Recently, PDT has been proposed as a novel and promising therapeutic modality for various oral inflammatory diseases including DS [17–19, 30, 36]. The present systematic review aimed to answer the focused question: “Is PDT efficacious in the management of DS as compared to the topical antifungal medications?” The qualitative analysis of the included studies answered explicitly that PDT is as efficacious as the topical antifungal therapies, and that adjunctive PDT therapy is more efficacious than antifungal alone in the management of DS, although the statistical significant is at borderline. More specifically, the pooled results of seven studies revealed nearly equivalent efficacy of PDT and topical antifungal therapies in reducing the candida colony count and improvement of clinical signs of DS. Moreovere, the pooled two studies found better efficacy of adjunctive use of PDT (PDT + antifungal therapy) in the management of DS than antifungal alone. Nevertheless, despite these promising results, the findings of the present systematic review should be interpreted with caution given the substantial heterogeneity among the included studies and low quality in some of the included studies, as discussed in the following sections.
One of the primary outcome measures assessed in the present systematic review was the mycological efficacy of PDT. The findings revealed that PDT was very efficacious in reducing the candida colonization count from the palatal mucosa, which was equivalent to or even better than topical antifungal medications. The antimicrobial properties of PDT can be ascribed to the synergistic interaction between the photosensitizer and the radiation that results in production of singlet oxygen and other oxygen reactive species that cause cell damage and death of the microorganism [14, 20]. The findings of the present systematic review support previous systematic reviews and meta-analyses that reported strong antimicrobial efficacy of PDT, with no reported side effects [19, 28, 36, 37]. However, the present results are different from a recent meta-analysis of three studies on DS subjects, which found inferior outcomes with PDT as compared to nystatin [30]. It should be noted, however, that the latter meta-analysis included only three studies, while in our review eight studies were pooled, and this may explain the differences in the results.
Another key outcome assessed in the present systematic review was the clinical efficacy (i.e., reducing clinical signs and symptoms associated with DS) of PDT. Overall, the included studies revealed a good efficacy of PDT in reducing the size of the lesions and ameliorating the symptoms, a finding which is consistent with the previous literature. In addition to its antimicrobial action, PDT have been shown to have potent anti-inflammatory, immunomodulatory effects as well as healing promoting properties through biomodulation in irradiated tissues [21, 38]; this together may explain the therapeutic effects of PDT in alleviating the clinical signs of DS. There is growing evidence indicates that PDT is highly efficacious in the management of various oral inflammatory diseases including oral lichen planus, oral mucositis, herpes labialis [17, 39, 40], which further substantiate the results of the present review.
It is pertaining to mention that the efficacy of PDT is governed by several important factors including type of the photosensitizers, source of light, oxygen availability, laser parameters, duration and frequency of the treatment [41]. Among these, the type of the photosensitizers is the most important factor that influences the therapeutic efficacy of PDT. Unfortunately, the included studies showed a wide heterogeneity in the type of the photosensitizers and other related parameters such as the concentration and irradiation times of the photosensitizers, which, in turn, may have influenced the treatment outcomes. Another key factor that has a great influence on PDT efficacy is the source of light and the related factors (wavelengths, power density, and energy density). Again, the included studies showed great variability in this respect. For example, some studies used LED while others used diode lasers. Similarly, the wavelengths of the used laser/LED varied greatly across the studies, ranging from 455 nm to 940 nm. Such a discrepancy in PDT parameters is an obvious limitation, making comparability between studies very difficult, and thus no firm conclusion can be drawn. Further, lack of standardized methodologies precludes investigators from creating a standard protocol for the management of oral fungal infections including DS.
Although the findings of the present systematic review support the efficacy of PDT in the management of DS, some methodological shortcomings must be considered. One important limitation is the small sample sizes and the low quality of some of the included studies, and thus no concrete evidence can be concluded. Another key limitation is the marked heterogeneity across the included studies with respect to type of comparison group (the type of topically applied antifungal, dose, frequency, and duration), severity of DS, age and gender of the participants, frequency and duration of PDT sessions, follow-up period, outcome measures, type of photosensitizers, and other PDT-related parameters. Specifically, the wide discrepancy in PDT parameters impedes generating a common protocol that can be considered as a standard for use of PDT in DS treatment. Finally, most of the included studies (five studies) were conducted in one country (Brazil), and thus the generalizability of the results is questionable. Hence, conducting large-scale multicenter clinical trials is warranted.