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Abstract
Purpose Microvascular invasion (MVI) is a critical determinant of the early recurrence and poor prognosis
of patients with hepatocellular carcinoma (HCC). Prediction of MVI status is clinically significant for the
decision of treatment strategies and the assessment of patient’s prognosis. A deep learning (DL) model
was developed to predict the MVI status and grade in HCC patients based on preoperative dynamic
contrast-enhanced magnetic resonance imaging (DCE-MRI) and clinical parameters.

Methods HCC patients with pathologically confirmed MVI status from January to December 2016 were
enrolled and preoperative DCE-MRI of these patients were collected in this study. Then they were
randomly divided into the training and testing cohorts. A DL model with eight conventional neural
network (CNN) branches for eight MRI sequences was built to predict the presence of MVI, and further
combined with clinical parameters for better prediction.

Results Among 601 HCC patients, 376 patients were pathologically MVI-absent, and 225 patients were
MVI-present. To predict the presence of MVI, the DL model based only on images achieved an area under
curve (AUC) of 0.915 in the testing cohort as compared to the radiomics model with an AUC of 0.731. The
DL combined with clinical parameters (DLC) model yielded the best predictive performance with an AUC
of 0.931. For the MVI grade stratification, the DLC models achieved an overall accuracy of 0.793. Survival
analysis demonstrated that the patients with DLC-predicted MVI status were associated with the poor
overall survival (OS) and recurrence-free survival (RFS). Further investigation showed that hepatectomy
with the wide resection margin contributes to better OS and RFS in the DLC-predicted MVI-present
patients.

Conclusion The proposed DLC model can provide a non-invasive approach to evaluate MVI before
surgery, which can help surgeons make decisions of surgical strategies and assess patient’s prognosis.

Introduction
Hepatocellular carcinoma (HCC) is ranked as the sixth in terms of incidence cases and the fourth with
respect to the cause of cancer-related death worldwide (Villanueva 2019). Surgical treatment is regarded
as the major curative treatment for patients with HCC (Ishizawa et al. 2008; Zhou et al. 2018). However,
postoperative recurrence and metastasis remain major obstacles for the prognosis of HCC patients (Han
et al. 2015; Hasegawa et al. 2013).

Microvascular invasion (MVI) is one of the most important biological characteristics of HCC and its
prevalence in patients with HCC ranges from 15–57.1% (Rodríguez-Perálvarez et al. 2013). The presence
of MVI is considered as an independent prognostic factor associated with the early recurrence and poor
survival after both resection and transplantation (Lim et al. 2011; Mazzaferro et al. 2009a; Mazzaferro et
al. 2009b; Vitale et al. 2014). For the MVI-positive patients, hepatectomy with expanding resection
margins can significantly improve patient survival through eradicating micro-metastases (Han et al. 2019;
Shindoh et al. 2013; Tsilimigras et al. 2020). Surgical resection rather than radiofrequency ablation (RFA)
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may be suitable for the patient with small-size HCC displayed MVI (Imai et al. 2018; Lee et al. 2021)
because it has been reported that among the patients with high risk of MVI, the cumulative 2-year
recurrence rate was 90.0% in the surgical resection group, while 30.6% in the RFA group (Lee et al. 2021).
Furthermore, additional adjuvant or targeted therapies were reported to improve survival for HCC patients
with MVI compared to surgical resection alone (Sun et al. 2016; Wang et al. 2020b; Zhang et al. 2019). So
preoperative prediction of MVI status is clinically significant for surgical decision making and other
treatment strategies to improve patient prognosis.

However, assessment of MVI preoperatively is still challenging because it can only be confirmed by
pathological diagnosis. Currently, a number of studies have attempted to predict MVI in HCC utilizing
some clinical parameters, such as tumor number and size, alpha fetoprotein (AFP), protein induced by
vitamin K absence or antagonist (PIVKA-II) and some serum component index (Nitta et al. 2019; Poté et
al. 2015; Wang et al. 2020a; Zeng et al. 2019; Zhang et al. 2020a; Zheng et al. 2017; Zhu et al. 2018). The
AUC of these predictors vary 0.529 from 0.803 and still required to be improved (Poté et al. 2015; Zhu et
al. 2018). It is worth noting that medical imaging plays an irreplaceable role in preoperative diagnosis,
assessment and clinical decision-making of HCC because it can provide much valuable information (Lee
et al. 2017). Recent studies using radiomics combined with clinical parameters demonstrate impressive
results in predicting MVI status, ranging from 0.796–0.899 of AUC (Ma et al. 2019; Xu et al. 2019; Zhang
et al. 2020b). Nonetheless, extraction of “hand-engineered” features is still complicated, time-consuming,
and lack of stable reproducibility (Liu et al. 2019).

Deep learning (DL) uses convolutional neural networks with a number of hidden layers to learn features
associated with predefined task. It demonstrates superior performance than radiomics and was proved to
be powerful in various challenging clinical tasks (Ardila et al. 2019; Coudray et al. 2018; Ting et al. 2017;
Wang et al. 2018; Wang et al. 2019). A recent study using DL method based on CT images to predict MVI,
achieved a good performance with an area under curve (AUC) of 0.906 (Jiang et al. 2021). Compared
with traditional radiomics method, DL method needs less manpower and time for MVI prediction and it
can learn features from the raw images without precise annotations (Wang et al. 2019). Magnetic
resonance imaging (MRI) captures both the anatomical and functional information of the tumor from a
series of imaging sequences, so it offers more valuable information than computerized tomography (CT)
(Roberts et al. 2018). Therefore, we decided to utilize DL method based on MRI to predict MVI status. To
the best of our acknowledge, few studies use the DL approach to predict MVI status based on dynamic
contrast-enhanced MRI (DCE-MRI).

The aim of the current study is to improve the prediction performance of MVI. The proposed model using
DL method integrating clinical parameters with DCE-MRI can predict MVI and assess patient oncological
outcomes preoperatively. In addition, the potential significance of prediction MVI status in guiding the
surgical resection range was also investigated based on our model.

Materials And Methods
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Study population

This retrospective study was approved by the institutional review board of Zhongshan Hospital of Fudan
University (Shanghai, China). The written informed consent was obtained from each patient. Considering
follow-up time, 1829 consecutive patients, who underwent surgical resection for HCC from January to
December 2016 at Zhongshan Hospital, Fudan University, were included. The pathology of HCC was
confirmed by two independent pathologists. Patients who met the following inclusion criteria were
enrolled in this study: (1) Pathologically confirmed HCC patients after surgical resection; (2) Available for
the pathological assessment of MVI; (3) Available for effective DCE-MRI and clinical data within 1 month
preoperatively. Patients who met the following exclusion criteria were excluded (1) With prior antitumoral
therapies and hepatectomy; (2) With multiple liver tumors; (3) With macrovascular invasion and
extrahepatic metastasis. The flow-chart of this study is shown in Supplementary Figure 1.

The final population consisted of 601 patients in this study. All patients were randomly divided into the
training cohort (n=461, 76.7%) and the testing cohort (n=140, 23.3%).

Pathological evaluation and clinical parameters

The definition of MVI is the presence of tumor in the portal, hepatic venous system, or the branches
surrounding the hepatic tissue lined by endothelium, which is visible only by microscopy (Cong et al.
2016; Roayaie et al. 2009). The MVI status is defined as MVI-absent and MVI-present. MVI grade is
classified as MVI-grade 1: the number of MVI <5 and the distance of MVI ≤1 cm away from the tumor
tissues, and MVI-grade 2: the number of MVI >5 or the distance of MVI >1 cm away from the tumor
tissues, according to the practice guidelines for the Pathological Diagnosis of Primary Liver Cancer of
China (Cong et al. 2016). Both MVI status and grade were examined by two independent pathologists in
the Zhongshan hospital. Clinical parameters were collected, including sex, age, routine blood test, blood
biochemical test, blood coagulation function test, markers of hepatic fibrosis, hepatitis virus B carriers,
AFP, and tumor size. Serum component index, such as platelet-lymphocyte ratio (PLR), neutrophil-
lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), prognostic nutritional index (PNI), aspartate
aminotransferase-to-platelet ratio index (APRI), aspartate aminotransferase-to-neutrophil ratio index
(ANRI) and aspartate aminotransferase-lymphocyte ratio (ALR), were calculated as previous reported
(Zheng et al. 2017). Details of clinical parameters can be found in the Supplementary Table 1.

Image annotation

All HCC patients underwent preoperative MRI with gadopentetate dimeglumine (Magnevist; Bayer
Schering Pharma AG, Berlin, Germany) on a 1.5-T (Avanto, Siemens, Erlangen, Germany and Aera,
Siemens, Erlangen, Germany) or 3.0 T scanners (Magnetom Verio, Siemens Medical Solution, Erlangen,
Germany and Signa HDx, GE Healthcare, Milwaukee, WI, USA). Eight routine abdominal DCE-MRI
sequences included turbo spin-echo T2-weighted (T2WI) with fat suppression, diffusion-weighted images
(DWI) of b=0 and 500 s/mm2, automatically generated apparent diffusion coefficient (ADC) maps under
free-breathing, three-dimensional (3D) T1-weighted volumetric interpolated breath-hold examination of
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pre-contrast phase, arterial phase (20–30 s), portal venous phase (about 80 s), and delayed phase (3
min). Details of MRI parameters were listed in the Supplementary Table 2. Tumor regions were drawn
manually slice-by-slice by an abdominal radiologist and a hepatic surgeon. The annotation only requires
the manual selection of the tumor region in each slice without precise tumor boundary. Before feeding to
the models, these regions were confirmed and corrected by a senior radiologist and a senior hepatic
surgeon with more than 10 years of experience in reading abdominal MRI.

Developing a DL model

A DL model was constructed to predict the MVI status and grade of MVI. The architecture of the DL
model is shown in Figure 1. The DL model has eight inputs, which are 3D volumes of interest (VOIs) of
the eight MRI sequences. This model has eight separate conventional neural network (CNN) branches,
which are used for feature extraction from each of the eight VOIs. Then, the features extracted from the
eight branches were fused, and the fused features were fed into fully connected (FC) layers and a
SoftMax layer to obtain the predicted results. Notably, instead of using Resnet or other deep neural
networks as the branches, we designed specific architecture as CNN branches for feature extraction in
this task, as described in Supplementary Materials.

The input VOI of the DL model was cropped from raw MRI sequences according to the tumor annotation
mask and resized to 64×64×16 pixels by third-order spline interpolation [0, 1]. The label of input VOIs was
MVI grade encoded to one-hot. The DL model has three outputs, corresponding to the predicted
probabilities of MVI-absent, MVI-grade 1, and MVI-grade 2, respectively. In the MVI grade prediction task,
the category corresponded to the maximum value among the three outputs was recorded as the predicted
MVI grade. Based on this result, MVI-grade 1 and 2 categories were both recorded as MVI-present in the
MVI status prediction task.

In the training stage, the DL model was trained using a SoftMax cross-entropy loss to learn the MVI grade
of the inputs. In order to account for class imbalance while calculating cross-entropy loss, each class was
weighed according to its frequency, such that cases of rare conditions would contribute highly to the loss
of function (Liu et al. 2020). Data augmentation was applied to improve generalization, which included
horizontal flipping, vertical flipping, cropping, and zoom transformation for the training cohort. Next, we
set learning rate at 10-4 and applied the Adam optimizer to update the model parameters on a batch size
of 2. Early stopping was used with the patience parameter set at 50. Finally, the DL model was subjected
to a maximum of 1000 epochs of training. 

Developing a DL combined with clinical parameter (DLC) model

To improve the predictive performance, we integrated clinical information with DL model. The backward
stepwise method was applied to select the significant clinical parameters. The minimum Akaike
information criterion (AIC) index was used as the stop criterion to determine the optimal characteristics.
Then, the selected parameters were incorporated into the DL model to form the DLC model (Figure 1).
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Notably, for the selected parameters, categorical variables were encoded by one digit (i.e., -1 or 1 for each
state), and continuous variables were normalized to [-0.5, 0.5].

During the DLC model training, eight VOIs were entered into the model as input, and the selected clinical
parameters were input into the FC layer instead of extracting deep features and combining them offline.
The training procedure and hyperparameter setting of the DLC model were similar to those of the DL
model.

Developing a radiomics model

To compare the predictive performance of the DL and DLC models, we also constructed a radiomics
model (Aerts 2016), which is described in the Supplementary Materials.

Correlation analysis between resection margins and oncological outcomes in the DLC-predicted MVI
absent/present population

Further investigation between resection margins and oncological outcomes was performed in the DLC-
predicted MVI-absent/-present population. The definition of resection margin is the minimum distance
between the tumor and the cutting edge in the formalin fixed tissues. All resection margins were
evaluated by two independent pathologists in our center. A maximal Youden index in receiver operating
characteristic (ROC) curve analysis was calculated to determine the cutoff point of the resection margins.
In this study, the margins at or less than cutoff points were defined as narrow resection margins, while the
others were defined as wide resection margins.

Statistical analysis

Continuous data were expressed as using the mean ± standard deviation (SD) or median (interquartile
range (IQR)) as appropriate. Continuous variables were analyzed using Student’s t-test or Mann–Whitney
U test appropriately. Categorical variables were analyzed using the χ2 test. The recurrence-free survival
(RFS) was recorded from the date of surgery to the date of radiographic detection of recurrence. Overall
survival (OS) was defined as the interval between surgery and death or censor at the date of the last
follow-up. A ROC curve was used to assess diagnostic performance. Statistical analysis was performed
using SPSS v.25 (IBM Inc., Armonk, NY, USA) and R software (R software version 3.5.2, R Project for
Statistical Computing, http://www.r-project.org). The proposed DL and DLC models were implemented
using Python (version 3.5, https://www.python.org) based on the Pytorch package (https://pytorch.org/).
A two-sided P-value <0.05 was considered statistically significant.

Results
Demographic comparison of baseline clinical features

A total of 601 patients who met the inclusion criteria were enrolled in this study. The flowchart of the
study selection process is shown in Supplementary Fig. 1. Among the 601 patients, 225/601 (37.4%)

https://pytorch.org/
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were pathologically identified as MVI-present, and 371/601 (62.6%) were determined as MVI-absent.
Among the MVI-present patients, 140/225 (62.2%) was MVI-grade 1 and 85/225 (37.8%) was MVI-grade
2. After random distribution, patients were divided into the training cohort (n = 461) and the testing cohort
(n = 140). The number of patients in three categories was 287/461 (62.3%) (MVI-absent), 106/461
(23.0%) (MVI-grade 1) and 68/461 (14.7%) (MVI-grade 2) in the training cohort, and 89/140 (63.6%) (MVI-
absent), 34/140 (24.3%) (MVI-grade 1) and 17/140 (12.1%) (MVI-grade 2) in the testing cohort. No
significant differences in baseline characteristics were observed between the training and the testing
cohorts (Table 1).

Table 1
Patients and baseline characteristics

Characteristic All patients Training cohort Testing cohort P-
values

Patient number 601 461 140 NA

Age, mean (± SD), year 56.45 (± 11.48) 56.39 (± 11.35) 56.66 (± 11.92) 0.803

Sex (Male/Female) 492/109 385/76 107/33 0.075

HBV carriers (%) 472 (78.5%) 358 (77.7%) 114 (81.4%) 0.404

Liver function        

TB, mean (± SD), µmol/L 12.64 (± 6.63) 12.77 (± 7.04) 12.23 (± 5.05) 0.405

ALB, mean (± SD), g/L 41.42 (± 3.49) 41.46 (± 3.52) 41.30 (± 3.42) 0.646

ALT, mean (± SD), U/L 34.74 (± 29.95) 34.97 (± 31.21) 33.98 (± 25.43) 0.733

GGT, mean (± SD), U/L 80.50 (± 124.68) 89.54 (± 136.62) 72.19 (± 71.47) 0.149

PT, mean (± SD), s 11.62 (± 0.80) 11.63 (± 0.84) 11.61 (± 0.67) 0.804

AFP, median (IQR), ng/mL 25.20 [4.40,
381.30]

27.40 [4.50,
504.20]

15.05 [4.10,
184.95]

0.233

Log10AFP, mean (± SD) 1.70 (± 1.23) 1.75 (± 1.27) 1.57 (± 1.12) 0.145

Tumor size, median (IQR),
cm

4.99 (± 3.59) 5.04 (± 3.77) 4.80 (± 2.92) 0.475

MVI status       0.856

MVI-absent (%) 376 (62.6%) 287 (62.3%) 89 (63.6%)  

MVI-present 225 (37.4%) 174 (37.7%) 51 (36.4%)  

MVI-grade 1/2 140/85 106/68 34/17  

HBV, hepatitis B virus; TB, total bilirubin; ALB, albumin; ALT, alanine aminotransferase; GGT, glutamyl
transpeptidase; PT, prothrombin time; AFP, alpha fetoprotein; MVI, microvascular invasion.
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MVI status prediction

In the DL model, the AUC for prediction MVI achieved 0.909 (95% confidence interval (CI) 0.881–0.936) in
the training cohort and 0.915 (95% CI 0.868–0.963) in the testing cohort (Fig. 2A, 2B and Table 2). To
improve the predictive performance, five significant clinical parameters (the percentage of neutrophil,
lymphocyte counts, international normalized ratio (INR), the logarithmic conversion ratio of the AFP
(log10AFP) and tumor size) were selected by backward stepwise analysis to establish the DLC model
(Supplementary Table 3). The DLC models achieved the highest AUC of 0.934 (95% CI 0.912–0.956) in
the training cohort and 0.931 (95% CI 0.884–0.979) in the testing cohort (Fig. 2A, 2B and Table 2). In
comparison, the traditional radiomics model achieved the AUC of 0.764 (95% CI 0.719–0.809) in the
training cohort and 0.731 (0.645–0.817) in the testing cohort (Fig. 2A, 2B and Table 2). The ROC curves
and scatter plots of the prediction score are displayed in Fig. 2C, 2D and Supplementary Fig. 3.
Furthermore, the prediction performance of our DLC model is better as compared to those of the previous
published models in distinguishing MVI status (Supplementary Table 4).

Table 2
Performance comparison of different models in the training and the testing cohort.

Modality   AUC (95% CI) Accuracy (95%
CI)

Sensitivity (95%
CI)

Specificity (95%
CI)

Radiomics
model

TR 0.764 (0.719–
0.809)

0.727 (0.686–
0.767)

0.667 (0.591–
0.735)

0.763 (0.709–
0.810)

  TE 0.731 (0.645–
0.817)

0.671 (0.594–
0.749)

0.647 (0.500-
0.772)

0.685 (0.577–
0.777)

DL model TR 0.909 (0.881–
0.936)

0.842 (0.808–
0.875)

0.845 (0.780–
0.894)

0.840 (0.791–
0.879)

  TE 0.915 (0.868–
0.963)

0.871 (0.816–
0.927)

0.843 (0.709–
0.925)

0.888 (0.799–
0.942)

DLC model TR 0.934 (0.912–
0.956)

0.871 (0.805–
0.937)

0.839 (0.774–
0.889)

0.861 (0.814–
0.897)

  TE 0.931 (0.884–
0.979)

0.886 (0.824–
0.948)

0.882 (0.754–
0.951)

0.888 (0.799–
0.942)

AUC, area under curve; CI, confidence interval; DL, deep learning; DLC, deep learning combined with
clinical parameters; TR, training cohort; TE, testing cohort.

 

MVI grade prediction

In the training cohort, the DLC model exhibited a similar overall accuracy than the DL model (0.779 vs.
0.768) in MVI grade prediction. In the testing cohort, DLC model also had a comparable overall accuracy
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as compared to the DL model (0.793 vs. 0.800). Figure 3 shows the confusion matrix of DL and DLC
models between the training and testing cohorts. These results showed that DL and DLC models could
distinguish the MVI-grade 1 group from MVI-grade 2 group.

Prognosis assessment based on DLC-predicted MVI status

The DLC model achieved the best result in MVI prediction, so the patient prognosis was analyzed based
on the DLC predicted-MVI status and grade. The median follow-up time for all patients was 38.3 months:
36.9 months for those with MVI and 39.0 months for those without MVI. The 1-, 2-, and 3-year OS rates
were 97.5%, 94.4%, 91.6% in those with DLC-predicted MVI-absent, 91.7%, 82.5%, 74.9% in those with DLC-
predicted MVI-present, 93.9%, 86.5%, 77.6% in those with DLC-predicted MVI-grade 1, and 88.1%, 76.1%,
70.5% in those with DLC-predicted MVI-grade 2 (Fig. 4A&C). The 1-, 2-, and 3-year RFS rates were 88.3%,
79.0%, 73.5% in those with DLC-predicted MVI-absent, 68.0%, 56.8%, 52.1% in those with DLC-predicted
MVI-present, 73.6%, 63.4%, 57.1% in those with DLC-predicted MVI-grade 1, and 59.1%, 46.2%, 44.1% in
those with DLC-predicted MVI-grade 2 (Fig. 4B&D). The OS and RFS stratified by DLC-predicted MVI status
and grade were similar to the trend of survival analysis in the patients with pathological MVI status and
grade stratification (Fig. 4E-H). The results suggested the potential value of our model in assessment
poor OS and early recurrence of patients based on the DLC-predicted MVI status and grade.

Correlation analysis between prognosis and wide/narrow resection margins in DLC-predicted MVI
absent/present population

A 5 mm cutoff value of resection margin was selected through calculating the maximal Youden index.
Therefore, margins of ≤ 5 mm were defined as narrow resection margins and > 5 mm were defined as
wide resection margins.

Among the population with DLC-predicted MVI-present, the 1-, 2-, and 3-year OS rates were higher in the
wide resection margin group than that in the narrow resection margin group (93.8%, 85.7%, and 80.2% vs.
89.8%, 79.7%, and 70.2%, respectively) (Fig. 5A) (P = 0.050). Additionally, the 1-, 2-, and 3-year RFS rates
were also higher in the wide resection margin group than those in the narrow resection margin group
(72.6%, 67.2%, and 63.6% vs. 64.1%, 47.7%, and 42.1%, respectively) (Fig. 5B) (P = 0.003). Among the
patients with DLC-predicted MVI-absent, no statistical differences were observed in the OS and RFS rates
between the wide resection margin and narrow resection margin groups (P = 0.094 and P = 0.350
respectively) (Fig. 5C&D). This is consistent with the trend of survival analysis in patients with
pathological MVI absent/present after hepatectomy with different surgical margins (Fig. 5E-H). These
findings demonstrated that hepatectomy with wide resection margin was associated with better OS and
RFS in the DLC-predicted MVI present patients.

Discussion
MVI prediction is significant for clinicians to assess patient prognosis and adopt appropriate therapeutic
strategies, contributing to improve patient survival (Han et al. 2019; Lee et al. 2021; Mazzaferro et al.
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2009a; Rodríguez-Perálvarez et al. 2013; Sun et al. 2016; Wang et al. 2020b; Zhang et al. 2019). Currently,
a number of studies have tried to predict MVI using the clinical parameters, which achieve the AUC from
0.529 to 0.803. Integrating clinical parameters with radiomics methods based on CT or MRI achieve the
AUC from 0.796 to 0.906 (Poté et al. 2015; Xu et al. 2019; Zhang et al. 2020b; Zhu et al. 2018). However,
predictive performance of clinical parameters still required to be improved. The shortcoming of radiomics
method is based on manually-defined precise contours of the tumor and the analysis is conducted based
on hand-crafted feature extractor, which do not represent the most optimal option. In contrast, the DL
method can analyze the patterns and regions with less manpower and time (Park 2019; Wang et al.
2019). It can leverage a box containing the tumor and peripheral tissues as VOI without precise boundary,
which is consistent with prior studies in exploring radiomics of the tumor and peripheral regions (Xu et al.
2019). A recent study using DL showed a considerable efficacy in identifying MVI based on preoperative
CT (AUC 0.906, 95% CI 0.821–0.960) (Jiang et al. 2021). Therefore, the DL method was utilized to assess
MVI preoperatively in this study.

Different from the previous DL study (Jiang et al. 2021), we chose DCE-MRI instead of CT images to
predict MVI in this study. According to the clinical practice guidelines of National Comprehensive Cancer
Network (NCCN, version 2019) (Network) and the American Association for the Study of Liver Diseases
(AASLD, version 2018) (Marrero et al. 2018), DCE-MRI shows higher sensitivity than dynamic CT for the
diagnosis of HCC. MRI also could capture both the anatomical and functional information of a tumor and
provides more information than CT theoretically. Therefore, the DL method based on DCE-MRI may learn
some different and meaningful features contributing to the improvement of predictive performance.
Algorithmically, the DL model applied in this study is a multi-input network. As we used eight image
sequences for MVI prediction, the DL both have eight CNN branches for each image input. In each CNN
branch, to reduces the number of parameters, we proposed to use depthwise separable convolution
instead of the ordinary convolution operation. Besides, to extract image features in different scales, we
used the two kinds of convolution kernel size of 3×3×3 and 5×5×5. In this way, the model can extract
richer features from the input image with fewer parameters.

To improve predictive performance, significant clinical characteristics (neutrophil percentage, lymphocyte
counts, INR, log10AFP and tumor size) were also selected by backward stepwise with the lowest AIC value
and then integrated with the DL model to develop the DLC model. As a result, the DLC model showed a
robust performance in predicting the MVI status compared with the DL model (AUC: 0.931 vs. 0.915) in
the testing cohort, which suggests the potential value of clinical parameters for MVI prediction. Attributed
to these improvements mentioned above, the DLC model achieved a stronger predictive performance
compared with previous predictive models based on CT or MRI (AUC: 0.931 vs. 0.796–0.906)
(Supplementary Table 4). These findings validated the robustness of our DLC model and emphasized its
suitability for clinical application. To the best of our knowledge, this is the first study using DL method
combined with clinical parameters to predict MVI based on multi-parametric DCE-MRI in HCC patients.

In the current study, patients with solitary tumors were included. The main reason is that patients with
multiple tumors are frequently associated with higher incidence of MVI (Reginelli et al. 2018; Xu et al.
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2019), while those with solitary tumor displayed MVI are not easy to be identified. For patients with
multiple tumors, previous studies only assessed the largest tumor to predict MVI status (Xu et al. 2019;
Zhang et al. 2020b) but it is not accurate to identify which lesion exists MVI. The other point is that multi-
carcinogenesis may not be controlled by extended liver resection due to the limited liver volume.
Therefore, prediction of MVI status among these patients is more valuable to improve their survival.

In addition, our model identified different patient prognosis through stratification of DLC-predicted MVI
status and grade, suggesting the strong performance of DLC model in preoperatively identifying HCC
patients with high risk of early recurrence and poor prognosis.

The prediction of MVI also could provide potential values in guiding the resection range. The retrospective
study showed hepatectomy with wide resection margin provides better prognosis compared to narrow
resection margin (median OS: 93.5 vs. 69.2 months; median RFS: 53.1 vs. 37.5 months, respectively)
(Han et al. 2019). Further investigation of our study showed that wide resection margins were closely
related to improved oncological outcomes among the patients with DLC-predicted MVI-present. These
findings suggested that wide resection margins should be the target of resection at the time of initial
surgical strategy decisions for the patients with DLC-predicted MVI-present. So far, this study is first to
demonstrate patient prognosis after hepatectomy with wide/narrow resection margins based on DLC-
predicted MVI status.

Nevertheless, the present study also has some limitations. First, there is the possibility of potential bias
because of the nature of the retrospective study. The DCE-MRI sequences were acquired from different
scanners with different magnetic field strength. Standardized processing such as gray-level
normalization and voxel-size resampling was performed, which reduced the dependency of differences in
scanners and image parameters (Kim et al. 2019). However, some potential differences, such as scanning
technique, still existed. Second, testing cohort in this study was from the same centers, and hence, an
additional cohort from other centers using different scanners is conductive to confirm the reliability and
generalizability of our DLC model. Considering the low percentage of patients with anatomical
hepatectomy in this study, so we did not compare the difference of the survival in patients with
anatomical hepatectomy and non-anatomical hepatectomy. The prognostic values of anatomical
resection in the DLC-predicted MVI-present patients should be investigated in the future. Finally, the DL
method is regarded as “black box” (Price 2018), and it is still challenging as well as necessary to explain
the correlation between relevant features and results (Price 2018).

In conclusion, the DLC model displays robust ability in the prediction of MVI status and grade, and also
can assess the oncological outcomes in HCC patients. Due to a high risk of tumor recurrence in patient
with MVI, our findings suggest that hepatectomy with wide resection margin should be a target for the
patients with DLC-predicted MVI-present. Therefore, our model not only makes it possible to assess MVI
status before surgery, but also can help surgeons to make decisions regarding surgical strategies.

Abbreviation
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MVI: microvascular invasion; HCC: hepatocellular carcinoma; DL: deep learning; DCE-MRI: dynamic
contrast-enhanced magnetic resonance imaging; CNN: conventional neural network; AUC: area under
curve; DLC: deep learning combined with clinical parameters; OS: overall survival; RFS: recurrence-free
survival; RFA: radiofrequency ablation; AFP: alpha fetoprotein; PIVKA-II: prothrombin induced by vitamin K
absence-II; MRI: magnetic resonance imaging; CT: computed tomography; PLR: platelet-lymphocyte ratio;
NLR: neutrophil-lymphocyte ratio; LMR: lymphocyte-to-monocyte ratio; PNI: prognostic nutritional index;
APRI: aspartate aminotransferase-to-platelet ratio index; ANRI: aspartate aminotransferase-to-neutrophil
ratio index; ALR: aspartate aminotransferase-lymphocyte ratio; T2WI: turbo spin-echo T2-weighted; DWI:
diffusion-weighted imaging; ADC: apparent diffusion coefficient; 3D: three-dimensional; VOI: volume of
interest; FC; fully connected; AIC: akaike information criterion; ROC: receiver operating characteristic; INR:
international normalized ratio; SD: standard deviation; IQR: interquartile range; CI: confidence interval;
NCCN: National Comprehensive Cancer Network; AASLD: American Association for the Study of Liver
Diseases.
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Figure 1

An illustration of the DL and DLC model architecture.
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Figure 2

The ROC curves of the three models in the training cohort (A) and testing cohort (B). The scatter plots for
the predictive score of DLC model in the training cohort (C) and the testing cohort (D).
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Figure 3

The confusion matrix of predicting MVI grade among MVI-absent, MVI-grade 1 and MVI-grade 2. (A)
Confusion matrix of DL model in the training cohort. (B) Confusion matrix of DL model in the testing
cohort. (C) Confusion matrix of DLC model in the training cohort. (D) Confusion matrix of DLC model in
the testing cohort.

Figure 4

Overall survival (OS) and recurrence-free survival (RFS) curves scaled by DLC-predicted MVI status (A and
B) and DLC-predicted MVI grade (C and D) with Kaplan-Meier. OS and RFS curves scaled by histological
MVI status (E and F) and histological MVI grade (G and H) with Kaplan-Meier analysis.
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Figure 5

Overall survival (OS) and recurrence-free survival (RFS) curves scaled by resection margins (RM) in the
patients with DLC-predicted MVI-present (A and B) and those with DLC-predicted MVI-absent (C and D).
OS and RFS curves scaled by RM in the patients with histological MVI-present (E and F) and those with
histological MVI-absent (G and H).
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