In 5G network, the key parts are millimeter wave band (mmWave band) involving 26 GHz & 28 GHz which aims to solve issues related to traffic using its wide bandwidth. Features of 5G such as transmitters with high directivity, wide bandwidth and base station with high density project it as a promising source of RF energy harvesting. In order to harvest RF power from the full spectrum in an efficient way, broadband antenna design is demanded. This paper focuses on designing wearable microstrip fabric antenna operating in 5G spectrum at 26 GHz & 28 GHz for RF energy harvesting. Impedance bandwidth of the antenna is about 20 GHz to 30 GHz exhibiting omnidirectional pattern of radiation with on-body gain with a peak value of 7 dB making it suitable for harvesting RF energy. On body radiation efficiency & off body radiation efficiency are obtained as 40% and 60% when operating in the frequency range of 24 GHz & 30 GHz. In mmWave band, dielectric characterization of a two line fabric substrate microstrip antenna is obtained. Fabrication of the antenna is done using polyimide copper laminates etched with ultra thin size 150 µm on a woven polyester substrate of 310 µm thickness. Improved gain and stable bandwidth are achieved from the proposed antenna design when demonstrated in human proximity providing high robustness.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Loading...
Posted 22 Mar, 2021
Received 20 Mar, 2021
Invitations sent on 18 Mar, 2021
On 11 Mar, 2021
On 10 Mar, 2021
Posted 22 Mar, 2021
Received 20 Mar, 2021
Invitations sent on 18 Mar, 2021
On 11 Mar, 2021
On 10 Mar, 2021
In 5G network, the key parts are millimeter wave band (mmWave band) involving 26 GHz & 28 GHz which aims to solve issues related to traffic using its wide bandwidth. Features of 5G such as transmitters with high directivity, wide bandwidth and base station with high density project it as a promising source of RF energy harvesting. In order to harvest RF power from the full spectrum in an efficient way, broadband antenna design is demanded. This paper focuses on designing wearable microstrip fabric antenna operating in 5G spectrum at 26 GHz & 28 GHz for RF energy harvesting. Impedance bandwidth of the antenna is about 20 GHz to 30 GHz exhibiting omnidirectional pattern of radiation with on-body gain with a peak value of 7 dB making it suitable for harvesting RF energy. On body radiation efficiency & off body radiation efficiency are obtained as 40% and 60% when operating in the frequency range of 24 GHz & 30 GHz. In mmWave band, dielectric characterization of a two line fabric substrate microstrip antenna is obtained. Fabrication of the antenna is done using polyimide copper laminates etched with ultra thin size 150 µm on a woven polyester substrate of 310 µm thickness. Improved gain and stable bandwidth are achieved from the proposed antenna design when demonstrated in human proximity providing high robustness.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Loading...