[1] M. Azadi, S. Safarloo, F. Loghman, R. Rasouli, Microstructural and thermal properties of piston aluminum alloy reinforced by nano-particles, AIP Conference Proceedings, 1920 (2018) 020027
[2] M. Azadi, M. Zolfaghari, S. Rezanezhad, M. Azadi, Preparation of various aluminum matrix composites reinforcing by nanoparticles with different dispersion methods, Proceedings of Iran International Aluminum Conference, Tehran, Iran (2018)
[3] M. Azadi, M. Zolfaghari, S. Rezanezhad, M. Azadi, Effects of SiO2 nano-particles on tribological and mechanical properties of aluminum matrix composites by different dispersion methods, Applied Physics A, 124(5) (2018) 377
[4] A. Ueno, S. Miyakawa, K. Yamada, T. Sugiyama, Fatigue behavior of die casting aluminum alloys in air and vacuum, Procedia Engineering, 2 (2010) 1937-1943
[5] M. Teranishia, O. Kuwazuru, Sh. Gennai, M. Kobayashi, H. Toda, Three-dimensional stress and strain around real shape Si particles in cast aluminum alloy under cyclic loading, Materials Science and Engineering A, 678 (2016) 273-285
[6] M. Azadi, Cyclic thermo-mechanical stress, strain and continuum damage behaviors in light alloys during fatigue lifetime considering heat treatment effect, International Journal of Fatigue, 99 (2017) 303-314
[7] A.J. Moffat, S. Barnes, B.G. Mellor, P.A.S. Reed, The effect of silicon content on long crack fatigue behavior of aluminum-silicon piston alloys at elevated temperature, International Journal of Fatigue, 27 (2005) 1564-1570
[8] T.O. Mbuya, I. Sinclair, A.J. Moffat, P.A.S. Reed, Micro-mechanisms of fatigue crack growth in cast aluminum piston alloys, International Journal of Fatigue, 42 (2012) 227-237
[9] T.O. Mbuya, I. Sinclair, A.J. Moffat, P.A.S. Reed, Analysis of fatigue crack initiation and S-N response of model cast aluminum piston alloys, Materials Science and Engineering A, 528 (2011) 7331-7340
[10] G. Nicoletto, E. Riva, A. Di Filippo, High temperature fatigue behavior of eutectic Al-Si alloys used for piston production, Procedia Engineering, 74 (2014) 157-160
[11] T.O. Mbuya, P.A.S. Reed, Micro mechanisms of short fatigue crack growth in an Al-Si piston alloy, Materials Science and Engineering A, 612 (2014) 302-309
[12] M. Wang, J.C. Pang, S.X. Li, Z.F. Zhang, Low-cycle fatigue properties and life prediction of Al-Si piston alloy at elevated temperature, Materials Science and Engineering A, 704 (2017) 480-492
[13] S. Rezanezhad, M. Azadi, M. Azadi, Influence of heat treatment on high‑cycle fatigue and fracture behaviors of piston aluminum alloy under fully‑reversed cyclic bending, Metals and Materials International, (2019)
[14] D. Myriounis, T. Matikas, S. Hasan, Fatigue behavior of SiC particulate‐reinforced A359 aluminum matrix composites, Strain, 48 (2012) 333-341
[15] S. Divagar, M. Vigneshwar, S. Selvamani, Impacts of nano particles on fatigue strength of aluminum-based metal matrix composites for aerospace, Materials Today: Proceedings, 3 (2016) 3734-3739
[16] P.R.M. Raju, S. Rajesh, K.S.R. Raju, and V.R. Raju, Evaluation of fatigue life of Al2024/Al2O3 particulate nano composite fabricated using stir casting technique, Materials Today: Proceedings, 4 (2017) 3188-3196
[17] M. Azadi, H. Bahmanabadi, F. Gruen, G. Winter, Evaluation of tensile and low-cycle fatigue properties at elevated temperatures in piston aluminum-silicon alloys with and without nano-clay particles and heat treatment, Materials Science and Engineering A, 788 (2020) 139497
[18] R.M. Chlistovsky, P.J. Heffernan, D.L. DuQuesnay, Corrosion-fatigue behaviour of 7075-T651 aluminum alloy subjected to periodic overloads, International Journal of Fatigue, 29 (2007) 1941-1949
[19] S.E.G. Dorman, Y. Lee, Effect of chromate primer on hr in aluminum alloy 7075, Procedia Engineering, 10 (2011) 1220-1225
[20] M. Mhaede, Influence of surface treatments on surface layer properties, fatigue and corrosion fatigue performance of AA7075 T73, Materials and Design, 41 (2012) 61-66
[21] X. Meng, Z. Lin, F. Wang, Investigation on corrosion fatigue crack growth rate in 7075 aluminum alloy, Materials and Design, 51 (2013) 683-687
[22] M. Abdulstaar, M. Mhaede, M. Wollmann, L. Wagner, Investigating the effects of bulk and surface severe plastic deformation on the fatigue, corrosion behavior and corrosion fatigue of AA5083, Surface and Coatings Technology, 254 (2014) 244
[23] A. Laurino, E. Andrieu, J.P. Harouard, G. Odemer, J.C. Salabura, C. Blanc, Effect of corrosion on the fatigue life and fracture mechanisms of 6101 aluminum alloy wires for car manufacturing applications, Materials and Design, 53 (2014) 236-249
[24] A. Chemin, D. Spinelli, W. Bose Filho, C. Ruchert, Corrosion fatigue crack growth of 7475 T7351 aluminum alloy under flight simulation loading, Procedia Engineering, 101 (2015) 85-92
[25] M. Guerin, J. Alexis, E. Andrieu, C. Blanc, G. Odemer, Corrosion-fatigue lifetime of Aluminum-Copper-Lithium alloy 2050 in chloride solution, Materials and Design, 87 (2015) 681-69
[26] P. Hu, Q. Meng, W. Hu, F. Shen, Z. Zhan, L. Sun, A continuum damage mechanics approach coupled with an improved pit evolution model for the corrosion fatigue of aluminum alloy, Corrosion Science, 113 (2016) 78-90
[27] C.Q. Wang, J.J. Xiong, R.A. Shenoi, M.D. Liu, J.Z. Liu, A modified model to depict corrosion fatigue crack growth behavior for evaluating residual lives of aluminum alloys, International Journal of Fatigue, 83 (2016) 280-287
[28] B. Priet, G. Odemer, C. Blanc, K. Giffard, L. Arurault, Effect of new sealing treatments on corrosion fatigue lifetime of anodized 2024 aluminum alloy, Surface and Coating Technology, 307(A) (2016) 206-219
[29] Y. Chen, J. Zhou, Ch. Liu, F. Wang, Effect of pre-deformation on the pre-corrosion multiaxial fatigue behaviors of 2024-T4 aluminum alloy, International Journal of Fatigue, 108 (2018) 35-46
[30] A. Leon, E. Aghio, Effect of surface roughness on corrosion fatigue performance of AlSi10Mg alloy produced by Selective Laser Melting (SLM), Materials Characterization, 131 (2017) 188-194
[31] Y. Chen, Ch. Liu, J. Zhou, X. Wang, Multiaxial fatigue behaviors of 2024-T4 aluminum alloy under different corrosion conditions, International Journal of Fatigue, 98 (2017) 269-278
[32] S.R. Arunachalam, S.E.G. Dorman, R.T. Buckleya, N.A. Conrad, S.A. Fawaz, Effect of electrical discharge machining on corrosion and corrosion fatigue behavior of aluminum alloys, International Journal of Fatigue, 111 (2018) 44-53
[33] Z. Yea, D. Liu, X. Zhang, Z. Wu, F. Long, Influence of combined shot peening and PEO treatment on corrosion fatigue behavior of 7A85 aluminum alloy, Applied Surface Science, 486 (2019) 72-79
[34] Y. Chen, Ch. Liu, J. Zhou, F. Wang, Effect of alternate corrosion factors on multiaxial low-cycle fatigue life of 2024-T4 aluminum alloy, Journal of Alloys and Compounds, 772 (2019) 1-14
[35] R.I. Rodriguez, J.B. Jordon, P.G. Allison, T. Rushing, L. Garcia, Corrosion effects on fatigue behavior of dissimilar friction stir welding of high-strength aluminum alloys, Materials Science and Engineering A, 742 (2019) 255-268
[36] R.K. Mishra, Study the effect of pre-corrosion on mechanical properties and fatigue life of aluminum alloy 8011, Materials Today: Proceedings, 25(4) (2020) 602-609
[37] Y. Huang, X. Ye, B. Hu, L. Chen, Equivalent crack size model for pre-corrosion fatigue life prediction of aluminum alloy 7075-T6, International Journal of Fatigue, 88 (2016) 217-226
[38] M. Azadi, H. Aroo, Temperature effect on creep and fracture behaviors of nano-sio2-composite and alsi12cu3ni2mgfe aluminum alloy, International Journal of Engineering, 33(8) (2020) 1579-1589
[39] S.H. Juang, L.J. Fan, H.P.O. Yang, Influence of preheating temperatures and adding rates on distributions of fly ash in aluminum matrix composites prepared by stir casting, International Journal of Precision Engineering and Manufacturing, 16 (7) (2015) 1321-1327
[40] M. Zolfaghari, M. Azadi, M. Azadi, Characterization of high-cycle bending fatigue behaviors for piston aluminum matrix SiO2 nano-composites in comparison with aluminum-silicon alloys, International Journal of Metalcasting, 15 (2020) 152-168
[41] H. Aroo, M.S.A. Parast, M. Azadi, M. Azadi, Investigation of effects of nano-particles, heat treatment process and acid amount on corrosion rate in piston aluminum alloy using regression analysis, 11th International Conference on Internal Combustion Engines and Oil, Tehran, Iran (2020) (in Persian)
[42] K. Sasaki, T. Takahashi, Low cycle thermal fatigue and microstructural change of AC2B-T6 aluminum alloy, International Journal of Fatigue, 28 (3) (2006) 203-210
[43] Metallic materials-rotating bar bending fatigue testing, Standard No. ISO-1143, ISO International Standard (2010)
[44] M.J. Khameneh, M. Azadi, Evaluation of high-cycle bending fatigue and fracture behaviors in EN-GJS700-2 ductile cast iron of crankshafts, Engineering Failure Analysis, 85 (2018) 189-200
[45] M. Azadi, H. Aroo, Creep properties and failure mechanisms of aluminum alloy and aluminum matrix silicon oxide nano-composite under working conditions in engine pistons, Material Research Express, 6 (2019) 115020
[46] F. Zainon, K. Rafezi Ahmad, R. Daud, Effect of heat treatment on microstructure, hardness and wear of aluminum alloy 332, Applied Mechanics and Materials, 786 (2015) 18-22
[47] L. Han, Y. Sui, Q. Wang, K. Wang, Y. Jiang, Effects of Nd on microstructure and mechanical properties of cast Al-Si-Cu-Ni-Mg piston alloys, Journal of Alloys and Compounds, 695 (2017) 1566-1572
[48] A. Humbertjean, T. Beck, Effect of the casting process on microstructure and lifetime of the Al-piston-alloy AlSi12Cu4Ni3 under thermo-mechanical fatigue with superimposed high-cycle fatigue loading, International Journal of Fatigue, 53 (2013) 67-74
[49] M. Mollaei, M. Azadi, H. Tavakoli, A parametric study on mechanical properties of aluminum-silicon/SiO2 nano-composites by a solid-liquid phase processing, Applied Physics A, 124 (2018) 504
[50] H.K. Issa, Taherizadeh, A. Maleki, A. Ghaei, Development of an aluminum/amorphous nano-SiO2 composite using powder metallurgy and hot extrusion processes, Ceramics International, 43 (2017) 14582-14592
[51] G.F. Vander Voort, Metallography and Microstructures, sixth ed., ASM International, 2004
[52] Y. Li, Y. Yang, Y. Wu, L. Wang, X. Liu, Quantitative comparison of three Ni-containing phases to the elevated-temperature properties of Al-Si piston alloys, Material Science Engineering A, 527 (26) (2010) 7132-7137
[53] M.J. Sharifi, M. Azadi, M. Azadi, Fabrication of heat-treated nano-clay-composite for improving high-cycle fatigue properties of AlSiCu aluminum alloy under stress-controlled fully-reversed bending loads, Part C: Journal of Mechanical Engineering Science, (2020)
[54] J. Liu, Q. Zhang, Z. Zue, Y. Xiong, F. Ren, A. Volinsky, Microstructure evolution of Al-12Si-CuNiMg alloy under high temperature low cycle fatigue. Materials Science Engineering A, 574 (2013) 186-190
[55] G. Zhang, J. Zhang, B. Li, W. Cai, Double-stage hardening behavior and fracture characteristics of a heavily alloyed Al-Si piston alloy during low-cycle fatigue loading, Materials Science Engineering A, 561 (2013) 26-33
[56] M. Arab, M. Azadi, O. Mirzaee, Effects of manufacturing parameters on the corrosion behavior of Al-B4C nanocomposites, Materials Chemistry and Physics, 253 (2020) 123259
[57] M.S.B. Selamat, Corrosion behavior of SiCp/6061 Al metal matrix composites in chloride solutions, Advanced Performance Materials, 3 (1996) 183-204
[58] Z. Li, N. Limodin, A. Tandjaoui, P. Quaegebeur, J.F. Witz, D. Balloy, Influence of Fe content on the damage mechanism in A319 aluminum alloy: Tensile tests and digital image correlation, Engineering Fracture Mechanics, 183 (2017) 94-108