalism and semantics, whereas the current work is focused
on the operational and practical realization of distributed reasoning, by presenting a

3

distributed algorithm, complexity issues, optimizations, experimental evaluation and
further discussions.

In the model presented in this paper, agents may receive a query about the validity
of a given piece of knowledge, but have incomplete knowledge, requiring them to issue
new queries to other agents in order to answer the query. Each agent builds arguments
based on its local available knowledge augmented with knowledge acquired from other
agents, and the strengths of the arguments are calculated based on the trust among
agents and the certainty regarding the similarity of the knowledge used to build them,
enabling agents to make conclusions based on the comparison of such arguments. This
way, reasoning is distributed among agents that concurrently build their arguments
and then combine them to support conclusions. We also propose knowledge sharing in
the context of a query, which enables agents to cooperate in reasoning about knowledge
which is not known a priori by them, but is relevant for the agent that issued the
query, achieving a kind of contextual reasoning. We therefore demonstrate that our
approach enables knowledge representation and reasoning in scenarios that are not
possible in related work.

Another relevant contribution regards the way the proposed algorithm builds self-
explanatory tree-like argumentation-based structures, which enables not only their use
in resolving conflicts and reaching conclusions, but also enables reusing them in other
reasoning processes and possibly taking advantage of them for possible future features,
such as explaining and learning. Precise representation of reasoning in the form of
arguments also enables the use of a broader range of conflict resolution strategies, such
as those that take advantage of the tree-like structure of arguments.

We also demonstrate that our model can be viewed as a generalization of the
proposal of Bikakis et al. [1] and that the conflict resolution strategy proposed in this
work enables contextual reasoning that is more efficient than some of the strategies
proposed in their approach [13].

Therefore, in summary, this paper presents four main contributions:

• Argumentation-based fully distributed reasoning model that takes advantage of
knowledge acquired from arbitrary sources, relating pieces of knowledge based on
their similarity, which enables its application in dynamic and open environments;

• Knowledge sharing in the scope of a query, enabling agents to be aware of relevant
contextual knowledge from the point of view of the agent that issued the initial
query.

• Strategy for resolving conflicts between arguments that takes into account the point
of view of the agent that issued the query and the use of knowledge from indirectly
queried agents.

• Operational self-explanatory argumentation-based structure building, which enables
storing and reusing arguments for reasoning and possibly other future features such
as explaining and learning.

Section 2 presents the formalization of our architecture, including agents and their
knowledge representation formalism, as well as the formalization of query focuses and
of the problem we are tackling. Section 3 presents the argumentation-based model of

4

reasoning. Section 4 presents the distributed query answering algorithm that opera-
tionally realizes this reasoning model, as well as some properties of the algorithm and
optimizations. Section 5 presents some experimental evaluations. Section 6 presents
related work and discussion. Finally, conclusions and future work are presented.

2 Architecture and Problem Formalization

Before presenting the argumentation-based model and algorithm, it is necessary to
present a concise multi-agent architecture – considering only the features that are
relevant for this work – together with the rule-based knowledge representation (Section
2.1) and the problem formalization, including the proposed structures for queries and
focus knowledge (Section 2.2).

2.1 Multi-Agent Architecture and Rule-Based Knowledge

Representation

The following presents the definition of a MAS in our approach.
Definition 1. A Distributed Defeasible Reasoning-based Multi-Agent System (DDR-
MAS) is defined as a tuple S = (Ags, FQ), such that Ags = {a, b, c, ...} is the set of
agents at a given moment situated in the environment and FQ = {α, β, γ, ...} is a set
of query focuses at a given moment.

△
The set of query focuses FQ is necessary to enable the system to have a registry

about the query focuses being considered at a given time. Query focuses will be detailed
in Section 2.2.

The following presents the definition of an agent.
Definition 2. An agent a ∈ Ags is defined as a tuple of the form (KBa, Pa,Θa, sta),
such that:

• KBa is the agent’s knowledge base;
• Pa : Ags→ [0, 1] is a trust function, such that, given two agents b and c in Ags, if

Pa(b) > Pa(c), then a trusts b more than c. If Pa(b) = Pa(c), then they are equally
trustful. Pa(a) = 1, for every a ∈ Ags, i.e., an agent has total trust in itself;

• Θa : V L × V L → [0, 1], such that V L is a vocabulary of literals, is a similarity
function that maps pairs of literals to a number representing how similar they are;

• sta : [0, 1] is a similarity threshold, used together with Θa to decide whether two
literals are similar enough or not.

△
The trust function is used in the resolution of conflicts that may arise from the

interaction between agents, as detailed in Section 3, and may result from various
mechanisms, such as those related to Trust Theory [14] and dynamic preferences [15].
Therefore, the actual definition of such function is left open for the specific application
developer.

The similarity function Θa and the similarity threshold sta are required to enable
the matching of knowledge from different agents, and will be formally defined in Def-
inition 4. The process through which this similarity function is determined in each

5

agent is also out of the scope of this work, and may be defined by some learning
process or expert knowledge.

As presented in Definition 3, knowledge bases are sets of rules composed of labeled
literals (l-literals) p of the form ⟨D(p), L(p)⟩, where D(p) is called the definer of the
l-literal p, and L(p) is a literal. The literal L(p) represents atomic information (x)
or the negation of atomic information (¬x). For a literal x, its complementary literal
is a literal corresponding to the strong negation of x, which can be denoted as ∼ x.
More precisely, ∼ x ≡ ¬x and ∼ (¬x) ≡ x. For any l-literal p = ⟨D(p), x⟩, the
complementary l-literal is denoted as ∼ p = ⟨D(∼ p),∼ x⟩.

The definer D(p) can be either a direct reference to an agent a ∈ Ags (in which
case the l-literal is called a concrete labeled literal, or cl-literal) or a symbol @ meaning
that any known agent in Ags may define the l-literal (in which case the l-literal is
called a schematic labeled literal, or sl-literal).
Definition 3. A knowledge base KBa is a set of rules of the form

rai : ⟨a, x⟩ ←֓ Body(rai)

where rai is the rule identifier, a ∈ Ags, i ∈ N
+, ⟨a, x⟩ is a cl-literal which is

the head of the rule, and Body(r) is a set of l-literals, also called body, representing
a conjunction of l-literals. The symbol ←֓ is a placeholder for either ←, indicating a
strict rule, or ⇐, indicating a defeasible rule.

△
A rule with empty body, i.e., when |Body(r)| = 0, is called a factual rule throughout

this paper.
The set of l-literals in a KB is called its vocabulary, denoted V L = V CL ∪ V SL,

where V CL is the set of cl-literals and V SL is the set of sl-literals, such that V CL ∩
V SL = ∅. Such sets are also closed under negation, i.e., when ⟨D(p), x⟩ ∈ V L, then
⟨D(p),∼ x⟩ ∈ V L.

A strict rule is a rule rai : ⟨a, x⟩ ← Body(rai) such that for every l-literal
⟨D(p), y⟩ ∈ Body(rai), D(p) = a , i.e., all l-literals are local cl-literals, since they
are defined locally by the very agent a. Similarly, a local defeasible rule is a rule
rai : ⟨a, x⟩ ⇐ Body(rai) such that for every l-literal ⟨D(p), y⟩ ∈ Body(rai), D(p) = a.
The difference is that strict rules cannot be defeated, i.e., they represent absolute truth
in the system and are interpreted by classical logic.

An important assumption is that the subset of strict rules in a KB cannot have
cycles nor inconsistencies. The maintenance of such consistency is left to a human
specialist or by some belief revision/update mechanism, which is out of the scope of
this work. In the other hand, defeasible rules have the interesting property of tolerating
contradictory rules and chains of rules that lead to infinite cycles or self-defeating lines
of reasoning. The way DDRMAS handle such cases is further explained in sections 3
and 4.

A mapping defeasible rule is a rule rai : ⟨a, x⟩ ⇐ Body(rai) such that for every
l-literal ⟨D(p), y⟩ ∈ Body(rai), D(p) ∈ Ags and there exists at least one l-literal
⟨D(p), y⟩ ∈ Body(rai) s.t. D(p) ∈ Ags \ {a}, i.e., l-literals in the body may also be
defined by other agents, in which case they are called foreign cl-literals. This is what
enables agents to function with incomplete knowledge, requiring them to cooperate

6

with other agents to reach conclusions. The intuition of a mapping rule denoted by
rai : ⟨a, x⟩ ⇐ ⟨b, y⟩ is the following: “If a knows that agent b concludes y, then
a considers it a valid premise to conclude x if there is not any adequate contrary
evidence”.

A schematic rule is a rule rai : ⟨a, x⟩ ⇐ Body(rai) such that for every l-literal
⟨D(p), y⟩ ∈ Body(r), D(p) ∈ Ags ∪ {@}, and there exists at least one l-literal
⟨D(p), y⟩ ∈ Body(r) s.t. D(p) = @ i.e., l-literals may be defined by the own agent
(local cl-literals), other specific agents (foreign cl-literals) or by an arbitrary agent (sl-
literal). The intuition of a schematic rule denoted rai : ⟨a, x⟩ ⇐ ⟨@, y⟩, is the following:
“If a knows that some agent concludes a literal similar enough to y, then a considers
it a valid premise to conclude x if there is not any adequate contrary evidence”.

An sl-literal can be bound (or instantiated) to any cl-literal that is similar enough
to it. This enables to support a broad range of scenarios, especially those involving
approximate reasoning. For example, suppose a scenario in which knowledge is rep-
resented by means of an OWL ontology [16]. In this case, a similarity function could
be based on axioms that use the owl:sameAs property. Other examples could include
lexical similarity, such as WordNet [17], which could be used in scenarios involving
speech or text recognition, and other syntactic and semantic matchmaking processes,
such as Larks [18].

Therefore, we define a similarity function between l-literals, as well as the concepts
of similarity threshold, similar enough and similarity degree, which are all related.
Definition 4. A similarity function Θa : V L × V L → [0, 1] is such that a greater
similarity between p and q results in a greater Θa(p, q) value. Given a similarity

threshold sta ∈ [0, 1], two l-literals p and q are similar enough if Θa(p, q) ≥ sta.
Given two identical l-literals, the similarity between them will always be 1, i.e., ∀p ∈
V L,Θ(p, p) = 1.

△
The similarity function can be used to define the concept of instantiated l-literal

(il-literal), which includes the information of the similarity between two l-literals. The
il-literals are particularly useful in the definition of arguments in Section 3, and are
specially used to express that an sl-literal can be instantiated to a given cl-literal based
on the similarity of their inner literal. Definition 5 defines an il-literal.
Definition 5. Given an l-literal q = ⟨D(q), x⟩, a cl-literal q′ = ⟨b, x′⟩, a similarity
function Θa and a similarity threshold sta, where a, b ∈ Ags, such that Θa(q, q

′) ≥ st
(i.e., q and q′ are similar enough), the function Insta(q, q

′) defines an instantiated
l-literal (il-literal) as:

Insta(q, q
′) = ⟨b, x′,Θa(q, q

′)⟩

△
Example 1. This is inspired by an example given by Anthony Bikakis in his thesis
[19]. Suppose there are five mushroom hunters collecting mushrooms in a natural park,
each one in possession of a mobile device with a personal agent: Alice’s a, Barb’s b,
Charles’s c, Dennis’ d and Eric’s e. The goal of mushroom hunting for every agent
is to help their users to collect edible mushrooms. The mental states, including the
knowledge bases, and the trust function of each of these agents are presented in Figure
1.

7

Fig. 1: Agents’ definitions for Example 1.

Alice’s (a) has some knowledge about some species, such as the death cap, which
it knows is not edible (rule ra1). Suppose also that a and b share the same knowledge
that, if a mushroom is edible, then they can collect it, and if it is not edible, they
cannot. They are also willing to take into account the opinion of any known agent
about the edibleness of a mushroom, i.e., if any agent states that a mushroom is edible,
then they are willing to accept it to be true if there is no adequate contrary evidence.
Such knowledge is thus presented both in KBa (rules ra2 and ra3) and in KBb (rules
rb2 and rb3). Barb’s (b) also believes that an object is not edible if it has a volva (rule
rb1).

Charles’ (c) believes that a mushroom is edible if it is an amanita velosa (rule rc1),
but it cannot describe a mushroom of this species. Therefore, it is willing to accept
that the mushroom is an amanita velosa if any other agent states that a mushroom
is similar enough to an amanita velosa.

Dennis’ (d) believes that an object is not edible if it is an amanita (rule rd1).
However, Dennis does not know anything about amanitas’ characteristics, thus a sl-
literal is also used in the body of the rule.

Finally, Eric’s (e) believes that a mushroom is a springtime amanita if it has
some properties, such as having a volva and a pale brownish cap (re1). Actually,
springtime amanita is the same as amanita velosa, but we assume the agents in the
system are not so certain about it. Therefore, the agents consider a similarity degree
of 0.8 between them, thus the il-literal ⟨e, spa(M), 0.8⟩ can be instantiated based on
⟨@, avl(M)⟩ and ⟨e, spa(M)⟩. Similarly, a springtime amanita is a type of amanita,
and the agents consider a similarity degree of 0.4 between them. Therefore, the il-
literal ⟨e, spa(M), 0.4⟩ can be instantiated based on ⟨@, am(M)⟩ and ⟨e, spa(M)⟩. The
similarity degree between every l-literal with lexically identical literals is defaulted to
1. Therefore, ⟨c, ed(M), 1⟩ can be instantiated based on ⟨@, ed(M)⟩ and ⟨c, ed(M)⟩,
and in a similar way ⟨d,¬ed(M), 1⟩ can be instantiated based on ⟨@,¬ed(M)⟩ and
⟨d,¬ed(M)⟩.

□

8

2.2 Query, Focus Knowledge and Problem Formalization

An agent a0 ∈ A (which we call emitter agent) is able to issue queries to itself or to
other agents. When an agent emits an initial query, which results in subsequent queries
to other agents (which we call cooperating agents), it is necessary that every such agent
becomes aware of specific knowledge related to the focus of the initial query. This is a
key feature to enable effective contextual reasoning, because it nourishes the reasoning
ability of the cooperating agents with the possibility of considering relevant – and
possibly not known a priori by these agents – information in the context of the emitter
agent, which may be related to its current object of interest, activity, situation or
location. The following define a query focus, as well as the concept of focus knowledge.
Definition 6. A query focus for an l-literal p is a tuple α = (p, a0,KBF

α), such that
α is the unique identifier of the query, a is the agent that created the query and KBF

α

is the focus knowledge base of α.
△

Definition 7. A focus knowledge base KBF
α is a set of defeasible rules and focus

rules of the form rFαi : Head(rFαi) ⇐ Body(rFαi), s.t. ∃p ∈ {Head(rFαi)} ∪ Body(rFαi)
s.t. p = ⟨F , x⟩, i.e., at least one of the l-literals of the rule is a focus labeled literal
(fl-literal).

△
The idea of fl-literals in the format ⟨F , x⟩ is that such knowledge must be tem-

porarily interpreted by each cooperating agent as if it was a locally defined cl-literal,
i.e., as if each agent defined it. For example, if an agent b receives a query with the fol-
lowing rule rF1 : ⟨F , y1⟩ ⇐, it should interpret the rule as if it was ⟨b, y1⟩ ⇐. When the
processing of the query is ended, the rule is discarded if it does not originally belong
to the knowledge base of b. It is important to note that focus knowledge bases only
have defeasible rules (which can also be mapping rules and schematic rules). This is
because focus strict rules would require a mechanism to avoid introducing cycles and
contradictions to the subset of strict rules of a KB.

It is important to note the difference between an sl-literal and an fl-literal. The
first one is used to represent that an agent requires knowledge defined by an arbitrary
external source, which has to be found by querying other agents. The former is used
to represent knowledge that was shared with the agent in a way that the agent must
consider it as a temporarily locally defined knowledge in order to answer a question
in a better informed way.

Therefore, it is useful to define a localization function for focus rules, which requires
defining the localization of fl-literals, as presented in definitions 8 and 9.
Definition 8 (Localization of fl-literals). Given an fl-literal p = ⟨F , x⟩ and an agent
a, the localization function of p in agent a is denoted Loc(p, a) = ⟨a, x⟩.

△
Definition 9 (Localization of focus rules). Given a focus rule rF : Head(rF) ⇐
Body(rF), a function Loc Rule that defines a localized rule for a given agent a based
on rF is defined as:

Loc Rule(rF , a) = rFa : Loc(Head(rF), a)⇐ {Loc(q, a) | q ∈ Body(rF)}

9

△
For convenience, it is useful to state some additional definitions. The local extended

knowledge base of an agent a, denoted KBaα = KBa ∪ KBF
aα, where KBF

aα =
{Loc Rule(rF , a) | rF ∈ KBF

α }, represents the local knowledge of a single agent aug-
mented with the focus knowledge of a query focus α. Therefore, the global extended
knowledge base given a current query focus α is defined as KBSα =

⋃Ags
a KBaα. Sim-

ilarly, V L
aα and V L

Sα, respectively, denote the local extended vocabulary of an agent a
and the global extended vocabulary.

Given these definitions, it is possible to formalize the problem we are solving:
“Given an agent a with a query focus α = (p, a0,KBF

α) for an l-literal p in a system
S, a wants to know whether l-literal p is a logical consequence of KBSα or not”. This
is a subproblem of the following problem: “Given a system S considering a query
focus α = (p, a0,KBF

α), which l-literals in KBSα are its logical consequences?”. In
our approach, as further explained in Section 3 and 4, it is possible that an l-literal p
in KBSα may be a logical consequence (KBSα |= p) – i.e., p has a true truth-value
– or may not be a logical consequence (KBSα ̸|= p) – i.e., p has a false truth-value.
However, it may be not possible to assert that p is a logical consequence or not, which
happens specially when there are fallacious arguments (like circular and self-defeating
arguments). In these cases, an undec truth-value is assigned to p, as presented in
Section 4.

It is important to note that the definition of a global extended KB concerns only
the formalization of the model and the problem: in practice, it is not necessary for
agents to operationally perform a union of their KBs, as it would result in a centralized
solution. The operational solution presented in this paper (Section 4) consists of each
agent collaborating to construct arguments based on its own local extended KB, and
then sending such arguments to other agents in order to generate larger arguments
that enable answering the query presented.
Example 1.1. Given the scenario previously presented, suppose that, at some
moment, Alice finds a mushroom m1 with the following characteristics: It has a volva
and a pale brownish cap. Thus, a asks itself a query, such that:

p = ⟨a, col(m1)⟩ α = (p, a,KBF
α) KBF

α = {rFα1, r
F
α2}

rFα1 : ⟨F , hv(m1)⟩ ⇐ rFα2 : ⟨F , pbc(m1)⟩ ⇐
(1)

where α is a new query focus whose focus knowledge base contains the rules that
represent the mushroom’s characteristics.

When receiving its own query, a cannot reach a conclusion based only on its own
knowledge. Thus, it has to query other agents. In each query to another agent, it
includes the same query focus α, in order to enable the agents to reason effectively
about the mushroom perceived. Therefore, each agent applies the function Loc Rule
for every focus rule received. For example, when e receives the query, it temporarily
defines internally the rules ⟨e, hv(m1) ⇐ and ⟨e, pbc(m1) ⇐. Given this focus, a will
conclude that Alice can collect the mushroom m1 because of the argument generated
from b with the help of e (see rc1 and re1), though b alone (see rb1) and d with e (see

10

rd1 and re1) state that it is not edible. The reason for this decision is based on the
strength calculation of the arguments generated by each agent and is further discussed
in Section 3.

□

Example 1.2. Suppose that, simultaneously to the query focus α from Example 1.1,
Barb finds a mushroom (m2) which she knows is a death cap, and wants to know if she
should collect it or not. Therefore, its agent emits to itself a query with the following
query focus:

p : ⟨b, col(m2)⟩ β = (p, b,KBF
β) KBF

β = {rFβ1}

rFβ1 : ⟨F , dc(m2)⟩ ⇐
(2)

In this case, a new focus rule, β, is originated from Barb. It is important to note that,
in this case, the focus knowledge from query focus α is not included. As presented in
Section 3, Barb will decide not to collect m2, since Alice’s agent will answer the query
indicating that m2 is not edible.

□

3 Argumentation-based Model

This section is divided into two subsection. Section 3.1 presents the argumentation-
based structures built as part of the reasoning process. Section 3.2 presents how
different arguments are compared in order to enable conflict resolution.

3.1 Argumentation-based Structure

This section presents how arguments are derived from the local extended KB of each
agent given a query focus. An argument A ∈ ArgsSα, such that ArgsSα is the set
of arguments that can be generated from a knowledge base KBSα is an n-ary tree
derived from the chaining of rules of KBSα.

Definition 10 formally presents an argument, as well as a set of functions that
capture its elements and properties.
Definition 10 (Argument). Given a global extended knowledge base KBSα, an argu-
ment A ∈ ArgsSα based on a rule r : p ←֓ Body(r) ∈ KBSα such that p = ⟨a, x⟩,
with a ∈ Ags, is a n-ary tree whose root node is labeled as p. Given n = |Body(r)|, if
n = 0, then the tree has an only child node labeled ⊤, which is a leaf node. If n > 0,
then the tree has n child nodes, each one corresponding to an l-literal q = ⟨D(q), y⟩
such that q ∈ Body(r), and each of the child nodes is either labeled as:

(I) q, if D(q) = a (i.e., q is a local cl-literal) and there exists a rule r′ s.t. Head(r′) =
q′ = ⟨a, y⟩, or

(II) Insta(q, q
′), if D(q) ̸= a (i.e., it is either a foreign cl-literal or an sl-literal) and

there exists a rule r′ s.t. Head(r′) = q′ = ⟨D(q′), y′⟩, where D(q′) ∈ Ags (i.e., q′ is
not an sl-literal) and Θ(q, q′) > st (i.e., q and q′ are similar enough, or identical).

11

A node is additionally labeled with a “!” mark in case it introduces a fallacious
subargument – either a cyclic or self-defeating subargument. Therefore, given a poten-
tial node labeled q, the node is labeled q! if there exists an ancestral node qorig s.t.
D(q) = D(qorig) and either: L(q) = L(qorig), or L(q) =∼ L(qorig). A fallacious node
is always a leaf node of an argument.

Each node not labeled with a “!” is the root of a subargument of A, which is another
argument defined recursively according to this definition.

Each tree edge is labeled with the identifier of the rule used to derive the argument,
which can also be referred by Rule(A).

Conc(A) refers to the conclusion of an argument A, which is the l-literal that
labels its root node.

Subs(A) refers to the set of proper subarguments of an argument A. A proper
subargument of an argument A, denoted A′, is a proper subtree of the tree that
represents the argument A. Proper subarguments are simply called subarguments

throughout the text.
ExSubs(A) ⊆ Subs(A) refers to the set of external subarguments of an argu-

ment A, i.e., the subarguments of A whose conclusions are il-literals. Formally:
B ∈ ExSubs(A) iff B ∈ Subs(A) and Conc(B) = ⟨b, x, θ⟩, s.t. b ∈ Ags, x ∈ V and
θ ∈ [0, 1].

DExSubs(A) ⊆ ExSubs(A) refers to the set of direct external subarguments

of an argument A, which are the external subarguments of A that are not external
subarguments of another external subargument of A. Formally, B ∈ DExSubs(A) iff
B ∈ ExSubs(A) and ✁∃C ∈ ExSubs(A) s.t. B ∈ ExSubs(C).

Prem(A) refers to the set of premises of an argument A, which are all the nodes
of an argument except its root and the nodes labeled with ⊤. If Prem(A) = ∅, then A
is a base argument. The premises can be expressed as the conclusions of the proper
subarguments of an argument, i.e., Prem(A) = {q | q = Conc(B), B ∈ Subs(A)}.

Fall(A) ∈ {true, false} indicates whether an argument is fallacious (true) or
not (false). A not fallacious argument is called a valid argument. An argument is
fallacious if any of its l-literals is a fallacious leaf node. Formally, Fall(A) = true iff
∃q! ∈ A s.t q ∈ V L

Sα.
Type(A) ∈ {strict, defeasible} indicates whether an argument is strict or defea-

sible. A strict argument is based on a strict rule, and every of its subarguments are
also strict. A defeasible argument is either based on a defeasible rule or at least one
of its subarguments is defeasible. Formally, Type(A) = strict iff Type(Rule(A)) =
strict and ∀B ∈ Subs(A), Type(Rule(B)) = strict; and Type(A) = defeasible iff
Type(Rule(A)) = defeasible or ∃B ∈ Subs(A) s.t. Type(Rule(B)) = defeasible.

△
An argument is conventionally named based on the agent that defines it, and the

query focus is used in the name as a superscript, given the possibility of having multiple
query focuses. For example, if the conclusion of an argument is defined by an agent
a in a query focus α, then the argument will be called Aα

i , with i ∈ N
+. If it is an

argument defined by an agent b in a query focus β, it will be called Bβ
i .

A graphical representation is given in the examples to follow (see Figure 2). We
opted to represent the edges as if they were directed to the conclusion of the argument,

12

so as to remind the rules’ arrows. We also use doubled lines to represent edges from
arguments based on defeasible rules in order to differentiate them from arguments
based on strict rules.
Continuation of Example 1.1. Figure 2(a) shows the derived arguments that con-
clude ⟨a, col(m1)⟩ and ⟨a,¬col(m1)⟩. In addition to these, arguments based on the
rules rb2 e rb3 can also be derived, but they are omitted since they are almost identical
to arguments Aα

1 , A
α
2 and Aα

3 . The labels of the edges were also omitted since it is easy
to see which arguments are derived from which rules (see Figure 1 and Equation 1).

Fig. 2: Set of arguments of Example 1.1 (a) and 1.2 (b).
(a) (b)

Note that from schematic rule ra2 the argument Aα
1 is formed by instantiating the

sl-literal ⟨@, ed(m1)⟩ with the conclusion of Cα
1 . Similarly, Aα

2 and Aα
3 are formed from

the rule ra3, having its sl-literals instantiated with the conclusions of the subarguments
Bα

1 and Dα
1 , respectively. The arguments Bα

1 , E
α
1 and Eα

2 are simply originated from
their local rules and the localized focus rules.

Argument Cα
1 is based on rc1 and formed by instantiating the sl-literal ⟨@, avl(m1)⟩

with the head of re1, from which the subargument Eα
1 is created.

It is interesting to note that without sharing and localizing the focus knowledge of
the query focus α, none of these arguments could be derived, since b and e would not
be aware of the mushroom m1 and its characteristics. This demonstrates how a kind
of contextualized reasoning is allowed in DDRMAS.

□

Continuation of Example 1.2. From query focus β, the arguments derived are
shown in Figure 2(b).

In this case, argument Bβ
1 is based on rb1 by instantiating the sl-literal

(@,¬ed(m1)) with the conclusion of Aβ
1 , which is based on ra1. Once more, this is

only possible because rFβ1 is shared with the query focus β, making agent a aware of
the fact that m2 is a death cap.

It is interesting to note that this set of arguments is different from the arguments
derived with query focus α and that both the queries do not interfere with each other.

13

□

3.2 Comparison of Arguments and Conflict Resolution

To resolve conflicts between arguments with contradictory conclusions, we use argu-
mentation semantics. In this work, we use an adapted version of the argumentation
semantic for Defeasible Logic (DL) proposed by [20] and extended by [1]. A defeat
relation between arguments is proposed, from which the notions of acceptable, justi-
fied and rejected arguments are derived. This work extends the mentioned semantic
specifically by defining an argument strength calculation which is used in the defeat
relation. All other definition remain true to the original definitions and are only briefly
presented in Section 4.

Definitions 11 and 12 present the attack and defeat relations:
Definition 11 (Attack). An argument Ai attacks a (local or distributed) defeasible
argument Aj, denoted AiAAj, iff their conclusions are complementary. Formally, let
A ⊂ Args×Args be the relation. Then AiAAj iff Conc(Ai) = p and Conc(Aj) =∼ p.

△
Definition 12 (Defeat). An argument Ai defeats an argument Aj, denoted AiDAj,
iff Ai attacks Aj, and Aj is not stronger than Ai. Formally, let D ⊂ Args× Args be
the relation and StArg : Args→ [0, 1] be a argument strength function. Then AiDAj

iff AiAAj and StArg(Ai) ≥ StArg(Aj).
△

Definition 13 presents the definition of the strength of an il-literal, which is then
used in the definition of strength of an argument (Definition 14).
Definition 13 (Strength of an il-literal). The strength of an il-literal qinst = (b, x, θ)
from the point of view of an agent a is StIL(qinst, a) = Pa(b)× θ.

△
Definition 14 (Argument Strength). StArg : Args → [0, 1] is a function on an
argument A to values between 0 and 1, where 0 is the smallest possible strength value
and 1 is the greatest possible strength value, defined as follows:

StArg(A) =

1 if DExSubs(A) = ∅
∑

A′∈DExSubs(A)

StIL(Conc(A′), D(Conc(A)))× StArg(A′)

|DExSubs(A)|
if DExSubs(A) ̸= ∅

(3)

△
The strength of an il-literal defines the basic element to calculate the strength of an

argument. Intuitively, it can be said that the strengths of the il-literals represent the
strengths of the bindings between the chained arguments coming from different agents,
which are represented by external subarguments (see Definition 10 and Example 1.1).
This strength consider not only the similarity degree (θ) between the knowledge defined
by each different agent, but also the trust an agent has in each other (Pa(b)).

Considering that, the strength of an argument consists of a weighted average, by
means of summing the strengths of its direct external subarguments multiplied by the

14

strength of the il-literals that bind the argument to each direct external subargument,
all divided by the amount of direct external subarguments. This way, the strength
of an argument is a function of the strengths of its direct external subarguments,
which are arguments derived by other agents (see Definition 10). In other words, the
similarity between knowledge from different agents and the trust between the agents
is what defines the strength of an argument.

An interesting feature of this formula is that it “weakens” an argument when there
is indirect trust between agents, which makes agents more skeptical to “third-party”
arguments, i.e., arguments that are external subargument, but not direct external
subarguments. This is because the calculus recursively depends on the strength of
the direct external subarguments of the argument A (DExSubs(A)), inducing the
multiplication of the strengths of the il-literals that are the conclusions of these sub-
arguments. Since the range of the il-literals and argument strength function is [0, 1],
it then follows that the strength values corresponding to these indirect dependen-
cies, when multiplied, result in reduced values when they are less than 1. This is
demonstrated through the following example.
Continuation of Example 1.1. As illustrated in Figure 2, there are some defeasible
arguments with contradictory conclusions: Aα

1 vs. Aα
2 and Aα

3 . That means they attack
each other: Aα

1 attacks Aα
2 and Aα

3 and vice versa. One can therefore calculate the
strengths of these arguments and conclude that Aα

1 is stronger than Aα
2 and Aα

3 , thus
defeating both, while Aα

2 and Aα
3 do not defeat Aα

1 .

StArg(Aα
1) =

StIL(⟨c, ed(m1), 1⟩, a)× StArg(Cα
1)

1

= Pa(c)× 1×
StIL(⟨e, spa(m1), 0.8⟩, c)× StArg(Eα

1)

1
= 0.48

StArg(Aα
2) =

StIL(⟨b,¬ed(m1), 1⟩, a)× StArg(Bα
1)

1
= Pa(b)× 1 = 0.4

StArg(Aα
3) =

StIL(⟨d,¬ed(m1), 1⟩, a)× StArg(Dα
1)

1

= Pa(d)× 1×
StIL(⟨e, spa(m1), 0.4⟩, d)× StArg(Eα

1)

1
= 0.08

It is interesting to note, in this case, that although Aα
1 was calculated as stronger,

it still had a relatively low strength value due to the indirect dependence of Aα
1 to

Eα
1 , as it was necessary to multiply the trust of Alice in Charles (0.6) to the similarity

of 0.8 between springtime amanita (spa(m1)) and amanita velosa (avl(m1). Charles’
perfect trust in Eric (1) kept the strength from going even lower. In contrast, in the
case of Aα

2 , although Alice’s trust in Barb is less than 0.4, the argument has not much
less strength than Aα

1 , since it only depends directly from a subargument defined by
another agent.

Therefore, in this case, Aα
1DA

α
2 and Aα

1DA
α
3 , but A

α
2�DA

α
1 and Aα

3�DA
α
1 .

□

15

4 Distributed Query Answering Algorithm

This section presents a distributed algorithm for evaluating queries between agents
based on the proposed knowledge representation and argumentation-based model.

This algorithm produces results based on the ambiguity-blocking semantics for
Defeasible Logic (DL) proposed by [20] and extended by [1]. The reader is referred
to these papers in order to have a deeper understanding of such semantics, but it is
important to briefly define the concepts of “justified”, “supported”, “undercut” and
“rejected” arguments. The set of justified arguments is incrementally and monoton-
ically built, starting with strict arguments, then arguments that are not defeated or
are defended by the already justified arguments, and so on until no further arguments
can be justified. An argument A is justified if it is strict, or if it is supported by a
set of already justified arguments J , and every argument that defeats A is undercut
by the set of justified argument J (i.e., A is defended by J). An argument A is sup-
ported by a set of arguments J if every subargument of A is in J . An argument A is
undercut by a set of arguments J if there is an argument B which is supported by J
that defeats a subargument of A. Finally, an argument A is rejected if it is not strict
and either a subargument of A is already rejected, or A is defeated by an argument
supported by the set of justified arguments.

The specific reasoning problem that is solved by the algorithm is stated as follows:
Given a DDRMAS S and a query focus α for an l-literal p sent to agent a, compute
the truth value of p based on whether justified arguments exist for some l-literal similar
enough to p or not . The algorithm produces an answer with three components: (i) a
truth-value tvp ∈ {true, false, undec} for the l-literal p queried; (ii) a set of arguments
that conclude l-literals similar enough to p; and (iii) a set of arguments that conclude l-
literals similar enough to ∼ p. This way, the agent that receives an answer also receives
the arguments that support and refute p, so that it can perform conflict resolution
from its own point of view.

The truth-value true implies that there exists an argument for a l-literal p′ similar
enough to p which is justified in KBSα (the global extended knowledge from system
S with focus knowledge from the query α), false implies that all arguments for every
p′ similar enough to p are rejected in KBSα, and undec implies that there are not any
argument for any p′ similar enough to p that is justified, but there are arguments for
some p′ similar enough to p that are neither justified nor rejected in KBSα. This last
case occur when there are fallacious arguments involved.

The arguments in the algorithm have the same structure as the arguments pre-
sented in Section 3, having, in addition, three boolean labels: J , indicating that the
argument has already been identified as justified; R, indicating that the argument has
already been identified as rejected; and SuppJ , indicating that the argument is sup-
ported by a set of justified arguments. These three properties play a fundamental role
in comparing the sets of arguments for and against p, in order to correctly implement
the DL semantics [1, 20]. In fact, such labels (or flags) enable the implementation of
the DL semantics in a labeling-based fashion, similar to [21], which proposes labeling
semantics for abstract argumentation frameworks. In summary, instead of incremen-
tally building the sets of justified and rejected arguments, this labeling-based approach
traverses an argument in a post-order fashion labeling each argument as SuppJ , J

16

or R. When all arguments are labeled, we gather the set of J-labeled arguments as
the justified arguments, and the set of R-labeled arguments as the set of rejected
arguments.

It is also assumed that each argument has a numeric property St, referring to the
strength of the argument, whose default value is 0, but that is modified throughout
the execution of the algorithm by calculating the strength of the argument using the
StArg function.

The presentation of the algorithm will be divided into two sections. Section 4.1
presents the main procedure Query, and Section 4.2 presents the auxiliary function
Find Def Args, which corresponds to a good part of the algorithm as a whole, and
therefore is presented separately in order to facilitate reading and understanding.
Finally, Section 4.3 presents some analytical evaluation of the algorithm as well an
approach to optimize it.

4.1 Procedure Query

Each agent implements the same algorithm, which also defines a basic messaging proto-
col that allows them to collaborate effectively. The main procedure, Query, presented
in Algorithm 1 in Appendix A, is called when an agent a receives a message of the
form Query(p, α, histp) from an agent a0. This can be considered an “Ask” speech act
emitted by a0, where: p is the l-literal queried; α = (p, a′,KBF

α) is the query focus;
and histp is a list of l-literals already evaluated during the query processing, which
allows to avoid infinite loops by detecting the occurrence of fallacious arguments. The
query result is returned to a0 as a message in the format Ans(p, α, tvp, Argsp, Args∼p),
where: tvp is the truth value of p; Argsp is a set of arguments that support the
conclusion p; and Args∼p is a set of arguments that support the conclusion ∼ p.

The algorithm can be divided into 6 (six) main steps:

1. Extended local KB creation given query focus α (line 3)
2. Search for l-literals p′ similar to p in the extended local KB (lines 4 and 5)
3. Checking and handling of cycles and self-destructive rule chains (lines 6 and 7)
4. Local strict answer search for each similar l-literal q′ (lines 8 to 15)
5. Local or distributed defeasible answer search for each similar l-literal q′ (lines 16

to 22)
6. Comparison between arguments and calculation of the truth-value based on the

strengths of defeasible sets of arguments for and against the conclusion of each
similar l-literal q′ (lines 23 to 26)

Figure 3 presents an activity diagram that illustrates the execution of these steps.
Step 1 defines the local extended KB, KBaα, as defined in Section 2. This enables

the agent to consider not only its own knowledge, but also an augmented knowledge
considering the focus knowledge received in the query.

Step 2 iterates over KBaα searching for any rule with head p′ such that p and p′

are similar enough. This enables to consider literals by similarity, as described earlier.
Step 3 verifies whether p′ or ∼ p′ are not in histp. If any of these is the case, then

a cycle or self-defeat is detected. The algorithm then creates a fallacious argument
consisting of a unique leaf node labeled p′!.

17

Step 4 to 6 are executed iteratively or in parallel, for each p′. It is interesting
that it can be made in parallel because it mainly consist in querying other agents
asynchronously.

Step 4 tries to build local strict arguments based on strict rules of the agent. This
step works as a depth first algorithm traversing the strict rules of the agent trying to
activate each rule in the chain of rules, as a classic logic proof finder. A pseudocode is
presented in Algorithm 2 in Appendix A.

Step 5 tries to build defeasible arguments, both for p′ and ∼ p′. This is done by
means of a helper function called Find Def Args, which is responsible for sending
queries to other agents for each literal in the body of the rules with head p′. It is also
responsible for incrementally building distributed arguments (arguments that have
external subarguments). Section 4.2 details it a bit further. Furthermore, in step 5 it
is verified whether local strict answers have been found (lines 19 to 22). If this is the
case, every opposite argument is marked as rejected, since a strict argument defeats
every opposite arguments and is not defeated by them.

Step 6 takes all the defeasible arguments generated for and against p′ and compare
them. Its pseudocode is presented in the Compare Def Args function in Algorithm
3, Appendix A. This step implements most part of the DL semantics by checking
the boolean flag SuppJ and R and setting J and R accordingly, and, based on these

Fig. 3: Activity diagram for the Query algorithm.

18

flags, decide the truth-value tvp′ . At this point, i.e., after Find Def Args was called,
SuppJ – and also R for the case in which some subargument is marked as rejected,
which means the argument has been undercut – have already been previously set in
the Find Def Args (step 4), when arguments are built and every subargument are
checked whether they are justified or rejected, as explained in Section 4.2, step 4.

A brief explanation of step 6 is given as follows. The variable tvp′ is set as undec
as default. Then, a set of not undercut (already rejected by the existence of rejected
subarguments) arguments for both p′ and ∼ p′ is defined (line 3). This is done because
undercut arguments can’t be used to prevent an argument from being justified: even
if an undercut argument defeats another argument, this last one has already been
defended by the argument that defeated the first one. Next, for each not undercut
argument A:

(i) if A is supported by justified arguments and there doesn’t exist any not undercut
argument B that defeats A, then A is marked as justified (J) and the truth value
is set to true, since a single justified argument for p′ is sufficient for accepting such
conclusion.

(ii) if there exists an opposite argument B ∈ Args∼p′ that is supported by justified
arguments and defeats A, then A is marked as rejected (R).

Finally, if none of the arguments in Argsp′ have been found as justified and all of
them have been rejected (or Argsp′ is empty, which simply means there is no argument
for p′), then tvp′ is set to false. However, it is possible that there are argument that are
not justified nor rejected, in which case tvp′ remains undec (this happens specifically
when the argument is fallacious and is not defeated by an argument supported by the
justified arguments).

4.2 Function Find Def Args

The function Find Def Args is presented in Algorithm 4 in Appendix A. It receives
a literal p′, the extended knowledge base KBaα created in the Query procedure, the
query context α and the history histp.

The procedure is split in 4 (four) steps:

1. Update histp by adding p′ to it (line 3)
2. Send queries for every l-literal q that exists in the body of each r with head p′ (lines

4 to 10)
3. Filter the results received for each q for the queries and add them as possible

subarguments for an argument for p′ (lines 11 to 16)
4. Build argument for p′ based on the possible subarguments, for each different rule

for p′ (lines 17 to 28)

The Figure 4 presents an activity diagram that illustrates these steps.
Step 1 is self explanatory.
Step 2 consists of iterating over each rule r with head p′ in KBaα, and for each rule

r, iterate over each l-literal q in the body of r in order to send new queries, aiming to
try to build argument for each q. This iteration can also be done in parallel, which is

19

Fig. 4: Activity diagram for the Find Def Args algorithm.

interesting since the query messages are sent asynchronously. In this step, when an sl-
literal is found, the query is sent in a broadcast manner to every agent in the system.
Otherwise, if a cl-literal is found, the query is sent only to the agent D(q). The code
for querying agents is illustrated in Algorithm 5, Appendix A.

Step 3 is executed when answers are received. If no arguments are found for q,
the algorithm goes to to the next rule and discards all the results for the current
rule (lines 11 and 12). This is because an argument for p′ based on a rule r can’t be
built if one of its body members can’t be activated. Next, the arguments received are
filtered in order to avoid an “explosion” of subarguments. This is done by eliminating
fallacious arguments if valid ones were found (lines 13 and 14) and then getting the
argument that has the greatest strength multiplied by the strength of the il-literal in
its conclusion from the point of view of the current agent (a) – which is part of the
argumentation strength calculation (line 15). This way, only the subargument that
will contribute with the greatest strength possible is considered. This is reasonable
when considering that the goal is to find the best arguments to support a conclusion,
thereby avoiding the generation of a lot of irrelevant arguments that could impose
unnecessary overhead over the MAS. This can also be viewed as a kind of pruning

20

of irrelevant arguments: fallacious subarguments are irrelevant when valid ones exist,
and multiple subarguments for the same conclusion can be pruned by leaving only the
one that provides the most benefit.

Step 4 is executed after the answers for each q in the body of a given rule r is
received. It takes the possible subarguments and builds arguments for p′ based on
them. It is actually in this step that an an sl-literal is instantiated to an il-literal (see
lines 20 and 21). Also, for each argument Ap′ built, if every subargument are marked
as justified (J), then Ap′ is marked as supported by justified arguments (SuppJ , lines
14 and 15). In the other hand, if there exist any subargument which is marked as
rejected (R), then Ap′ is also marked as rejected (lines 16 and 17). This also means
Ap′ is considered as undercut, i.e., it can’t be used to prevent another argument from
being justified, even if it defeats the other argument, as explained in Section 4.1, step
6. Finally, is in this step that the strength of the argument is calculated by means of
StArg (Section 3), in line 18.

4.3 Complexity Issues and Optimization

It is important to note that the algorithm as presented thus far would have exponential
complexity in the worst case. Suppose the following global KB:

ra1 : ⟨a, x1⟩ ⇐ ⟨@, x2⟩, ⟨@, x3⟩, ⟨@, x4⟩; rb1 : ⟨b, x2⟩ ⇐ ⟨@, x3⟩, ⟨@, x4⟩

rc1 : ⟨c, x3⟩ ⇐ ⟨@, x4⟩; rd1 : ⟨d, x4⟩ ⇐

Figure 5 presents a call tree, considering only the queries that reach the
Find Def Args stage (step 5 of the Query algorithm), which leads to recursive calls
to the procedure Query. Cases in which the queries do not reach this stage do not
induce recursion on the agents’ knowledge base rules, namely: when the queried agent
does not have any similar l-literal in its knowledge base, or when the l-literal which
was queried or its complement is in the history histp. For simplicity, therefore, the
complexity analysis criterion used is the number of calls to Query that reach the
Find Def Args stage.

Each edge of the call tree presented in Figure 5 is labeled in the form ⟨a⟩ → ⟨b⟩ : ⟨p⟩,
where ⟨a⟩ is the agent that submitted the query, ⟨b⟩ is the agent that received the
query, and ⟨p⟩ is the l-literal being queried. Each vertex is labeled as the l-literal ⟨p⟩′

that was found to be similar enough to p, and for which an answer will be sought.
It is easy to see that the il-literals ⟨b, x2, 1⟩, ⟨c, x3, 1⟩ and ⟨d, x4, 1⟩ will be generated

from this setup, constituting the set of premises of the arguments. Therefore, it is
possible to induce that the number of queries that reach the stage of Find Def Args
for an arbitrary number of premises n in the arguments is asymptotically O(2n). The
demonstration is straightforward and will not be presented for the sake of space and
convenience.

As to the number of messages, complexity is even greater considering the number
of messages that each agent sends for each sl-literal and to each known agent. This is
because, in each of the queries, represented by the edges in the call tree, as shown in
Figure 5, one must consider that the agent actually send query messages to each known

21

Fig. 5: Call tree for the worst case when n = 3.

agent. Therefore, the number of messages exchanged has an asymptotic complexity of
O(|Ags| × 2n) in the worst case.

Therefore, it is clear that the algorithm as presented thus far is not computation-
ally feasible. However, we present an optimization strategy that enables it to achieve
polynomial time complexity: a cache memory that allows storing and reusing argu-
ments previously generated in the context of the same query focus. This memory,
referred as Cα[p

′], is individual and local to each agent, and mapped to each specific
query focus α and by each l-literal p′ that is similar enough to a queried l-literal p.

A record Cα[p
′] in agent a can store a null value (⊥), a future (as explained below),

or the actual set of argument for and against p built in a previous query. Each time an
agent a reaches steps 4 and 5 of the Query algorithm, it first checks whether p′ (the
l-literal which was found to be similar enough to the l-literal queried) have not been
previously received in the same query focus by checking the value of Cα[p

′]. If this is
the case and the answer has already been returned, it proceeds to use that answer. If
the argument is still not found – that is, the agent is still in the middle of processing to
build it – the thread gets waiting until an answer is received. This is achieved through
the concept of future (or promise) [22]. In simple terms, a future is an object that acts
as a proxy for an initially unknown result because the calculation of its value has not
yet been completed. Many parallel threads may wait until the value of this object is
set. When this happens, they are notified, so they are able to capture the value and
resume their execution.

The benefits of this simple caching mechanism are made clearer when observing
what would happen in the case presented when using this caching mechanism. Figure
6 shows what would be the call tree for this case with the optimization presented.

Note that only n+1 = 4 queries make it to the Find Def Args stage in this case,
since there is no need to repeat the same query processing for ⟨@, x3⟩ and ⟨@, x4⟩, as
in the version without cache. Therefore, it can be induced that the number of calls
to Query that get to the Find Def Args stage is now proportional to the number of

22

Fig. 6: Call tree for the worst case scenario when n = 3 with the caching mechanism.

premises, reducing the time complexity to O(n). It is easy to think of the intuition for
it: there will be as many queries as there are l-literals to query about as the algorithm
traverse the agents’ rules, similar to a depth-first tree traversal.

As to the number of messages, it is also reduced. For the worst case scenario
with n = 3, only 3 × 3 = 9 messages are sent by a to each of the agents b, c and
d (|Ags| − 1 = 3) about each of the sl-literals in the rule body ra1 (n = 3). Then
there will be 2 × 3 = 6 messages, corresponding to the two sl-literals in the body
of rb1, which must also be sent to the 3 other agents. Then there will be 1 × 3 = 3
messages sent by c, corresponding to the single sl-literal in the body of rc1 sent to
the 3 other agents. Therefore, (3 × (3 + 2 + 1)) × 2 = 36 messages are exchanged,
including the query and reply messages. Generally speaking, the number of messages
m = [(|Ags|−1)×

∑n
i=1 i)]×2 = [(|Ags|−1)×(n×(1+n)/2)]×2 = (|Ags|−1)×(n2+n).

Therefore, the number of messages exchanged with optimization based on cache is
O(|Ags| × n2).

In an average case, however, the number of messages tends to be less. Let m be
the number of sl-literals and k the number of foreign cl-literals. Assuming that each
sl-literal occurs only once in the entire extended knowledge base – unlike the worst
case, where they are repeated – then for each sl-literal, (|Ags| − 1) × 2 messages are
sent, counting query and reply messages. Furthermore, for each foreign cl-literal, 2
messages are sent, one query and one reply. Therefore, the total number of messages
sent is M = m× (|Ags| − 1)× 2+ k× 2. Therefore, the asymptotic complexity for the
number of messages in this average case is O(|Ags| ×m+ k).

As to the total size of arguments generated, the cache mechanism enables it to be
reduced, given that arguments already generated in memory can be just reused by
reference. In fact, the maximum total size of arguments ends up being proportional to
the amount of rules in the system combined with the similarity rate between literals,
i.e., the amount of sl-literal in the body of the rules that are similar enough to the head
of other rules. In other words, the more rules with premises that are similar enough to

23

conclusions of other rules, the more arguments will be built, but no argument is built
more than once.

Another point of interest of this caching mechanism is that it illustrates how DDR-
MAS allows reusing previously generated arguments. In this case, it was used to enable
a better performance. However, the same arguments could be stored and reused in
other features, such as those related to explanation and learning.

5 Experimental Evaluation

In order to ensure the computational feasibility and performance, as well as emphasize
DDRMAS’s potential for real applications, an implementation of the model was devel-
oped, as well as some testing scripts. The implementation was done using the Python
programming language1. All the experiments were run using the Python 3.10.9 inter-
preter in an AMD Ryzen 3 5400u® in Ubuntu 22.04.2 LTS. A simple class diagram
is presented in Figure 7.

Fig. 7: Class diagram for the implemented system.

1The code is available at https://github.com/helioh2/ddrmas-python

24

https://github.com/helioh2/ddrmas-python

Three testing scripts were developed: (i) a script that creates and performs queries
in randomized systems; (ii) a script that implements the worst case presented in
Section 4.3; and (iii) a script that implements the worst case presented for the Con-
textual Defeasible Logic (CDL) model [13], in order to enable some comparison with
DDRMAS.

The randomized script creates a random system taking the following parameters:

• Number of agents (|Ags|);
• Total number of distinct literals (|LS |);
• Total number of distinct rules (|KBS |);
• Maximum size of rules’ body (MaxB);
• Number of focus rules (FKBSize);
• Percentage of sl-literals throughout the rules (PerSL);
• Percentage of pairs of literals with high similarity (PerSim);
• Whether the system has cycles or not (AllowsCycles);

The rules are generated based on random l-literals for their head and body. All
rules are defeasible. Each rule has a body of size varying between and including 0
and MaxB, evenly distributed. The generated rules are randomly and uniformly dis-
tributed among the agents. Redundant or self-conflicting rules are discarded, since
they do not add any new information, and such kinds of rules can be easily filtered on
a real scenario. For example, rules like B ⇐ A,A, or B ⇐ A,∼ A are removed; and
when a rule B ⇐ A exists, then B ⇐ A,C is not relevant, therefore discarded. This
does not impose any new assumption on the DDRMAS system, because mechanisms
to remove such redundant rules can be executed in parallel and independently of the
DDRMAS query system.

The intuition for this random script is getting statistical data that possibly gives
insights about features and weaknesses of DDRMAS. Therefore, different settings were
run by a number T imesRun and the following data was captured from these execu-
tions: (i) total of arguments generated (|ArgsSα|); (ii) total of messages exchanged
(|Msgs|); (iii) sizes of messages exchanged (SizesMsgs); and (iv) times of execution
(T).

Table 1 presents some results. Only the cases in which at least one argument was
generated are accounted (note the WithArgs line), in order to consider only the cases
in which rules have been activated during reasoning.

It is interesting to note that the number of arguments, number of messages and
sizes of messages are quite reasonable when compared to the amount of agents, literals
and rules. Only the number of messages tends to be a little greater when there are
more agents, but this is expected, as discussed in Section 4.3. It would be necessary
to find out the impact of the number of message in real world applications in order to
have further insights on the necessity of optimizing it and how it could be mitigated.

It is also evident that the allowance of cycles increase the amount of arguments
generated, even with the existence of the mechanism that avoids infinite loops by
creating fallacious arguments that behave as leaf nodes. This happens because, when
the script is run with AllowsCycles = False, it discards rules that would introduce
fallacious arguments. If there are no fallacious arguments, when trying to build some

25

Table 1: Results of the experiments with the randomized system generator.

Parameters

T imesRun 2000 2000 2000 2000 2000 2000
|Ags| 5 5 20 20 20 20
|LS | 5 5 20 20 20 20
|KBS | 10 10 50 50 50 50
PerSL 100% 100% 100% 100% 0% 0%
PerSim 10% 10% 10% 10% - -
AllowsCycles Yes No Yes No Yes No
FKBSize 1 1 3 3 3 3
MaxB 2 2 3 3 3 3

Outputs

WithArgs 579 581 727 707 671 613
|ArgsSα| - Avg 2.41 1.85 12.49 3.35 1.28 1.22
|ArgsSα| - Max 12 12 60 40 7 6
|Msgs| - Avg 9.76 5.39 418.15 74.76 0.68 0.64
|Msgs| - Max 72 56 2470 1444 12 12
SizesMsgs - Avg 0.91 1 0.60 0.32 2 3
SizesMsgs - Max 7 6 20 10 5 4
T (ms) - Avg 0.69 0.48 17.23 2.06 0.20 0.43
T (ms) - Max 2.60 2.15 75.35 30.56 1.80 1.79

arguments, the algorithm ends up not reaching neither a fallacious leaf node nor a
factual rule, thus many arguments are never really built.

As for the script that implements the worst-case scenario presented in Section 4.3,
it was executed with the following inputs and obtained the following results: |Ags| =
|LS | = 20 → |ArgsSα| = 20; |Msgs| = 7220;T = 143.96 ms;Max(SizesMsgs) =
19;Avg(SizesMsgs) = 0.36. These results confirm the analytical complexity analysis
presented in Section 4.3.

In order to enable a comparison with the most similar related work, we modeled
CDL’s worst case presented in [13] in DDRMAS. This was done by considering the
absence of sl-literals, i.e., all body members of rules are concrete l-literals. This setting
consists of n+ 1 agents {a0, a1, ..., an}, such that a0 has the following rules:

ra01 : ⟨a0, x0⟩ ⇐ ⟨a2, x2⟩, ⟨a3, x3⟩, ..., ⟨an, xn⟩

ra02 : ⟨a0, x0⟩ ⇐ ⟨a1, x1⟩, ⟨a3, x3⟩, ..., ⟨an, xn⟩

...

ra0[n/2] : ⟨a0, x0⟩ ⇐ ⟨a1, x1⟩, ..., ⟨an/2−1, xn/2−1⟩, ⟨an/2+1, xn/2+1⟩, ..., ⟨an, xn⟩

ra0[n/2+1] : ⟨a0,¬x0⟩ ⇐ ⟨a1, x1⟩, ..., ⟨an/2, xn/2⟩, ⟨an/2+2, xn/2+2⟩, ..., ⟨an, xn⟩

...

ra0n : ⟨a0,¬x0⟩ ⇐ ⟨a1, x1⟩, ⟨a2, x2⟩, ..., ⟨an−1, xn−1⟩

(4)

The other agents all have a single factual rule each. For example, a1 has the rule
⟨a1, x1⟩ ⇐, a2 has ⟨a2, x2⟩ ⇐, and so on.

The results for |Ags| = |LS | = 100 are the following: |ArgsSα| = 198; |Msgs| =
19404;T = 721.68 ms;Max(SizesMsgs) = Max(SizesMsgs) = 1. The number 100
for the agents/literals was chosen because 100 is the maximum amount of agents
that Bikakis et al. tested with in their experiment [13]. It is interesting to note that,

26

in their case, they could not run their most complex strategy for conflict resolution
(Complex Mapping Sets) – which uses all the context information possible – for more
than 40 agents because it exceeded memory usage in their setup, and for 40 agents
their experiment took 207828 ms to execute. This shows that our approach for conflict
resolution enables an efficient context reasoning, with the addition of considering some
nuances related to the indirect dependencies among agents, as explained in Section 3.2.
The main differences between CDL and DDRMAS are further detailed in Section 6.

6 Related Work

This section presents some related work. The ones that are most similar are those
based on Defeasible Logic (DL) and Multi-Context Systems (MCS). Governatori et
al. [20] present an argumentation-based semantics for DL, enabling reasoning in the
presence of possibly conflicting defeasible rules in a knowledge base. Bikakis et al. [1]
extends this model, calling it Contextual Defeasible Logic (CDL), including the pos-
sibility of distributed knowledge bases with a querying algorithm to enable multiple
agents to discover the truth-value of a literal. However, they do not propose ways
to enable agents to use knowledge from arbitrary agents, i.e., it is assumed that all
agents know which agent defines each knowledge, which is not realistic in many sce-
narios (the mushroom hunting scenario being an example, since it can’t be modeled in
CDL). There is also no proposal for handling knowledge from different agents based
on similarity, assuming that all agents share the same vocabulary, which also assumes
there is a centralized entity that standardize such vocabulary. Therefore, the defeat
relation, which is the base for conflict resolution between arguments, is defined only
in terms of preferences (trust) among agents. Furthermore, sharing contextual knowl-
edge in queries, which is also a requirement for scenarios like the mushroom hunting
one, is not proposed in their work.

In [13], Bikakis et al. propose different strategies for CDL in order to take advantage
of the trust that multiple agents have in each other, which enables achieving similar
results to the strength calculation proposed in this work. However, such strategies are
not proposed using tree-like structures for arguments, therefore lacking the flexibility
of proposing forms of conflict resolution based on the structure of arguments – for
example, by means of a formula, as is done in DDRMAS. The most complete strategy
proposed by them, called Complex Mapping Sets (CS), uses the trust among all the
agents involved on achieving a given conclusion, but does not penalize indirect trust
between them, as is done in the argument strength formula used in DDRMAS, which
takes advantage of the tree-like structure of arguments. Furthermore, it was demon-
strated in Section 5 that CDL systems can be modeled in DDRMAS – showing that
this one is more general than that one – and that the worst case presented in [13] is
feasible and efficient in DDRMAS for a great number of literals and agents. This is a
relevant contribution, given that DDRMAS’s default conflict resolution approach also
uses all context information and relations between agents – except the irrelevant argu-
ments which are discarded in step 3 of the Find Def Args algorithm, as explained in
Section 4.2 – which are materialized in the arguments built during reasoning.

27

Other relevant work in the field are DeLP (Defeasible Logic Programming) [23]
and ASPIC+ [24]. None of them proposes distributed knowledge bases with a query
algorithm in the same fashion as proposed in this work. Furthermore, there is no solu-
tion to deal with knowledge coming from arbitrary agents and matched by similarity.
In [25], DeLP presents a similar idea to the query focus, called contextualized query,
which is a query that includes knowledge relevant to help answering it. Such query
must be issued to a node called DeLP-Server. However, such approach is restricted to
a client-server query answering fashion, and does not propose a form of distributed
reasoning with interrelated knowledge from different agents in a peer-to-peer manner
as proposed in this work. As to ASPIC+, it proposes a framework for DL that can
take advantage of extension-based semantics, like those proposed by Dung [26], but
also does not propose an architecture for multi-agent reasoning.

The Argumentation-Based Multi-Agent System (ArgMAS) [27] presents a DeLP-
based framework that supports collaboration between agents, which allows combining
the knowledge bases of different agents in order to produce arguments. Therefore, this
approach presents a way of reasoning with interrelated knowledge bases, although it
does not use the concept of bridge/mapping rules. Instead, agents in an agent alliance
construct partial arguments that contain sets of free literals, that is, sets of literals
that are not yet supported by other arguments. From there, a meta-agent runs a
backwards-chaining algorithm trying to construct a complete argument based on the
partial arguments. However, this proposal has some relevant differences compared to
the present work: (i) Collaboration between agents is restricted to a predefined set of
agents belonging to the same alliance, while in DDRMAS an agent can collaborate
with any other agent, without the need of an alliance being created; (ii) an agent can
only participate in one alliance at a time, while our work allows an agent to participate
in the reasoning of multiple query focuses simultaneously; (iii) the complete arguments
are generated by a meta-agent, which centralizes a good part of the reasoning, and not
by the individual agents in a totally distributed manner, as proposed in DDRMAS;
and (iv) the correspondence between the literals of different agents is defined only by
the exact correspondence, that is, a partial argument with a free literal x is chained
to a literal that exactly concludes the value x, not being made a matching based on
similarity. In addition, the work does not present ways of sharing focus in queries.

Similar work are also found in the field of MCS, which is a kind of formalization for
systems composed of multiple knowledge bases that are interrelated by means of their
vocabularies. However, no work was found that solved all the problems mentioned in
the present work, and only one is based on argumentation-based semantics [1]. Fur-
thermore, most of the approaches on MCS propose a conflict resolution based on the
concept of repair [28], which modifies the knowledge bases to maintain a conflict-
free global state. The present work, in the other hand, proposes conflict resolution at
query time, i.e., conflicts are detected when arguments are built and then confronted
to each other, which also do not necessarily imply in updating the knowledge bases,
but only in giving the most reasonable answer given some criteria (in our case, trust
among agents and knowledge similarity). Therefore, different from repairing, DDR-
MAS proposes maintaining a possibly inconsistent global state, resolving them when

28

conflicting knowledge is used, with the benefit of allowing agents to maintain differ-
ent views about the environment and to be able to more faithfully execute a type of
contextual reasoning in which there are conclusions that are valid in certain contexts
but not in others.

Dao-Tran et al. [29] proposes the Dynamic Distributed Multi-Context System
(DDMCS), which includes the use of schematic bridge (mapping) rules with a simi-
larity function, and a backtracking algorithm to enumerate all possible substitutions
(instantiations) of schematic bridge atoms (similar to the sl-literals of this work) in a
distributed environment, in order to instantiate a concrete SMC, from which equilibria
– possible sets of admissible beliefs – can be calculated. Therefore, DDMCS theoret-
ically requires the pre-instantiation of a concrete SMC for each new change in the
system, which may involve each existing knowledge base, as there are dependencies
between them. This could result in unnecessary overhead in highly dynamic environ-
ments. Furthermore, some sort of centralized entity would be needed to instantiate
and assign these “instantiated knowledge bases” to each agent. The approach of the
present work (DDRMAS), in the other hand, does not require any centralized action
in response to changes. When an agent needs to query other agents about an sl-literal,
it simply sends a message in broadcast to the other agents, without even needing to
know each existing agent in the system specifically. Agents arriving at the environ-
ment can simply send a broadcast message to introduce themselves. Agents leaving
the environment can also send this type of message to let other agents know of their
absence. In cases in which this is not possible (for example, an agent abruptly removed
from the system), when such an agent is queried by another agent, some communica-
tion service or broker could simply return a communication error. Changes in agents’
knowledge also do not require any intervention in DDRMAS. When an agent with
updated knowledge is queried, it will simply use its current knowledge.

Conclusions and Future Work

A comprehensive and flexible model, which allows modeling and implementing sce-
narios with distributed agents, with the possibility of incomplete and conflicting
knowledge bases, as well as a form of contextualized reasoning, was presented. A for-
malization of knowledge bases and queries, as well as the formalization of arguments
that can be generated from them, is presented. It is also proposed a distributed algo-
rithm that allows the processing of queries according to the underlying argumentation
semantics. It was analytically and experimentally demonstrated that the model is com-
putational feasible and that it presents contributions and advantages when compared
to related work.

Future work include proposing models for explanation and learning based on the
argument structures generated in the reasoning process. This way, agents could explain
the decisions they made, as well as adapt their rules based on the arguments received
from other agents.

Alternative forms of argument strength calculation can also be proposed and
tested. Some ideas in this respect include: (i) joint argument strength for a given lit-
eral, i.e., considering the sum of strengths of all the arguments for and against a given

29

literal; (ii) a naiver strength calculation that considers all arguments, including exter-
nal subarguments of subarguments, equal to direct external subarguments; (iii) a more
arrogant strength calculation that does not take into account the strength calculation
using the trust function of the agent that generates the argument, but only the trust
function of the argument that issued the query; and (iv) a more skeptical strength
calculation, that uses the min operation instead of summation, such that only the
strength of the weaker subargument is used to derive the strength of an argument.
More details about these different strength calculations, as well as comparisons and
properties, will be presented in future work.

Further investigation on the relation of DDRMAS to existing argumentation mod-
els could also be realized. In fact, it is possible to prove that a DDRMAS system
can be transformed to a Governatori’s DL system, but not the other way around,
demonstrating that DDRMAS inherits DL properties, but also extends it. This demon-
stration was not included in this paper on account of its already considerable length.
Furthermore, it could also be fruitful to compare DDRMAS to other models, such as
DeLP and ASPIC+, and investigating whether it is possible to adapt DDRMAS to
use different argumentation semantics.

Another interesting line of future work would be to implement applications based
on DDRMAS in order to demonstrate its usefulness in real world scenarios, as well as
software frameworks in different programming languages to facilitate the development
of such applications.

Statements and Declarations

Competing interests

This work was supported by Conselho Nacional de Desenvolvimento Cient́ıfico e
Tecnológico (CNPq) under Grant Agreement CNPq 409523/2021-6.

Author contributions

All authors contributed to the study conception and design. Modeling, definitions,
analysis and implementation were performed by Helio Monte-Alto with the aid, guid-
ance and suggestions of all co-authors. All authors commented on previous versions
of the manuscript and all authors read and approved the final manuscript.

Data availability

The implementation code presented in this paper, as well as the test scripts and
results of the executions presented, are available at https://github.com/helioh2/
ddrmas-python.

References

[1] Bikakis, A., Antoniou, G.: Defeasible contextual reasoning with arguments in
ambient intelligence. IEEE Transactions on Knowledge and Data Engineering
22(11), 1492–1506 (2010)

30

https://github.com/helioh2/ddrmas-python
https://github.com/helioh2/ddrmas-python

[2] Rakib, A., Uddin, I.: An efficient rule-based distributed reasoning framework
for resource-bounded systems. Mobile Networks and Applications 24(1), 82–99
(2019)

[3] Mekuria, D.N., Sernani, P., Falcionelli, N., Dragoni, A.F.: Smart home reason-
ing systems: a systematic literature review. Journal of Ambient Intelligence and
Humanized Computing, 1–18 (2019)

[4] Maarala, A.I., Su, X., Riekki, J.: Semantic reasoning for context-aware internet
of things applications. IEEE Internet of Things Journal 4(2), 461–473 (2017)

[5] Su, X., Li, P., Riekki, J., Liu, X., Kiljander, J., Soininen, J.-P., Prehofer, C.,
Flores, H., Li, Y.: Distribution of semantic reasoning on the edge of internet
of things. In: Proceedings of the 2018 IEEE International Conference on Perva-
sive Computing and Communications (PerCom), Athens, Greece, pp. 1–9 (2018).
IEEE

[6] Adjiman, P., Chatalic, P., Goasdoué, F., Rousset, M.-C., Simon, L.: Distributed
reasoning in a peer-to-peer setting: Application to the semantic web. Journal of
Artificial Intelligence Research 25, 269–314 (2006)

[7] Levesque, H.J.: Knowledge representation and reasoning. Annual review of
computer science 1(1), 255–287 (1986)

[8] McCarthy, J.: Generality in artificial intelligence. Commun. ACM 30(12), 1030–
1035 (1987)

[9] Benerecetti, M., Bouquet, P., Ghidini, C.: Contextual reasoning distilled. Journal
of Experimental & Theoretical Artificial Intelligence 12(3), 279–305 (2000)

[10] Besnard, P., Garcia, A., Hunter, A., Modgil, S., Prakken, H., Simari, G., Toni,
F.: Introduction to structured argumentation. Argument & Computation 5(1),
1–4 (2014)

[11] Brewka, G., Roelofsen, F., Serafini, L.: Contextual default reasoning. In: Proceed-
ings of the 20th International Joint Conference on Artifical Intelligence. IJCAI’07,
pp. 268–273. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2007)

[12] Monte-Alto, H.H.L.C., Possebom, A.T., Morveli-Espinoza, M.M.M., Tacla, C.A.:
A rule-based argumentation framework for distributed contextual reasoning in
dynamic environments. DYNA 88(217), 120–130 (2021)

[13] Bikakis, A., Antoniou, G., Hasapis, P.: Strategies for contextual reasoning with
conflicts in ambient intelligence. Knowledge and Information Systems 27(1), 45–
84 (2011)

31

[14] Castelfranchi, C., Falcone, R.: Trust Theory: A Socio-cognitive and Computa-
tional Model vol. 18. John Wiley & Sons, New York (2010)

[15] Modgil, S.: Reasoning about preferences in argumentation frameworks. Artificial
intelligence 173(9-10), 901–934 (2009)

[16] Bechhofer, S., Van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L.,
Patel-Schneider, P.F., Stein, L.A., et al.: Owl web ontology language reference.
W3C Recommendation 10(02) (2004)

[17] Miller, G.A.: Wordnet: a lexical database for english. Communications of the
ACM 38(11), 39–41 (1995)

[18] Sycara, K., Widoff, S., Klusch, M., Lu, J.: Larks: Dynamic matchmaking among
heterogeneous software agents in cyberspace. Autonomous Agents and Multi-
Agent Systems 5(2), 173–203 (2002)

[19] Bikakis, A., Antoniou, G.: Defeasible contextual reasoning in ambient intelligence.
PhD thesis, Computer Science Department, University of Crete (2009)

[20] Governatori, G., Maher, M.J., Antoniou, G., Billington, D.: Argumentation
semantics for defeasible logic. Journal of Logic and Computation 14(5), 675–702
(2004)

[21] Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation
semantics. The knowledge engineering review 26(4), 365–410 (2011)

[22] Baker, H.C., Hewitt, C.: The incremental garbage collection of processes, vol. 12,
pp. 55–59. Association for Computing Machinery, New York, NY, USA (1977)

[23] Garćıa, A.J., Simari, G.R.: Defeasible logic programming: An argumentative
approach. Theory Pract. Log. Program. 4(2), 95–138 (2004)

[24] Modgil, S., Prakken, H.: The aspic+ framework for structured argumentation: a
tutorial. Argument & Computation 5(1), 31–62 (2014)

[25] Garćıa, A.J., Simari, G.R.: Defeasible logic programming: Delp-servers, contex-
tual queries, and explanations for answers. Argument & Computation 5(1), 63–88
(2014)

[26] Dung, P.M.: On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artificial
Intelligence 77(2), 321–357 (1995)

[27] Thimm, M., Garcia, A.J., Kern-Isberner, G., Simari, G.R.: Using collaborations
for distributed argumentation with defeasible logic programming. In: Proceedings
of the 12th International Workshop on Non-Monotonic Reasoning (NMR’08), pp.
179–188 (2008)

32

[28] Brewka, G., Ellmauthaler, S., Gonçalves, R., Knorr, M., Leite, J., Pührer, J.:
Reactive multi-context systems: Heterogeneous reasoning in dynamic environ-
ments. Artificial Intelligence 256, 68–104 (2018)

[29] Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Dynamic distributed non-
monotonic multi-context systems. Nonmonotonic Reasoning, Essays Celebrating
its 30th Anniversary, Studies in Logic 31 (2010)

Appendix A Algorithm Pseudocodes

1 when a receives message Query(p, α = (p, a′,KBF
α), histp) from a0

2 thread-safe vars: tvp ← false; Argsp ← ∅;Args∼p ← ∅
3 KBaα ← KBa ∪ {Loc Rule(rF , a) | rF ∈ KBF

α };
4 rlits← Find Similar RLs(p,KBaα)
5 if rlits = ∅ then send Ans(p, α, false, ∅, ∅) to a0 and terminate
6 Argsp ← {p

′! | p′ ∈ rlits, {p′,∼ p′} ∩ histp ̸= ∅}
7 if Argsp ̸= ∅ then tvp ← undec
8 executing in parallel for each p′ ∈ rlits s.t. {p′,∼ p′} ∩ histp = ∅
9 has strict answerp′ ← false

10 if Local Strict Ans(p′) = (true,Ap′) then
11 Argsp ← Argsp ∪ {Ap′}
12 tvp ← true; has strict answerp′ ← true

13 else if Local Strict Ans(∼ p′) = (true,A∼p′) then

14 Args∼p ← Args∼p ∪ {A∼p′}
15 tvp ← false; has strict answerp′ ← true

16 executing commands in parallel and waiting for all to finish

17 Argsp′ ← Find Def Args(p′,KBaα, α, histp)
18 Args∼p′ ← Find Def Args(∼ p′,KBaα, α, histp)

19 if has strict answerp′ = true and tvp = false then

20 for Ap′ ∈ Argsp′ do Ap′ .R← true
21 else if has strict answerp′ = true and tvp = true then

22 for A∼p′ ∈ Args∼p′ do A∼p′ .R← true
23 else

24 tvp′ ← Compare Def Args(Argsp′ , Args∼p′)
25 if tvp′ = true then tvp = true
26 else if tvp′ = undec and tvp ̸= true then tvp ← undec

27 Argsp ← Argsp ∪Argsp′

28 Args∼p ← Args∼p ∪Args∼p′

29 send Ans(p, α, tvp, Argsp, Args∼p) to a0 and terminate

Algorithm 1: Pseudocode for the Query procedure.

33

1 function Local Strict Ans(p′):
2 for r ∈ KBs

a and Head(r) = p′ do
3 Ap′ ← New Arg(p′, [], strict, J = true, St = 1 ∗Θ(p, p′))
4 for q ∈ Body(r) do
5 (tvq, Aq)← Local Strict Ans(q)
6 if tvq = false then stop and go to next rule
7 Add Sub Arg(Ap′ , Aq)

8 return (true,Ap′)

9 return (false,⊥)

Algorithm 2: Pseudocode for the Local Strict Ans function.

1 function Compare Def Args(Argsp′ , Args∼p′):

2 tvp′ ← undec
3 Args∼U ← {A | A ∈ Argsp′ ∪Args∼p′ , A.R = false}
4 executing in parallel for each A ∈ Args∼U

5 if A.SuppJ = true and ̸ ∃B ∈ Args∼U s.t. BDA then

6 A.J ← true
7 if Conc(A) = p′ then tvp′ ← true

8 else if ∃B ∈ Args∼U s.t. BDA and B.SuppJ = true then

9 A.R← true

10 if tvp′ ̸= true and (Argsp′ = ∅ or ∀Ap′ ∈ Argsp′ , Ap′ .R = true) then
11 tvp′ ← false
12 return tvp′

Algorithm 3: Pseudocode for the Compare Def Args function.

34

1 function Find Def Args(p′,KBaα, α, histp):
2 thread-safe var: Argsp′ ← ∅
3 histp′ ← [histp|p

′]
4 executing in parallel for each r ∈ KBaα s.t. Head(r) = p′

5 thread-safe var: possible subargsr ← ∅
6 executing in parallel for each q ∈ Body(r)
7 if D(q) = @ then

8 Argsq′ ← Query Agents(Ags, q, α, histp′)
9 else if D(q) ∈ Ags then

10 Argsq′ ← Query Agents({D(q)}, q, α, histp′)
11 if Argsq′ = ∅ then
12 stop and discard all processing for rule r
13 if ∃A ∈ Argsq′ s.t. Fall(A) = false then

14 Argsq′ ← {A ∈ Argsq′ | Fall(A) = false}
15 Aq′ ← argmaxA∈Args

q′
(A.St ∗ StIL(Conc(A), a)) //– getting the

argument for q which has the greatest strength multiplied by the
strength of its conclusion from the point of view of the current
agent (see formula for StArg)

16 possible subargsr ← possible subargsr ∪ {(q, Aq′)}

17 Ap′ ← New Arg(p′, [], defeasible)
18 for (q, Aq′) ∈ possible subargsr do

19 q′ ← Conc(Aq′)
20 if D(q) = @ or Θ(q, q′) < 1 then

21 Conc(Aq′)← Insta(q, q
′) //– instantiating l-literal and

setting it into the conclusion of the argument

22 Add Sub Arg(Ap′ , Aq′)

23 if ∀Aq′ ∈ Subs(Ap′), Aq′ .J = true then

24 Ap′ .SuppJ ← true
25 else if ∃Aq′ ∈ Subs(Ap′) s.t. Aq′ .R = true then

26 Ap′ .R← true //– this also means that Ap′ is undercut,
because some of its subarguments are rejected (defeated by
arguments supported by justified ones)

27 Ap′ .St← StArg(Ap′)
28 Argsp′ ← Argsp′ ∪ {Ap′}

29 return Argsp′

Algorithm 4: Pseudocode for the Find Def Args function.

35

1 function Query Agents(agents, q, α, histq):
2 thread-safe var: Argsq ← ∅
3 executing in parallel for each a ∈ agents do

4 send to a: Query(q, α, histq) and wait for answer:
Ans(q, α, tv′q, Args′q, Args′∼q), else if timeout reached then discard

5 Argsq ← Argsq ∪Args′q
6 return Argsq

Algorithm 5: Pseudocode for the Query Agents procedure.

36

	Introduction
	Architecture and Problem Formalization
	Multi-Agent Architecture and Rule-Based Knowledge Representation
	Query, Focus Knowledge and Problem Formalization

	Argumentation-based Model
	Argumentation-based Structure
	Comparison of Arguments and Conflict Resolution

	Distributed Query Answering Algorithm
	Procedure Query
	Function Find_Def_Args
	Complexity Issues and Optimization

	Experimental Evaluation
	Related Work
	Algorithm Pseudocodes

