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26 Abstract

27 Automated analysis of microplastics is essential due to the labor-intensive, 

28 time-consuming, and error-prone nature of manual methods. Attenuated 

29 Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy offers 

30 valuable molecular information about microplastic composition. However, 

31 efficient data analysis tools are required to effectively differentiate between 

32 various types of microplastics due to the large volume of spectral data 

33 generated by ATR-FTIR. In this study, we propose a machine learning (ML) 

34 approach utilizing ATR-FTIR spectroscopy data for accurate and efficient 

35 classification of undegraded and aged polyethylene terephthalate (PET) 

36 microplastics (MPs). We evaluate seven ML algorithms, including Random 

37 Forest (RF), Gradient Boosting (GB), Decision Tree (DT), k-Nearest 

38 Neighbors (k-NN), Logistic Regression (LR), Support Vector Machine (SVM), 

39 and Multi-Layer Perceptron (MLP), to assess their performance. The models 

40 were optimized using 5-fold cross-validation and evaluated using multiple 

41 metrics such as confusion matrix, accuracy, precision, recall (sensitivity), and 

42 F1-score. The experimental results demonstrate exceptional performance by 

43 RF, GB, DT, and k-NN models, achieving an accuracy of 99% in correctly 

44 classifying undegraded and aged PET MPs. The proposed approach 

45 capitalizes on the potential of ATR-FTIR spectra to discern distinct chemical 

46 signatures of undegraded and aged PET particles, enabling precise and 

47 reliable classification. Furthermore, the method offers the benefit of 

48 automating the classification process, streamlining the analysis of 

49 environmental samples. It also presents the advantage of providing an 

50 effective means for method standardization, facilitating more automated and 

51 optimized extraction of information from spectral data. The method's 

52 versatility and potential for large-scale application make it a valuable 

53 contribution to the field of MP environmental research.
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63 1. Introduction

64 Microplastics (MPs), defined as plastic particles smaller than 5mm in size, 

65 have become a pervasive environmental concern due to their widespread 

66 distribution and potential ecological impacts (Verla et al, 2019; Enyoh et al, 

67 2021). Among the various types of MPs, polyethylene terephthalate (PET) 

68 MPs are particularly prevalent, originating from commonly used items such 

69 as single-use plastic bottles and polyester textiles (Enyoh et al, 2023; 

70 Chowdury et al, 2022).  While in the environment PET MPs can degrade and 

71 thus can serve as an efficient vector for toxic pollutants to ecosystems (Verla 

72 et al, 2019a). Therefore, understanding the abundance and distribution of 

73 both undegraded and aged PET microplastics is crucial for assessing their 

74 environmental risks and formulating effective mitigation strategies.

75 Analyzing microplastics manually is labor-intensive, time-consuming, and 

76 error-prone, necessitating the development of automated approaches to 

77 streamline the process. One promising technique for microplastic analysis is 
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78 Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) 

79 spectroscopy, which provides valuable molecular information about the 

80 composition of microplastics (Ioakeimidis et al, 2016; Chowdhury et al, 2022). 

81 However, the vast amount of spectral data generated by ATR-FTIR 

82 necessitates the utilization of powerful data analysis tools to accurately 

83 distinguish between different MPs types.

84 Recently researchers are now developing automated analytical method for 

85 the characterization of MPs.  Hufnagl et al. (2019) proposed a Radom Forest 

86 Classifier method utilizing micro Fourier Transform Infrared (µ-FTIR) 

87 hyperspectral images to identify various types of microplastics (MPs), 

88 including polyethylene, polypropylene, poly(methyl methacrylate), 

89 polyacrylonitrile, and polystyrene, in environmental samples. They developed 

90 a model for four plastic types using spectral descriptors determined by 

91 spectroscopy experts for polymer characterization. Kedzierski et al. (2019) 

92 developed automated methods for identifying the chemical nature of 

93 microplastics (MPs) through FTIR-ATR spectra, using k-nearest neighbors’ 

94 classification. The spectra were collected during the Tara Expedition in the 

95 Mediterranean Sea, and a learning database containing 969 microplastic 

96 spectra was created for testing. The results demonstrated the effectiveness 

97 of machine learning in identifying spectra of common polymers, such as 

98 poly(ethylene). However, it was noted that the learning database would 

99 benefit from enhancement with less common microplastic spectra. The 

100 method was further applied to over 4,000 spectra of unidentified 
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101 microplastics. The verification protocol revealed less than a 10% difference 

102 in the results between the proposed automated method and human expertise. 

103 Notably, 75% of the discrepancies could be easily corrected with minimal 

104 intervention, indicating the reliability and efficiency of the automated 

105 approach in identifying the chemical nature of microplastics. These findings 

106 highlight the potential of machine learning in large-scale microplastic 

107 characterization studies and underscore the importance of continuously 

108 updating the learning database for enhanced performance.

109 On the other hand, Wander et al. (2020) conducted an exploratory analysis of 

110 µ-FTIR imaging by employing Principal Component Analysis (PCA) and 

111 Uniform Manifold Approximation and Projection (UMAP) to reduce data 

112 dimensionality and visualize particle similarity. Although this strategy 

113 significantly reduced the analyzed data and removed background information 

114 from the images, further analysis was necessary for spectra characterization.  

115 Da Silva et al. (2020) presented an automated analytical method for 

116 characterizing small microplastics (< 100 µm) using µ-FTIR hyperspectral 

117 imaging and machine learning (ML) tools. They evaluated Partial Least 

118 Squares Discriminant Analysis (PLS-DA) and Soft Independent Modelling of 

119 Class Analogy (SIMCA) models with different data pre-processing strategies 

120 for classifying nine of the most common polymers worldwide. Additionally, 

121 they analyzed the hyperspectral images to automatically quantify particle 

122 abundance and size. PLS-DA demonstrated superior analytical performance, 

123 exhibiting higher sensitivity, sensibility, and lower misclassification error 
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124 compared to SIMCA models. Moreover, PLS-DA was less sensitive to edge 

125 effects on spectra and poorly focused regions of particles. The approach was 

126 successfully tested on a seabed sediment sample from Roskilde Fjord, 

127 Denmark, showcasing the method's efficiency. This proposed method offers 

128 an automated and efficient approach for microplastic polymer 

129 characterization, abundance enumeration, and size distribution, thereby 

130 contributing to methods standardization with significant benefits.

131 In a recent study, Yan et al (2022) developed an ensemble model comprising 

132 of 7 ML models including support vector machine, K nearest neighbor, least 

133 discriminant analysis etc to identify MPs types from ATR-FTIR spectra. The 

134 Kedzierski and Jung Datasets have been used to assess the suggested 

135 ensemble learning approach. The findings demonstrate that, in terms of 5 

136 metrics (Kappa score, F1 score, accuracy, recall, and precision). Their 

137 technique showed excellent performance with Each MP receiving a higher-

138 class report and a clearer confusion matrix (i.e., less muddled categories). 

139 Moses et al. (2023) utilized a focal plane array (FPA) based micro-FTIR 

140 (µFTIR) to compare two widely used data analysis algorithms concerning the 

141 abundance, polymer composition, and size distributions of MPs derived from 

142 selected environmental water samples in the size range of 11–500 µm. The 

143 two algorithms under investigation were: (a) the siMPle analysis tool 

144 (systematic identification of MicroPlastics in the environment) in combination 

145 with MPAPP (MicroPlastic Automated Particle/fibre analysis Pipeline), and 

146 (b) the BPF (Bayreuth Particle Finder). The findings of the study revealed a 
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147 generally good agreement between the two algorithms, but certain 

148 discrepancies were observed, particularly concerning specific polymer 

149 types/clusters and the smallest MP size classes. This highlights the 

150 importance of conducting a detailed comparison of MP algorithms, as it is 

151 crucial for ensuring better comparability of MP data. By addressing these 

152 differences and potential limitations, researchers can enhance the accuracy 

153 and reliability of MP characterization, thus advancing the understanding of 

154 MP pollution in aquatic environments.

155 These studies have demonstrated the use of ML models for MPs 

156 identification, however, there are needs to develop systems that could 

157 identify MPs at different states (undegraded or aged). As a first step, in this 

158 research, we present a novel approach that harnesses the potential of 

159 unsupervised machine learning algorithms to automate the classification of 

160 undegraded and aged PET MPs using ATR-FTIR spectroscopic data. By 

161 employing unsupervised methods, our approach reduces the need for manual 

162 labeling of data, making it both cost-effective and adaptable to a wide range 

163 of microplastic samples. The ultimate goal of this study is to develop a robust 

164 and efficient tool that can accurately differentiate between undegraded and 

165 aged PET MPs, facilitating a comprehensive understanding of their 

166 prevalence in various environmental matrices.

167 2. Methodology

168 2.1. Samples preparation
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169 Commercial plastic products such disposable water bottles made of PET, was 

170 used to obtain the MPs tested in this work (excluding the caps). The PET MPs 

171 preparation has been described in detailed in previous studies (Enyoh et al, 

172 2022; 2023; Enyoh and Wang, 2022; 2023). The plastic waste was first cut 

173 into small pieces using stainless-steel scissors. Subsequently, the resulting 

174 pieces were further ground into fine particles using a High-Speed Blender. 

175 The grinding process involved cycles of blending with cooling intervals. The 

176 number of cycles varied based on the amount of plastic to be ground, with 

177 more than 10 cycles required for PET. After grinding, the particles were 

178 sieved to obtain PET MPs within a specific size range. The prepared PET MPs 

179 (500 µm) were then cleaned by soaking in methanol overnight, followed by 

180 drying in an oven and rinsing with ultrapure water. 

181 The cleaned MPs were labeled as undegraded PET MPs. Further undegraded 

182 PET MPs were prepared by just putting the PET MPs in deionized water for 

183 24 hrs at room temperature and using a pristine PET MPs. To age the PET 

184 MPs, they were treated with sulfuric acid (H2SO4) at an elevated temperature 

185 (60 oC). Additionally, artificial thermal aging was performed on PET MPs, 

186 which involved exposing the PET MPs to hydrogen peroxide (H2O2) and 

187 elevated temperature (60 oC) in an oven. The resulting aged MPs were 

188 washed and dried, and they were categorized as Aged PET MPs. To confirm 

189 the presence of undegraded and aged PET microplastics (MPs), a scanning 

190 electron microscopy (SEM) technique was employed using a Variable 

191 Pressure Scanning Electron Microscope (VP-SEM) SU-1510 with an 
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192 accelerating voltage of 15kV (Hitachi Ltd, Tokyo, Japan). The samples 

193 underwent preparation and were placed on a stud before undergoing sputter 

194 coating. Sputter coating involved applying a film approximately 15 nm thick 

195 using argon gas at a pressure of around 4 psi and a current of approximately 

196 16 mA for a duration of 4 minutes. The sputter coating process was carried 

197 out using the E102 Ion Sputter (Hitachi Ltd, Tokyo, Japan). By employing 

198 SEM and sputter coating, a high-resolution images and surface information 

199 was obtained, allowing the verification of the presence and characteristics of 

200 undegraded and aged PET MPs with a greater level of detail.

201 2.2. Sample analysis- ATR-FTIR spectral acquisition

202 Attenuated Total Reflectance-Fourier-Transform Infrared (ATR-FTIR) 

203 spectroscopy is a widely employed method to assess changes in the functional 

204 groups of polyethylene terephthalate (PET) during environmental 

205 degradation (Chowdhury et al., 2022). For the analysis, the functional groups 

206 on the surface of the prepared microplastic particles (MPs) were determined 

207 using an ATR-FTIR system (JASCO FTIR-6100). Before analyzing the MPs, the 

208 instrument was blanked to ensure accurate measurements. The MP samples 

209 were securely attached to a KBr disc and placed in the FTIR instrument for 

210 measurement. The infrared spectrum was recorded in the range of 400–4000 

211 cm−1 by averaging 64 scans at a resolution of 4 cm−1. This process provided 

212 valuable molecular information about the composition of the PET 

213 microplastics, aiding in the investigation of environmental deterioration 

214 effects.
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215 2.3. Machine learning (ML) development

216 The ML sequence of workflow for the classification of undegraded and aged 

217 PET MPs is illustrated in Figure 1. The entire process, including data 

218 processing, model training, and classification, was executed using the Python 

219 programming language within a Jupyter Notebook environment. The 

220 computations were conducted on a system equipped with a 64-bit Intel Core 

221 i5 vPro processor and 4 GB of RAM.

222

223 Figure 1: ML sequence of workflow for the classification of PET MPs

224 2.3.1. Data normalization 

225 The ATR-FTIR spectra data typically consist of multiple columns representing 

226 different features, such as undegraded and aged spectra. However, these 

227 features may have different scales, which could potentially introduce bias 
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228 towards columns with larger values during the modeling process (Yan et al, 

229 2022). To address this issue, the data was normalized using min-max scaling, 

230 also known as feature scaling or data normalization. Min-max scaling 

231 transforms each feature column in the dataset to a common range, typically 

232 between 0 and 1. The formula for min-max scaling is represented as follows:

233

234 Scaled_value =  
original_value -  min_value

max_value -  min_value
       (1)

235 Where: original_value is the value of a data point in the feature column; 

236 min_value is the minimum value of the feature column; max_value is the 

237 maximum value of the feature column and scaled_value is the resulting 

238 normalized value for the data point, which lies between 0 and 1.

239 By applying this transformation, all the feature columns, including 

240 undegraded (0) and aged spectra (1), were scaled to the same range, and 

241 further splitting the data into features X and target labels y. The X DataFrame 

242 contains the numerical features (0 and 1), and the y Series contains the 

243 corresponding numerical class labels (undegraded and aged). This makes 

244 them comparable and preventing any bias due to different scales. 

245 Normalizing the data in this manner ensures that each feature contributes 

246 equally to the machine learning model and improves the model's performance 

247 and convergence during training. 

248 2.3.2. Feature Selection

249 For the feature selection step, the principal component analysis (PCA) an 

250 unsupervised ML technique was employed on the previously scaled data. PCA 
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251 is a widely used dimensionality reduction method that aims to transform the 

252 original features in a multivariate dataset (in this case, ATR-FTIR spectral 

253 data) into a new set of uncorrelated variables called principal components 

254 (PCs) (Enyoh et al, 2023b). These PCs are ordered in such a way that the first 

255 component captures the most significant variance in the data, the second 

256 component captures the second most significant variance, and so on. The 

257 primary objective of using PCA for feature selection is to reduce the number 

258 of dimensions (features) while preserving the most important information in 

259 the data (Da Silva et al., 2020). The mathematical model for PCA 

260 decomposition is shown in Equation (2):

261

262 X =  TPT +E (2)

263 In this equation, X represents the measured spectral data (sample by 

264 wavenumber), T is the score matrix (sample by component), PT is the loading 

265 matrix (component by wavenumber), and E is the residuals (unexplained 

266 data, sample by wavenumber).

267 By applying PCA to the scaled data, the number of dimensions is reduced to 

268 a specified number of principal components (in this case, 2 components). The 

269 selection of the number of components is based on the analyzed explained 

270 variance ratios provided by PCA. Once the PCs are obtained, they serve as 

271 the new feature set for constructing ML classification models.

272 2.3.4. Data Splitting
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273 After performing data normalization and feature selection using PCA, the 

274 next step in the modeling process involved splitting the spectral dataset into 

275 two separate parts by using a train_test_split function from Sklearn: the 

276 training data and the testing data. This division was done to create a clear 

277 distinction between the data used to train the machine learning model and 

278 the data used to evaluate its performance. The split was done in a specific 

279 ratio to ensure an effective and reliable evaluation of the model's 

280 generalization capabilities.

281 The dataset was divided into two subsets:

282 1. Training Data: This subset comprised 80% of the original spectral 

283 dataset. The training data was used to train the ML model, allowing it 

284 to learn the underlying patterns and relationships present in the data. 

285 During training, the model adjusted its internal parameters to minimize 

286 the prediction errors and optimize its performance on the training data.

287 2. Testing Data: The remaining 20% of the spectral dataset formed the 

288 testing data. This independent subset served as a previously unseen 

289 sample for the model. After training, the model was evaluated on this 

290 testing data to assess its performance in predicting the target labels 

291 (e.g., undegraded or aged spectra) for new, unseen samples. The 

292 testing data acted as a simulation of real-world scenarios where the 

293 model encounters new observations that it has not seen during training.

294 By splitting the dataset into training and testing subsets, the model's ability 

295 to generalize and make accurate predictions on unseen data was assessed. 



14

296 This process is crucial to determine if the model has learned patterns that 

297 can be applied to new, unseen data without overfitting or underfitting.

298 2.3.5. ML data training and testing Methodology for PET MPs 

299 classification

300 Seven (7) ML models Random Forest classifier (RF), Logistic Regression (LR), 

301 Support Vector Machines classifier (SVM), Neural Networks based on 

302 multilayer perceptron classifier (MLP), Gradient Boost (GB), Decision Trees 

303 (DT) and k-Nearest Neighbor (k-NN) were evaluated for classifying the 

304 undegraded and aged PET MPs in this study. 

305 RF

306 The RF classifier is composed of multiple DTs. When making a new 

307 classification, each DT independently provides a classification for the input 

308 data. The RF algorithm then evaluates these classifications and selects the 

309 final prediction based on the class that receives the most votes from the 

310 individual trees (Mao and Wang, 2012; Cinar and Koklu, 2019). RF is 

311 particularly efficient in handling datasets with a large number of variables 

312 (Enyoh et al., 2023a). The simplified equation for the RF, as represented by 

313 equation 3, is as follows:

314 RF(x) =  mode(DT₁(x), DT₂(x), ..., DTn(x)) (3)

315 Here, RF(x) represents the class prediction made by the RF for a given input 

316 instance x. The mode function selects the most frequently occurring class 

317 prediction from the individual decision trees DT₁, DT₂, ..., DTn, where n is the 

318 number of trees in the forest. Based on a randomly selected portion of the 
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319 training data, each decision tree in the RF is built individually. A random 

320 selection of predictor variables is also taken into account for partitioning the 

321 data at each node of the tree.

322 LR

323 LR primary purpose is to elucidate the relationship between these dependent 

324 and independent variables. To achieve this, LR fits the weights of the input 

325 variables to the training data, aiming to minimize the discrepancy between 

326 the predicted probabilities and the actual class labels (Cruyff et al., 2016). 

327 The simplified equation for logistic regression, represented as equation (4), 

328 is as follows: 

329 y =
1

(1 +  e(-z))
(4)

330 where the variable "y" denotes the predicted output or the probability of a 

331 specific class. This probability is obtained by passing the linear combination 

332 of the input variables and their respective weights, represented by "z," 

333 through the sigmoid function. The sigmoid function transforms any real-

334 valued number to a value within the range of 0 to 1, enabling the 

335 interpretation of the output as a probability. This property makes logistic 

336 regression suitable for tasks where the prediction is associated with a 

337 probability score, allowing for a more nuanced understanding of the model's 

338 predictions.

339 SVM

340 SVM is a fundamental technique used for both classification and regression 

341 tasks. It creates a hyperplane that aids in distinguishing between different 
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342 classes or predicting numerical values. In two-dimensional space, SVM 

343 achieves linear separation, while in three-dimensional space, it uses a planar 

344 separation. In multidimensional space, it relies on a hyperplane for effective 

345 separation of data points (Schölkopf et al., 2001). The classification process 

346 in SVM involves identifying the optimal hyperplane that maximizes the 

347 margin between different classes. The larger the margin, the better the 

348 separation and generalization of the model (Cinar and Koklu, 2019). The 

349 simplified form for the predicted output from SVM, represented by equation 

350 (5), is as follows (Enyoh et al, 2023):

351 y(x)pre =  ∑n
i=1 ai.K(xi,xj) +b  (5)

352 where K(xi ,xj ) is the radial basis function kernel. αi and b denote Lagrange 

353 multiplier and threshold parameter, respectively.

354 MLP

355 In this study, we further utilized a popular artificial neural network (ANN) 

356 known as the Multilayer Perceptron (MLP). The MLP learns through a 

357 technique called backpropagation, where weights are adjusted either after 

358 analyzing the entire dataset or after each individual data point. The 

359 architecture of the MLP involves organizing neurons into layers, with a 

360 hidden layer situated between the input and output layers. Depending on the 

361 complexity of the problem, an MLP can consist of multiple hidden layers. The 

362 input layer captures information about the problem to be addressed, while 

363 the output layer produces the final results or predictions. The study's findings 
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364 and data processing within the network are conveyed through this output 

365 layer (Enyoh et al., 2023). The equation (6), in which f is the activation 

366 function, N is the number of inputs per neuron, and k is the layer (hidden, 

367 output), may be used to represent the ANN system in its simplest form (Enyoh 

368 et al, 2023a). 

369 Y
k+1
j

= f(∑N
i=1 X

k
i w

k
ij

+ b
k
i
) (6)

370 In this research, the model was configured with 100 hidden layers, and the 

371 activation function used was the Rectified Linear Unit (ReLU). ReLU, 

372 represented by the function f(x) = max(0, x), introduces non-linearity to the 

373 model and effectively addresses the issue of vanishing gradients. It is a widely 

374 adopted activation function in deep learning due to its popularity and 

375 effectiveness. For optimizing the training process, the Adam optimization 

376 algorithm was employed, and a random state of 42 was set. Adam is known 

377 for its adaptive learning rate strategy, which dynamically adjusts the learning 

378 rate during training. This adaptive approach scales the gradients based on 

379 their estimated first and second moments, resulting in faster convergence 

380 and improved performance when compared to traditional gradient descent 

381 algorithms. By using Adam, the model achieves faster convergence, allowing 

382 for better generalization to unseen data.

383 GB

384 The Gradient Boosting (GB) classifier is an ensemble learning technique that 

385 combines multiple weak learners, represented by Decision Trees (DTs), to 
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386 create a robust and accurate model (Hastie et al, 2009). The algorithm follows 

387 an iterative process, where it gradually adds new DTs to the ensemble. Each 

388 subsequent tree focuses on reducing the errors made by the previous trees 

389 (Hastie et al, 2009). During each iteration, the algorithm calculates the 

390 gradient of the loss function concerning the predicted values and constructs 

391 a new tree to minimize this gradient (Piryonesi et al, 2021). The predictions 

392 from all the trees in the ensemble are then combined to make the final 

393 prediction. The simplified equation for the Gradient Boosting classifier is the 

394 sum of weak learners, where each weak learner compensates for the errors 

395 made by the preceding learner. It can be expressed as shown in equation (7).

396 y(x) =  y0(x) +  η *  g1(x) +  η *  g2(x) +  … +  η *  gn(x) (7)

397 Where y(x) is the predicted output (whether undegraded or aged), y0(x) is 

398 the initial prediction, g1(x), g2(x), …, gn(x) are the weak learners (usually 

399 decision trees), and η is the learning rate (in this case = 0.1).  At the 

400 beginning, y(x) is initialized with y0(x), which is the mean or median value of 

401 the target variable.

402 DT

403 DT is often visualized as a tree diagram, where each branch and node 

404 represent a classification query. The root node stands for an attribute, and 

405 the inner nodes indicate tests or evaluations of properties. The branches 

406 depict the outcomes of these evaluations, leading to the final decision 

407 represented by the leaf nodes, which correspond to the classes (Enyoh et al., 

408 2023; Rokach and Maimon, 2005). DT offers several advantages, making it 
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409 well-suited for handling complex problems and providing inferences in the 

410 form of logical classification rules (Cinar and Koklu, 2019). Its distinct 

411 advantages include ease of implementation, seamless integration into 

412 databases, and high reliability (Wu et al., 2008). In its simplified form, a 

413 Decision Tree can be expressed as shown in equation (8). 

414 y(x) = (x1,x2, x3………xny)  (8)

415 Where y is the target variable for classifying (undegraded or aged). The 

416 vector x is composed of the features,  x1,x2,… etc., that are used for that task.

417 k-NN

418 k-NN is a popular and widely used machine learning model, especially for 

419 large-scale training datasets. It operates based on a distance metric to 

420 identify the most similar data points in the training set (Ibeto et al., 2021). In 

421 the k-NN algorithm, each data point is conceptually plotted in a multi-

422 dimensional space, where each axis represents a different variable or feature. 

423 When a new data point needs to be classified (the test data), the algorithm 

424 compares it with all the available data points in the training set. The test data 

425 will have several neighbors that are close to it in terms of all the measured 

426 characteristics. To determine the class of the test data, the algorithm selects 

427 the k nearest data points based on the distance metric. The class with the 

428 majority of data points among these selected neighbors is assigned to the test 

429 data (Richman, 2011).

430 In this specific study, the k value, representing the number of nearest 

431 neighbors to consider, was chosen as 5. This means that when classifying new 
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432 data points, the algorithm will look at the class labels of the 5 nearest 

433 neighbors to make the final prediction.

434 2.4. Model Optimization

435 The ML model was optimized using cross-validation to avoid overfitting and 

436 improve its performance. In this specific case, the k-fold cross-validation 

437 process is performed with 5 folds, meaning the dataset is divided into 5 equal 

438 parts, and the model is trained and tested 5 times, each time using a different 

439 fold as the test set and the remaining four folds as the training set (Figure 2).

440

441 Figure 2. 5-fold cross-validation applied in this study (Adapted from 

442 https://scikit-learn.org/stable/modules/cross_validation.html, 

443 assessed 28/07/2023)

444 The accuracy values range from approximately 93.33 % to 100 % (Table 1). 

445 The accuracy measures the proportion of correctly classified samples over 

446 the total number of samples in each fold. The cross-validation process helps 

https://scikit-learn.org/stable/modules/cross_validation.html
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447 to assess the model's performance on different subsets of the data, providing 

448 an estimate of how well the model generalizes to unseen data. In this case, 

449 the model's performance is consistently high in Folds 2, 3, and 4, achieving 

450 perfect accuracy (100 %), meaning it correctly classified all samples in these 

451 folds. In Folds 1 and 5, the accuracy is slightly lower (93.33 % and 99.47 %, 

452 respectively), but still relatively high, suggesting that the model is performing 

453 well on different subsets of the data.

454 Table 1. The reported cross-validation (CV) scores obtained in each 

455 of the 5 folds for all ML algorithms

Fold

s 

Accuracy (%)

RF LR SVM MLP GB DT KNN

1 93.3

3         

100 97.19 99.47 93.45 93.45 97.99

2 100 100 100 100 100 100 100

3 100 100 100 100 100 100 100

4 100 100 100 100 100 100 100

5 94.8

1

94.7

8

94.91 96.52 94.64 94.64 94.78

456

457 2.5. Model Evaluation metrics

458 To evaluate the model's performance on the testing data to see how well it 

459 generalizes to unseen samples, common evaluation metrics for classification 
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460 tasks such as confusion matrix, accuracy, precision, recall, and F1-score was 

461 computed. By utilizing these metrics, a comprehensive understanding of a 

462 model's strengths and weaknesses in classifying undegraded and aged PET 

463 MPs accurately is obtained. Additionally, a learning curve of the different ML 

464 were also evaluated.

465 2.5.1. Confusion Matrix (CM)

466 A confusion matrix (CM) is a table that summarizes the performance of a 

467 classification model. It presents the actual class labels (undegraded and 

468 aged) against the predicted class labels (undegraded and aged). The 

469 confusion matrix includes four key terms:

470 ฀ True Positives (TP): The number of positive instances correctly 

471 classified as positive.

472 ฀ False Positives (FP): The number of negative instances 

473 incorrectly classified as positive.

474 ฀ True Negatives (TN): The number of negative instances correctly 

475 classified as negative.

476 ฀ False Negatives (FN): The number of positive instances 

477 incorrectly classified as negative.

478 The confusion matrix helps to visualize the model's performance across 

479 different classes and serves as the foundation for calculating accuracy, 

480 precision, recall, and F1-score.

481 2.5.2. Accuracy
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482 Accuracy measures the proportion of correctly classified instances over the 

483 total number of instances in the dataset. Mathematically, accuracy is defined 

484 as in equation (10):

485 Accuracy =  
Number of correct predictions

Total number of predictions
=

TP + TN

TP + FP + TN + FN
 (10)

486 2.5.3. Precision

487 Precision quantifies the ability of the model to correctly identify positive 

488 instances among the instances predicted as positive. It focuses on minimizing 

489 false positives. The precision is calculated as:

490 Precision =
TP

TP + FP
 (11)

491

492 2.5.4. Recall (Sensitivity or True Positive Rate)

493 Recall evaluates the model's ability to correctly identify positive instances out 

494 of all the actual positive instances in the dataset. It focuses on minimizing 

495 false negatives. The recall is calculated as:

496 Recall =
TP

TP + FN
 (12)

497 2.5.5. F1-score

498 The F1-score is the harmonic mean of precision and recall and provides a 

499 balanced assessment of the model's performance. It takes into account both 

500 false positives and false negatives. The F1-score is calculated as:

501 F1 - score =
2 ×  Precision + Recall

Precision + Recall
=

2 ×  TP

2 ×  TP + FP + FN
 (13)

502 3. Results and discussion

503 3.1. Description of the ATR-FTIR spectral and SEM
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504 Figure 3 presents the ATR-FTIR spectra for both undegraded and aged PET 

505 microplastics (MPs). The spectra indicate the principal bands corresponding 

506 to various functional groups in each material. According to standard PET 

507 spectroscopy, the bands at 1000 cm-1, 1099 cm-1, 1701 cm-1, 2925 cm-1, and 

508 3400 cm-1 in the undegraded PET MPs correspond to aromatic -CH vibrations, 

509 O-C-C, C = O (carbonyl), -C-C- (alkyl), and -OH groups in the PET structure. 

510 These bands provide evidence of the chemical structure specific to 

511 undegraded PET (Chowdhury et al, 2022). However, it is noteworthy that the 

512 undegraded 2 (pristine PET MPs) showed no -OH group in its spectra. The 

513 presence of broad -OH peaks in the spectra of other undegraded PET MPs 

514 could be attributed to treatment processes, such as using methanol to remove 

515 additives or exposure to water. After aging, the spectra indicate that the 

516 major functional groups in the PET are retained, but there is a slight change 

517 in the spectrum for both undegraded and aged PET MPs. The band strength 

518 at 1099 cm-1 decreased in the aged PET MPs due to the thermal aging process 

519 that the pristine PET MPs underwent. The thermal treatment dispersed the 

520 PET's long chain backbone into smaller fragments, leading to the formation 

521 of an interactive cross-linked reactive PET product, primarily associated with 

522 the -O-C-C- group present in undegraded PET MPs. The cross-linking process 

523 generates radicals, and when these radicals’ peroxide, peroxy radicals are 

524 formed. During the termination stage, the generated peroxy radical interacts 

525 with additional free radical PET monomers. As a result, the band at 1099 cm-1, 
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526 related to pristine PET MPs, is nearly lost. This observation confirms that the 

527 FTIR-ATR spectra support the alteration and aging of the PET MPs.

528 To provide additional confirmation of the aging process in comparison to 

529 undegraded PET MPs, SEM was performed, as depicted in Figure 3c. The 

530 SEM images distinctly display a noticeable difference in the surface 

531 characteristics of the undegraded and aged PET MPs. In the SEM images, 

532 the gaps between the strands of the aged PET MPs appear expanded when 

533 compared to the undegraded PET MPs. This observation serves as strong 

534 evidence confirming the occurrence of aging in the PET MPs. The SEM 

535 analysis visually confirms the structural changes that have taken place on the 

536 surface of the aged PET MPs, further corroborating the findings of the aging 

537 process.

538
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539 Figure 3. (a) Pre-processed spectra ATR-FTIR spectra of the 

540 undegraded and aged PET MPs, (b) the dataset used for PCA and (c) 

541 surface morphology of the degraded and aged PET MPs

542 3.2. Exploratory analysis (PCA) of the normalized ATR-FTIR spectra

543 The application of Principal Component Analysis (PCA) in this study served 

544 as a feature selection technique to reduce the dimensionality of the dataset. 

545 As a result, two principal components (PC 1 and PC 2) were extracted from 

546 the original data. These principal components captured the most important 

547 information from the dataset and allowed for a more concise representation 

548 of the samples. In the PCA plot (Figure 4), the samples were visualized based 

549 on their scores in the PC 1 and PC 2 axes. It was observed that the 

550 undegraded PET MPs were predominantly clustered together in one group, 

551 while the aged PET MPs formed a separate cluster. This segregation of 

552 samples based on their respective clusters indicates that the PCA successfully 

553 identified underlying patterns and distinctive characteristics of each group. 

554 Furthermore, the explained variance plot revealed that 80% of the data's 

555 variability was captured in PC 1, while PC 2 accounted for 10% of the 

556 variability (Figure 4b). This indicates that PC 1 carries a substantial amount 

557 of information, making it the most significant component for discriminating 

558 between undegraded and aged PET MPs. PC 2, although explaining less 

559 variance, still contributes valuable information for differentiation between 

560 the two groups. In general, the PCA analysis with the two extracted principal 

561 components demonstrated its efficacy in distinguishing undegraded and aged 



27

562 PET MPs, providing an informative and concise representation of the dataset 

563 with a substantial proportion of the data's variability retained.

564

565

566 (a)

567
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568

569 (b)

570 Figure 4. (a) The PCA plots in space from the normalized spectral for 

571 undegraded and aged PET MPs and (b) the explained variance plot 

572 for the principal components extracted

573 3.3. ML classification models evaluation 

574 3.3.1 Confusion matrix (CM)

575 The confusion matrix (CM) is a matrix of numbers that provides valuable 

576 insights into how a ML model performs in classifying undegraded and aged 

577 PET MPs dataset. In Figure 5 and summarized in Table 2, the CM shows the 

578 predicted class labels on the x-axis and the true class labels on the y-axis for 

579 each ML algorithm.

580 By analyzing the CM, we can observe the percentage of correctly classified 

581 undegraded and aged PET MPs for each ML algorithm. It also reveals 
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582 instances where the model gets confused and misidentifies certain PET MPs 

583 as others. These misclassifications can be crucial in understanding the 

584 strengths and limitations of each ML approach in accurately classifying the 

585 MPs.

586 Among the ML models such as Random Forest (RF), Gradient Boosting (GB), 

587 Decision Tree (DT), and k-Nearest Neighbors (k-NN), most of the samples are 

588 correctly classified with no false positives (FP) expected (Table 2). However, 

589 Logistic Regression (LR), Support Vector Machine (SVM), and Multi-Layer 

590 Perceptron (MLP) had a few samples i.e. 22, 7 and 4 respectively classified 

591 as false positives (FP). Additionally, these models had some samples i.e. 10, 

592 6 and 2 respectively, that were expected to be of the positive class but were 

593 classified as the negative class, resulting in false negatives (FN).  

594 Understanding the FP and FN rates is crucial as it helps to identify the areas 

595 where the ML models may have challenges in classification. By examining 

596 these misclassifications and the impacts of Principal Component Analysis 

597 (PCA) on the ML methods, informed decisions on model improvement and 

598 identify strategies to enhance the classification accuracy of undegraded and 

599 aged PET MPs can be made.
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600

601 Figure 5. Confusion matrix plot for all ML classifiers (a) RF (b) LR 

602 (c) SVM (d) MLP (e) GB (f) DT (g) K-NN

603 Table 2. Complexity matrix of algorithms used

Algorith

m 
Confusion Matrix

Positive Negative 

92 0 Positive 
RF

0 656 Negative 

481 22 Positive 
LR

10 3223 Negative 

496 7 Positive 
SVM

6 3227 Negative 

MLP 499 4 Positive 
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2 3231 Negative 

503 0 Positive 
GB

0 3233 Negative 

503 0 Positive 
DT

0 3233 Negative 

503 0 Positive 
k-NN

0 3233 Negative 

604

605 3.3.2. Class reports for all ML algorithms

606 In this study, a more comprehensive analysis of the ML algorithms' 

607 performance in classifying PET microplastics (MPs) is conducted. To evaluate 

608 the specific performance of different methods for undegraded and aged PET 

609 MPs classification, accuracy, precision, recall, and F1 score are used as 

610 performance metrics. The results of these classification performance 

611 measurements are presented in Table 3, providing valuable insights into the 

612 strengths and weaknesses of each ML approach in accurately classifying 

613 undegraded and aged PET MPs. Based on the evaluation of various 

614 performance metrics, it is evident that the ML models generally performed 

615 exceptionally well in classifying undegraded and aged PET microplastics 

616 (MPs). The accuracy of the models, ranging from 0.98 to 0.99 following 5-fold 

617 cross-validation, indicates their high ability to predict the correct classes.

618 Among the models, LR, MLP, and k-NN demonstrated the highest accuracy, 

619 achieving a remarkable 0.99. Additionally, RF, GB, DT, and k-NN showed 
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620 perfect precision, recall, and F1 scores (all equal to 1.00) for correctly 

621 classifying both undegraded and aged PET MPs. These models showcased 

622 excellent performance and robustness in distinguishing between the two 

623 classes, resulting in no false positives or false negatives. However, other ML 

624 models such as LR, SVM, and MLP, while still achieving high accuracy, 

625 showed metrics slightly below 1.00, especially when classifying aged PET 

626 MPs. This indicates that these models may have some challenges in 

627 accurately identifying aged PET MPs, as they had some misclassifications.

628 Based on the overall performance and considering the precision, recall, and 

629 F1 scores, RF, GB, DT (Figure 6a), and k-NN (Figure 6b) are the most 

630 favorable models for the classification of undegraded and aged PET MPs. 

631 These models demonstrated superior accuracy and robustness in correctly 

632 identifying both classes with no misclassifications. However, further 

633 examination and potential fine-tuning of LR, SVM, and MLP may be needed 

634 to improve their performance, particularly in classifying aged PET MPs.

635

636

637

638 Table 2. Classification report for the different ML algorithms

Measure Class (0 

=undegraded 

and 1 = aged)

RF LR SVM MLP GB DT k-

NN

Accuracy 0.98 0.99 0.98 0.99 0.98 0.98 0.99

Precision 0 1.00 0.98 0.99 1.00 1.00 1.00 1.00
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1 1.00 0.99 1.00 1.00 1.00 1.00 1.00

0 1.00 0.96 0.99 0.99 1.00 1.00 1.00Recall 

(Sensitivity) 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0 1.00 0.97 0.99 0.99 1.00 1.00 1.00F1-Score

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00

639

640

641 (a)
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642

643 (b)

644 Figure 6. Visualization of (a) DT and (b) k-NN for classifying 

645 undegraded and aged PET MPs using ATR-FTIR spectral

646 3.3.3. Learning curves for ML algorithms

647 Interpreting learning curves is crucial in assessing the performance and 

648 behavior of a machine learning model during the training process. Learning 

649 curves depict the model's training and validation (or cross-validation) 

650 performance as a function of the training set size or the number of training 

651 iterations (Perlich, 2011). 

652 The learning curves for best ML models is presented in Figure 7, which 

653 typically show the training set loss(accuracy) and cross-validation set loss on 

654 the y-axis and the number of training samples on the x-axis.  The training set 

655 loss measures how well the model is fitting the training data, while the 

656 validation set loss evaluates the model's generalization performance on 

657 unseen data. The learning curves play a vital role in assessing the 
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658 performance and behavior of a machine learning model as the training set 

659 size increases. In this case, the learning curves clearly demonstrated positive 

660 signs of a well-behaved model. The decreasing and converging nature of both 

661 the training and cross-validation curves indicates that the model is learning 

662 from the data and improving its performance as more training samples are 

663 added. The fact that both curves decrease implies that the model is fitting the 

664 training data well, capturing the underlying patterns and trends. The 

665 convergence of the training and cross-validation curves is a positive 

666 indicator, as it suggests that the model is not suffering from significant 

667 overfitting. Overfitting occurs when a model memorizes the training data too 

668 closely and fails to generalize to new, unseen data (Ying, 2019). A small gap 

669 between the training and cross-validation curves implies that the model's 

670 performance on new data is similar to its performance on the training data, 

671 which is a desirable outcome. This finding indicates that the model is 

672 exhibiting good generalization capabilities, meaning it can make accurate 

673 predictions on data it has never seen before. The convergence of the learning 

674 curves suggests that the model is not just memorizing the training data but 

675 is learning to capture the underlying patterns that can be applied to new data. 

676 These ML models are likely to make accurate predictions on new, unseen 

677 data, making it a reliable and effective tool for the task at hand.
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678

679 Figure 7. Learning curves for the best ML algorithms for the 

680 classification of undegraded and aged PET MPs.

681 4. Conclusion

682 In this study, we developed a machine learning approach utilizing ATR-FTIR 

683 spectral data to classify undegraded and aged PET microplastics (MPs) 

684 particles. Among the seven ML models evaluated, Random Forest (RF), 
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685 Gradient Boosting (GB), Decision Tree (DT), and k-Nearest Neighbors (k-NN) 

686 demonstrated the best performance with an impressive accuracy of 99% in 

687 classifying undegraded and aged PET MPs. These results showcase the 

688 significant potential of ATR-FTIR spectra in accurately distinguishing 

689 between undegraded and aged PET MPs particles. The proposed strategy not 

690 only enables effective classification but can also be adapted for use with 

691 various environmental samples. Furthermore, our method offers the 

692 advantage of automating the sorting process for microplastic particles, 

693 making it a valuable tool for standardizing methods. By optimizing spectra 

694 and extracting essential information from the data, our approach streamlines 

695 and enhances the classification process, providing more reliable and efficient 

696 results. Finally, the method's versatility and potential for method 

697 standardization make it a valuable contribution to the field of microplastic 

698 analysis in environmental research.
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Figures

Figure 1

ML sequence of work�ow for the classi�cation of PET MPs



Figure 2

5-fold cross-validation applied in this study (Adapted from https://scikit-
learn.org/stable/modules/cross_validation.html, assessed 28/07/2023)

https://scikit-learn.org/stable/modules/cross_validation.html


Figure 3

(a) Pre-processed spectra ATR-FTIR spectra of the undegraded and aged PET MPs, (b) the dataset used
for PCA and (c) surface morphology of the degraded and aged PET MPs



Figure 4

(a) The PCA plots in space from the normalized spectral for undegraded and aged PET MPs and (b) the
explained variance plot for the principal components extracted



Figure 5

Confusion matrix plot for all ML classi�ers (a) RF (b) LR (c) SVM (d) MLP (e) GB (f) DT (g) K-NN



Figure 6

Visualization of (a) DT and (b) k-NN for classifying undegraded and aged PET MPs using ATR-FTIR
spectral



Figure 7

Learning curves for the best ML algorithms for the classi�cation of undegraded and aged PET MPs.


