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Abstract
Molecular Property Diagnostic Suite-Compound Library (MPDS-CL), is an open-source galaxy-based
cheminformatics web-portal which presents a structure-based classi�cation of the molecules. A structure-
based classi�cation of nearly 150 million unique compounds, which are obtained from 42 publicly
available databases were curated for redundancy removal through 97 hierarchically well-de�ned atom
composition-based portions. These are further subjected to 56-bit �ngerprint-based classi�cation
algorithm which led to a formation of 56 structurally well-de�ned classes. The classes thus obtained
were further divided into clusters based on their molecular weight. Thus, the entire set of molecules was
put in 56 different classes and 625 clusters. This led to the assignment of a unique ID, named as MPDS-
Aadhar card, for each of these 149 169 443 molecules. Aadhar card is akin to the unique number given to
citizens in India (similar to the SSN in US, NINO in UK). MPDS-CL unique features are: a) several search
options, such as exact structure search, substructure search, property-based search, �ngerprint-based
search, using SMILES, InChIKey and key-in; b) automatic generation of information for the processing for
MPDS and other galaxy tools; c) providing the class and cluster of a molecule which makes it easier and
fast to search for similar molecules and d) information related to the presence of the molecules in
multiple databases. The MPDS-CL can be accessed at http://mpds.neist.res.in:8086/.

Introduction
Chemical space is quite vast and �nding a molecule with the desired property is arguably the most
formidable challenge. In general, structurally similar compounds are expected to have similar properties.
In drug/molecular design, the structural similarity is of paramount importance and any effort which
structurally and systematically divide the chemical space will be of outstanding interest [1–5]. The need
for developing new chemical libraries is of fundamental importance in the current scenario to
systematize the process of covering huge chemical space and tapping its potential in multifarious
applications in science and technology [6–10]. Such an effort will help to qualitatively and quantitatively
estimate and assess the structural similarity and chemical diversity which will be of utility in mining the
chemical/biological property space [11–13]. The ability to synthesize molecules has remarkably
enhanced due to the pioneering efforts by experimental chemists, which resulted in the synthesis of huge
number of molecules of diverse structural scaffolds and features [1]. However, in practice only a very
small fraction of such synthesized molecules is of utility, which highlights the limitations of exploratory
approaches, and emphasize the need to adopt rational design. Therefore, in recent years, the focus was
shifted from “how to synthesize” to “what to synthesize”.

While there are extensive studies made on chemical space, most of them are devoted to explore the
property space and very few of them focus on structure-based classi�cation. One of the pioneering
attempts was made by Waldmann’s group in attempting to a structural classi�cation of natural products
(SCONP), which is thus limited to only natural products [4, 14]. The focus was on heterocycles and the
occurrence of those compounds in natural products. Other approaches are based on theoretical
generation of molecules, and explore the size of the chemical space [1–5, 15–18]. Fragment based



Page 4/28

approaches also have played a very important role, and a number of methods were developed especially
in the area of medicinal chemistry directed drug discovery [19–21].

Compound libraries are developed with the objective of enumeration, analysis, and extrapolation of the
chemical space for various applications in chemistry, biology, and allied sciences. The curation of the
chemical data is also concerned with the cleaning of molecules to remove any salts, and mixtures,
normalization of various chemotypes, de-duplication of redundant molecules, etc. Besides, the manual
and automated curation applied to the big chemical data, the lack of rigorous standardization methods in
the chemical reaction, transformations are still one of the problems faced by chemists and the role of
informatics and Arti�cial Intelligence (AI) is valuable in removing the barriers and deriving novel insights
from the vast molecular space [22–28].

Finding druglike and non-druglike molecules through various means of theory and experimentation is the
prime motto of drug discovery projects. While there are a large number of databases depicting the
chemical structures, to our knowledge attempts towards the structural classi�cation of compounds are
scarce. The recent progress made in the synthesis and the growing need for novel chemical entities
together push for an urgent need to scale up the existing methods and design new methods in developing
elegant technologies for making the best use of deciphering the structure-property relationships from the
chemical space [8–12]. The ultimate goal in all these attempts is to �nd out the molecule(s) with most
desirable properties, e.g., drugs, catalysts, agrochemicals, etc. [13, 14].

The Galaxy based MPDS was an initiative made towards strengthening the open-source computational
drug discovery, by providing access to most of the available open-source, custom designed indigenously
developed scripts, programs and software packages [29–34]. Galaxy platform supports both the web and
the standalone version which can be implemented on a Linux server. The Toolshed of Galaxy, which are
periodically updated, is populated with a wide range of programs that can be directly imported and
installed on users’ Galaxy portals [30, 31, 35]. It also offers the advantage of adding several user-
developed programs which are incorporated into the Galaxy directory and are programmatically called to
the front interface through an XML �le. Several virtual machine images of Galaxy instances [30] are also
made available online so that they can be used for various hands-on and other training sessions for data-
intensive biology and chemistry applications. MPDS-CL in speci�c and other chemical libraries in general;
its development, scalability, and automation techniques will be essential in deriving novel insights for
drug discovery by comprehensively assessing the chemical space and �nding out various ways of
prioritizing the lead molecules for drug discovery projects [36–40]. Ensuring the unique molecules along
with creating a structurally well-de�ned chemical data library was taken as the paramount signi�cance in
creating the MPDS-CL.

Genesis of Galaxy based MPDS
MPDS is an indigenous initiative that is developed to strengthen computational drug discovery and is an
attempt to address the pressing issues of drug discovery. As it is developed on the Galaxy platform, the
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features like cloud-based accessibility, reproducibility, and various data-driven methods are also made
available. The MPDS suites of disease-speci�c web portals include proprietary libraries, machine learning
models, and other relevant open-source tools and resources essential for drug discovery solutions. The
compound library has been the most important component of the data library module of MPDS, which
was initially integrated into the MPDSTB web portal. At that time, using the 6 most popular and abundant
chemical databases, around 110 million unique non-redundant set of compounds, with 31 classes, was
reported. Over the period of time, various disease-speci�c MPDS portals including MPDSTB [15], MPDSDM

[34], MPDSCOVID−19[41] were developed, and other portals like MPDSNAFLD and MPDSHIV are under
development. The modules in MPDS are categorized into (i) data library (that consists of information on
genes and targets speci�c to a disease or disorder, a molecular repository, druglike fragments, literature,
etc.,) (ii) data processing (computation of molecular descriptors/�ngerprints, �le format converter) (iii)
data analysis (QSAR, docking, drug-likeness �lter, and visualization tool), (iv) Advanced modules (which
include various predictive modules for disease–disease interaction, big data analysis, and machine
learning tools). MPDS is also equipped with a work�ow management system that enables the users to
easily integrate multiple tools from the available modules and customize the existing work�ows as per
the requirements [32–34, 41]. The utility and scope of open-source packages are well documented in the
literature [42–43].

The current MPDS-CL was developed into a new full-�edged web portal, and not as one of the modules of
MPDS and in that respect it is vastly different from the earlier module, which was presented as one of the
modules of MPDSTB about 6 years ago. The MPDS-CL is an independent web portal, which is well
positioned to integrate with Galaxy and MPDS web portals. The classi�cation of close to 150 million
molecules and redundancy removal techniques employed are different and much more e�cient,
compared to those employed in MPDSTB six years ago (Fig. 1). This module enables comprehensive
structural analysis, assigns a unique Aadhar ID to each molecule, offers descriptor analysis tools,
fragment library, and screening tools.

Materials and methods
The public domain chemical databases, 42 of them, have been considered in making the current
compound library (Table S1), while the erstwhile compound library module of MPDSTB has taken 6
databases (PubChem, KEGG, ZINC, DrugBank, ASINEX, and NCI). However, two types of databases were
excluded: a) large databases of hypothetical molecules and b) some commercial/inaccessible databases
(Table S2).

The databases considered here may be categorized as general and specialized database based on the
type of molecules it contains. The bioactivity libraries constitute repositories like PubChem and ChEMBL.
While other categories of databases include drugs and molecules of biological importance such as
Therapeutic Target Database, DrugCentral, SuperDrug2, DrugBank, PharmGKB, GRAC, SMPDB, KEGG
compound database, HMDB, and ChEMBL-DNDi. Other libraries include molecules extracted from patent
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and general literature (SureChEMBL, BindingDB), GPCR ligand database, GPCR decoy database, a
database of lipid-like molecules (LipidBank), a database of the crystal structure of organic and inorganic,
metal-organics and other minerals (Crystallography-open database), Natural product database
(InterBioScreen, UNPD), and database with lead-like molecule and useful fragments (ASINEX and
ChemDiv) (Table S1). The methodology described in the further sections essentially deals with various
open-source cheminformatics packages and the python programs developed for chemical data analysis.

Retrieval of molecules
The molecules used for developing the compound library were retrieved from various public domain
chemical databases in multiple �le formats like SMILES, SDF, and MOL. The molecules that were not in
the SMILES format, were converted to the canonical SMILES to maintain a unique representation for all
the molecules in the database. The canonicalization algorithm as implemented in the OpenBabel3 [44]
was used for the conversion of all the SMILES formats into the canonical format. Few of these databases
are updated over a speci�c period while others like PubChem, SureChEMBL are populated with new
molecules every other day. In the current study, we have retrieved the molecules till July 2023 and all
analysis was performed using this dataset. The chemical databases offer a wide range of information
about the molecules that include their structural, physicochemical, reaction pro�les, analytical data, etc.
The molecules which were obtained from public domain chemical databases are mentioned in Table S1
in which each database and its statistics of update is indicated. The work summarized here mainly
consists of the structural information in the form of SMILES, which were parsed into the SMARTS pattern
for subsequent processing and analysis of the dataset. Linux-based expressions, such as AWK, sed,
along with a set of python packages were employed to obtain a unique non-redundant 97 atom-based
portions (Table S3). The process of retrieving data from each database differs and retrieval is dependent
on the type and number of new molecules included in the database. In the case of PubChem, molecules
included within a speci�c duration were retrieved using the �le transfer protocol (FTP) method whereas
for ChEMBL, a web resource client that is a python-based library, as well as a bulk download option, was
used. In the case of SureChEMBL, the quarterly updated molecules were retrieved in bulk. ZINC database
has the option to retrieve speci�c subsets, “Tranch” according the molecule’s type, its reactivity,
purchasability, etc., While there are a large number of molecules in ZINC, we considered only the
“Standard + In-Stock” subset. From all the remaining databases, the molecules were retrieved as ‘bulk
download (Fig. 2). Some region-speci�c natural products and phytochemicals-based databases are also
available and some of them are developed in our group [45, 46], and if new molecules are found they will
be added to MPDS-CL periodically, during the half-yearly updates.

Schema for redundancy removal and structural classi�cation
Each database was classi�ed into 97 hierarchically well-de�ned atom-based portions (Fig. 3). As the
classi�cation is hierarchical, those portions which were not considered for further classi�cation were
labelled as ‘terminal portions’, and the rest as ‘open portions’. The classi�cation has been carried out in
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�ve distinct classi�cation steps, which are called layers (Fig. 3). The �rst layer of classi�cation was
based on molecular weight (MW) and atom composition. Thus, Portions 1–3 were assigned as terminal
portions for the �rst layer of classi�cation, and all remaining portions were further classi�ed in the
second layer. The second layer of classi�cation was based on molecular topology (acyclic or cyclic), and
all those molecules that were categorized as acyclic were considered as terminal portions, while cyclic
molecules were further classi�ed as alicyclic and aromatic molecules in the third layer.

In the third layer of classi�cation, both alicyclic and aromatic portions that contain Te, Se, Ge, As, Sb
(Portions 12–13), B & Si (Portions 14–19), Phosphorus (Portions 20–21), and hydrocarbons (Portions
22–25), were assigned as terminal portions, and the remaining portions were considered for further
classi�cation. The fourth layer of classi�cation is based on the count of heteroatoms, which generate
portions that were speci�cally categorized as sulphur, oxygen, and nitrogen containing. These were
subjected for further classi�cation as no terminal portions were identi�ed in this layer. The open portions
obtained from the fourth layer were used for classi�cation in the �fth layer, and it was based on the
position of the heteroatom in a molecule that can be inside or outside the ring. For example, if a molecule
consists of sulphur inside a ring, then it was classi�ed into a separate portion, and if the molecule doesn’t
have any sulphur atom inside the ring, it was classi�ed into a different portion. Likewise, the oxygen and
nitrogen-containing molecules were classi�ed into their respective portions. In this way, all the open
portions of the fourth layer were completely classi�ed as terminal portions in the �fth layer, and hence a
total of 97 different atom-based portions were obtained.

As among the �le formats InChIKey [47] appear to be the gold standard for unambiguously identifying the
molecule, it has been used for redundancy removal in the compound library. For all the molecules, the
standard InChIKey was computed using OpenBabel3 [44]. InChIKey is a string of 27 characters built on
the SHA-256 encoding algorithm applied on the InChI and the abstract notation consisting of hashed
information for molecular skeleton and isomerism. It was primarily developed for indexing purpose but is
very useful for text-based mining and searching in chemical databases, as well as for removing
redundancy.

All programs used to classify the molecular space were coded in python3 and extensive use of SMARTS
patterns was utilized [48]. The validation of SMARTS patterns was done rigorously so as to avoid any
misclassi�cation of molecules. For atoms-based classi�cation, the SMARTS pattern consisting of the
acronym of individual atoms or corresponding atomic number was used, while the next level of
classifying the cyclic and acyclic molecules was done by identifying the atoms in rings and outside the
rings. The structural classi�cation of molecules was primarily carried out on all the cyclic portions to
identify the structural diversity of molecules. The algorithm used to classify the molecules �rst parses the
SMILES string and converts it to the SMARTS pattern by calling the ‘pybel function’of the OpenBabel
package. This pattern is then searched in the parsed SMILES, and based on the presence/absence or
position of speci�c atoms, molecules are classi�ed (Fig. 4). The programs developed for structural
classi�cation has extensively made use of the SMARTS pattern parsed through both OpenBabel and
RDkit modules [49], and individual SMARTS based expression was created and validated for each class.
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Each of these SMARTS patterns act as substructure queries for identifying speci�c structural feature in a
molecule from the large chemical space, and thus aid in classifying the molecules with matched features.
Particular syntax such as presence of rings, ‘n-’ring-membered type, ring systems (fused / non-fused /
connected) and other complex structural features, all were used to screen and e�ciently identify
molecules from large space.

Results and discussion
After obtaining an unambiguous set of 149 169 443 molecules, structural classi�cation of them into 56
classes was achieved by employing a series of scripts and tools, as described in the foregoing sections
(Table 1). The 56 classes presented in the Table 1, are carefully carved to group and enumerate
molecules with such features into distinguishable groups.
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Table 1
List of 56 classes and population of molecules belonging to each class.

Class Description Population

1 Acyclic (saturated / unsaturated) 3 455 531

2 Pure inorganic molecules 12 630

3 Monocyclic 3 membered saturated ring 333 466

4 Monocyclic 3 membered unsaturated ring 5 711

5 Monocyclic 4 membered saturated ring 249 354

6 Monocyclic 4 membered unsaturated ring 9 553

7 Monocyclic 5 membered saturated ring 1 224 146

8 Monocyclic 5 membered unsaturated ring 153 678

9 Monocyclic 5 membered aromatic ring 2 708

10 Pyrrole (Free) 171 154

11 Furan (Free) 288 279

12 Thiophene (Free) 604 404

13 Monocyclic 6 membered saturated ring 2 452 169

14 Monocyclic 6 membered unsaturated ring 405 431

15 Monocyclic 6 membered aromatic ring 77 290

16 Benzene (Free) 26 496 311

17 Pyridine (Free) 5221 873

18 Monocyclic ≥ 7 membered saturated ring 620 637

19 Monocyclic ≥ 7 membered unsaturated ring 118 401

20 Multiple (≥ 2) main group elements in a ring 16 304 254

21 Bicyclic connected rings 30 111 865

22 Bicyclic fused 3+’n’ membered 211 041

23 Bicyclic fused 4+’n’ membered 365 491

24 Bicyclic fused 5 + 5 membered [A + A] 216 117

25 Bicyclic fused 5 + 5 membered [A + NA] 168 626

26 Bicyclic fused 5 + 6 membered [A + A] 5 300 636

27 Indole (Free) 1 631 787
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Class Description Population

28 Bicyclic fused 5 + 6 membered [A + NA] 1 079 827

29 Bicyclic fused 5 + 6 membered [NA + A] 3 620 404

30 Bicyclic fused 5+(5/6/≥7) membered [NA + NA] 1 962 058

31 Bicyclic fused 5 + ≥ 7 membered [A + NA] 167 017

32 Bicyclic fused 6 + 6 membered [A + A] 4 729 630

33 Bicyclic fused 6 + 6 membered [A + NA] 3 658 454

34 Bicyclic fused 6 + 6 membered [NA + NA] 885 091

35 Bicyclic fused 6 + ≥ 7 membered 709 655

36 Bicyclic fused ≥ 7 + ≥ 7 membered 16 923

37 Bicyclic spiro 1 133 303

38 Tricyclic connected (1 ring aromatic) 715 276

39 Tricyclic connected (2 rings aromatic) 3 448 581

40 Tricyclic connected (3 rings aromatic) 1 115644

41 Tricyclic connected (no aromatic rings) 52 924

42 Tricyclic fused (1 ring aromatic) 809 585

43 Tricyclic fused (2 rings aromatic) 1 257 912

44 Tricyclic fused (3 rings aromatic) 609 406

45 Tricyclic fused (no aromatic rings) 579 092

46 Tricyclic fused-connected [Any combinations] 11 066 401

47 Tetracyclic connected [Any combinations] 873 036

48 Tetracyclic fused [Any combinations] 1 167 417

49 Tetracyclic fused + connected [Any combinations] 4 559 512

50 Complex ring systems up to tetracyclic 1 013 766

51 Pentacyclic & above 3 962 984

52 1 transition metal in a molecule 56 796

53 2 transition metals in a molecule 1 871

54 ≥ 3 transition metals in a molecule 303

55 Mol.wt. =750.00-1200.99 Da 2 973 899
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Class Description Population

56 Mol.wt. ≥1201.00 Da 730 133

Total 149 169 443

A- Aromatic; NA- Non aromatic  

One need to consider that a molecule may belong to multiple classes, but the sole idea of structural
classi�cation is to identify or designate a molecule on the basis of the core moiety or a principal
structural feature responsible for rendering a speci�c activity, that again depends on its structure-property
based relationship. In literature various studies were reported [1–10] which focuses on various
hierarchical levels of structural classi�cation such as topological, skeleton, atomic connectivity, formulae,
and biological role. However, the current classi�cation scheme is based on identifying and pro�ling
molecules based on a chemically well-de�ned structural motif, termed as a ‘class’.

In this manuscript, the entire molecular structure was considered for enumerating various types of
molecules existing in this portion of chemical space. Two cyclic molecules combine in various ways, a)
edge sharing, which is called fused, b) vertex sharing, which is spiro, c) connected by a bond, which may
be called connected, or d) connected by a linker, which are called disconnected (Fig. 5). As seen in the
Table 1, Class 21 (Bicyclic connected rings) was found to have the largest population of molecules, i.e.,
30.11 million, which clearly indicates that this class consists of large number of molecules that have ring
connected via a non-ring bond and absence of fused ring systems. The presence of connected rings
systems offers stability and rigidity to the molecules in addition which may responsible for their higher
synthetic accessibility. Classes 10–12, 16–17, and 27 were designed to group speci�c molecules where
free forms of Pyrrole, Furan, Thiophene, Benzene, and Pyridine can be identi�ed. This is also done with an
interest to identify molecules with medicinally relevant rings exhibiting their unique functional role as
valuable building block in drug design, optimizing certain therapeutic effects with respect to a drug, etc.
Classes 22–37 are different forms of bicyclic fused ring systems, which are intended to group molecules
with varied bicyclic scaffolds in terms of ring size, and combination of aliphatic and aromatic patterns.
These classes combinedly constitutes 25.85 million molecules, showing their immense contribution in
the therapeutic chemical space, with a large population representing the terpenes, alkaloids, and other
molecules belonging to pharmaceutically important natural products. The tricyclic molecules are grouped
from classes 38–46, each class depicting the molecules with notable topological variations in
association of different ring systems. Tetracyclic and polycyclic classes are arranged from 47–51, with a
special class designated for large complexed fused rings up to tetracyclic group in class 50, while classes
52–54 are exclusively designed for molecules constituting transition metals, and classes 55–56 are
designated for large MW (≥ 750.00 Da) molecules.

Table 2 illustrates the various possible combinations as explained between the two cyclic moieties, by
taking a simple ring system. Molecules which contain both �ve and six membered rings simultaneously
represent the largest chunk, 66.16 million, which represent more than 44% of all chemical space.
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Therefore, 4 out of 10 molecules have both 5 and 6 membered rings in them. The next best combination
is three and six membered rings with a total number of 2.59 million molecules. Among the, classes the
three or more transition metal containing molecules class 54, with a population of only 303 represent the
least abundant class in the chemical space. The least population (1,445) of molecules is obtained from
those constituting both eight and ≥ 9 membered ring systems.

Table 2
Pairwise distribution of ‘n’ membered rings as observed in MPDS-CL.

  3 4 5 6 7 8

4 30 581          

5 641 651 404 334        

6 2 597 353 1 668 516 66 169 215      

7 22 867 15 344 312 595 1 699 025    

8 4 931 2 598 29 430 165 032 2 013  

≥ 9 8 460 2 870 65 248 391 692 1 587 1 445

Property space for cyclic and acyclic molecules
While the molecules are classi�ed as cyclic and acyclic systems, the general property distribution in the
chemical space between these varieties was examined and the results are depicted in Fig. 6. The
molecular descriptors like molecular weight, hydrogen bond donor/acceptor, number of rotatable bonds,
polar surface area, number of heavy atoms, and logP were computed for all the acyclic and cyclic non-
redundant molecules. The distribution of descriptors is used to understand the property space of the
molecules (Fig. 6), and thereby aid in estimating the druglikeness of the given chemical space.
Concerning molecular weight, the highest number of molecules in acyclic space covers a range of 100.00-
500.00 Da with a peak at 250.00 Da, while in the case of cyclic molecules, a progressive increase in the
population of molecules is observed in the range of 150.00-750.00 Da, with the peak population between
300.00–350.00 Da. Figure 6 illustrates the distribution observed in, both cyclic and acyclic molecules
with respect to their properties: a) molecular weight, b) molar refractivity, c) hydrogen bond donor, d)
hydrogen bond acceptor, e) no. of heavy atoms, f) rotatable bonds, g) logP, and h) topological polar
surface area. The prototypical 8 parameters considered for comparing and contrasting the chemical
space distribution in cyclic and acyclic molecules reveal the following trends. Similar trends were
observed in the distribution of hydrogen bond donor, hydrogen bond acceptor, logP and topological polar
surface area for acyclic and cyclic molecules. While it has been observed that there is a slight broadening
for cyclic molecules in the case of the distribution of molecular weight, molar refractivity and the no. of
heavy atoms. In contrast, in the case of rotatable bonds the distribution is sharper in cyclic molecules
compared to acyclic. Thus, as expected the trends reveal higher diversity in the case of cyclic molecules
and less �exibility compared to their acyclic counterparts.
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Cheminformatics tools
Galaxy is a publicly available web server that provides open-source web-based platform for a wide range
of bioinformatics, cheminformatics, genomics, proteomics and other analysis [29, 30, 50, 51]. Another
major strength of Galaxy is the work�ow system, which allows a very effective and automated execution
of large projects involving multiple steps. Further, the ease with which one can write scripts, programs
and develop software in any programming language to the already existing webservers based on Galaxy
such as MPDS makes it highly desirable.

The chemical space in MPDS integrates various Galaxy chemical tools for the structural analysis. Bray et
al., developed the Galaxy ChemicalToolbox which provide the large assembly of tools for drug discovery
and cheminformatics [31]. MPDS-CL provides access to the Galaxy ChemicalToolbox, as well as a host of
other tools. These tools are PaDEL [52], CDK [53], Rdkit [49], Mordred [54], �le format converters, JMol [55]
editor and molecular visualizer for drawing and visualizing molecules along with a variety of search
options (as described in Table 3 and Fig. 7). BCS classi�cation, toxicity �lter, drug likeness and natural
product likeness �lter are some other tools that are currently available and it is our quest to continually
augment more �lters like these. Efforts to add several of the in-house developed machine learning tools
based on the property of the molecule, such as the antiviral, toxicity, and susceptibility of failure in clinical
trials, blood brain barrier prediction are in the pipeline [56–59].
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Table 3
Description of different modules available in MPDS–Compound Library.

Modules Description

Get Data Locally upload data/�les of different �le formats

Chemical structure
editor

Draw a molecule (using Jmol editor) and export the SMILES

MPDS Aadhar ID search A molecule from the MPDS-CL can be searched in various ways in
addition to MPDS Aadhar ID card based search

Exact structure search User can upload/draw structure and search

Sub structure search Search with sub structure based on the user de�ned fragments

Properties based search Screening the molecules based on molecular properties

Fingerprint based search Identifying the structural features from the canonical SMILES

Fragmenter Split a molecule to smaller fragments based on prede�ned rules (i.e.,
RECAP rules)

Fragment based search Searching the MPDS fragment library based on nature of fragments

File format conversion Small molecules �le format converter (i.e., pdb, sdf, pdb, mol) for
different chemoinformatics operation

3D coordinates
generation

Adding hydrogen atom to the molecule and convert the structure from 2D
to 3D

Descriptors calculation Calculation of different descriptors based on “PaDEL”, “CDK”, “RDkit”,
“Mordred”

Physico-chemical
properties calculation

Calculating the physico-chemical properties for a set of molecules

Estimation of drug-
likeness

Calculation of different drug-like rules, using DruLiTo, Lipinski’s rule,
Ghose �lter, etc.

BCS classi�cation Classifying the query molecule based on Biopharmaceutical
Classi�cation System (BCS)

Toxicity �lter Identifying the toxicophores for the given molecule

Natural product likeness
calculator

Calculation of the natural-product likeness score for the user given
molecule

The search methods and options
The search methods provided in the MPDS-CL is the way to navigate through the chemical space by
employing various search such as exact structure, sub-structure, �ngerprint, and molecular property-
based search. The idea of exact structure search is to generate the exact molecule as provided by the
user. Whereas the substructure search is employed to identify series of molecule with the desired query.
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The substructure search is essentially employed to check for molecules that is build up with other
scaffolds and in a way to explore the synergistic effects of different building blocks while interaction with
the biological receptors. The results of substructure search in MPDS-CL can be performed by providing a
query molecule in .sdf/.mol/.smi format, which on search will result in giving the series of molecules with
the substructure match in independently existing form. The �ngerprint search is a search option to
explore the molecules through speci�c classes. All classes are categorized under the main category viz.,
monocyclic, bicyclic, tricyclic, tetracyclic, and pentacyclic and a few special classes. The idea behind this
search, is to provide an understanding of the 56 classes, without asking the user to explicitly search for a
speci�c molecule. Next in the line, is the search option based on molecular properties, where the user can
search for molecules belonging to a range of properties as well as it comes with multiple �lters to
e�ciently look for molecules with desired properties.

Each of these search methods is designed to cater to a wide range of research objectives, allowing users
to perform targeted searches as per their interests. The diverse search functionalities provided by the
MPDS-CL enhance its utility as a valuable resource for researchers from various disciplines, empowering
them to explore the chemical space, discover novel molecules, and gain valuable insights into compound
properties (Fig. 7).

MPDS- Aadhar card

The name Aadhar card is inspired by a thought process of comparing the molecules to human beings.
See, for example, if one wants to get a particular work done, we need to �nd the right person. Similarly,
when you look for a speci�c property, you need to �nd a right molecule. As every human is unique and so
are the molecules, and our endeavour is to keep the full pro�le of molecule and its properties can be
explored and thus assigning a unique id, which traces its structural identify is useful.

Each of these unique features have been clearly de�ned and they have chosen to represent a “class” and
thus 56 classes were designated in MPDS-CL. As molecules can have multiple features, we employed
priority rules and the number of a class is arranged in the ascending order. The 56-bit vector available in
the Aadhar card reveal the other features of a molecule, i.e., if a molecule belongs to class 45, but also
contain the features of class 34, 23, and 8, then the 56-bit vector is
00000001000000000000001000000000010000000000100000000000.

The Aadhar card of each existing molecule in the MPDS-CL is intended to provide all the information of a
given molecule in a sequential fashion. The �rst page provides the critical details, which are common and
computable to all the molecules in the chemical space, and it is generated on the �y by MPDS-CL (Fig. 8).
However, molecules will have a varying detail of information and the subsequent pages of Aadhar card
can be custom designed to populate and use and as this information is speci�c to a given molecule and
as such will not be generated on the �y.

Conclusions
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MPDS-CL is a non-redundant chemical library, represent about 150 million unique molecules, which was
built by compiling a large dataset of molecules obtained from 42 publicly available chemical databases.
It is an attempt to systematically classify the chemical space by infusing the structural-chemical insights
which helps in the design of molecules. The scheme of dividing molecules into 56 classes has been
arrived methodically exploring various ‘structural features’ which determine the identity of a given
molecule and all these molecules already available or easily accessible synthetically. The MPDS-CL
provides various search options driven by MPDS Aadhar ID search, exact structure search, sub-structure
search and fragment-based search, which helps in elegantly exploring the chemical space. The study has
employed various cheminformatics, and other informatics methods to systematically analyse the
chemical space and aid in rational design of molecules with a desired property.

If one were to describe any effort for the design of a molecule, it is �nding the right molecule for
performing a given task. In the quest to discover a drug, catalyst or any special property of a molecule, it
is all about hitting the right spot in the realm of chemical space. Further, understanding of various
structural and topological diversity of molecules and establishing various data-oriented analytics for
structure-property and activity relationships, is a topic of outstanding importance in molecular design.
Thus, when molecules are grouped in structurally similar categories, it unlocks newer possibilities for
�nding repurposable spectrums of varied interest and applications. Thus, the present work may be
exploited in various �elds, such as drug discovery, smart materials design, �nding environmentally
friendly pesticides, herbicides, petrochemicals, and other broad applications of chemical molecules.
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Figure 1

Home page of MPDS Compound Library (MPDS-CL) accessible at http://mpds.neist.res.in:8086/. The left
panel consists of various search options and cheminformatics tools incorporated in the portal. The right-
side panel displays the uploaded data and the calculations results.

Figure 2

http://mpds.neist.res.in:8086/
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An overview of the development of the MPDS-CL, from the molecules downloaded from 42 databases.
MPDS-CL had 147 571 744 molecules in December 2022. While the initial set of non-redundant
molecules were obtained by employing the scripts in portions, the half-yearly updates use an entirely
different approach to add molecules directly to the classes and clusters. Thus, the updates as on July
2023 is 149 169 443 number of unique molecules.

Figure 3

Diagrammatic representation of the scheme employed to obtain the atom-based division of molecules
into 97 portions.
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Figure 4

An illustration depicting the step-by-step protocol employed for developing the MPDS-CL.

Figure 5

A schematic representation of a) unattached; b) fused; c) spiro; d) connected; e) disjointed ring systems.
The �rst four scaffolds represent unique features and therefore can correspond to a unique class.
However, in case of e) when a linker is involved, such an arrangement leads to a combination of more
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than one feature. This leads to the presence of more than one unique feature (correspond to a speci�c
class) in a given molecule.

Figure 6

Figure displaying the population based distribution of selected molecular properties (for (A) acyclic and
(B) cyclic molecules); a) molecular weight, b) hydrogen bond donor, c) hydrogen bond acceptor, c) molar
refractivity, d) number of heavy atoms, e) rotatable bonds f) logP and g) topological polar surface area.
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Figure 7

A schematic diagram explaining different search methods available in MPDS-CL. The database
information is connected with the PostgreSQL server. The query via MPDS-CL is connected to the
database via Galaxy and fetches the information from the server.
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Figure 8

The �rst page of MPDS Aadhar card generated from MPDS-ID search option of MPDS Compound Library.
It depicts minimal critical information, which connects the unique Aadhar card number with: a) canonical
SMILES, b) InChI Key, c) molecular formula, d) 2D structure, e) 56-bit �ngerprint, f) IUPAC name, and g)
molecular properties.
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