1. Weir GM, Liwski RS, Mansour M (2011) Immune Modulation by Chemotherapy or Immunotherapy to Enhance Cancer Vaccines. Cancers 3:3114–3142. https://doi.org/10.3390/cancers3033114
2. Gordy JT, Luo K, Zhang H, et al (2016) Fusion of the dendritic cell-targeting chemokine MIP3α to melanoma antigen Gp100 in a therapeutic DNA vaccine significantly enhances immunogenicity and survival in a mouse melanoma model. J Immunother Cancer 4:96. https://doi.org/10.1186/s40425-016-0189-y
3. Gordy JT, Luo K, Kapoor A, et al (2020) Treatment with an immature dendritic cell-targeting vaccine supplemented with IFN-α and an inhibitor of DNA methylation markedly enhances survival in a murine melanoma model. Cancer Immunol Immunother 1–12. https://doi.org/10.1007/s00262-019-02471-0
4. Gordy JT, Luo K, Francica B, et al (2018) Anti-IL-10–mediated Enhancement of Antitumor Efficacy of a Dendritic Cell–targeting MIP3&agr;-gp100 Vaccine in the B16F10 Mouse Melanoma Model Is Dependent on Type I Interferons. J Immunother Hagerstown Md 1997 41:181–189. https://doi.org/10.1097/cji.0000000000000212
5. Schiavo R, Baatar D, Olkhanud P, et al (2006) Chemokine receptor targeting efficiently directs antigens to MHC class I pathways and elicits antigen-specific CD8+ T-cell responses. Blood 107:4597–4605. https://doi.org/10.1182/blood-2005-08-3207
6. Biragyn A, Ruffini P, Coscia M, et al (2004) Chemokine receptor-mediated delivery directs self-tumor antigen efficiently into the class II processing pathway in vitro and induces protective immunity in vivo. Blood 104:1961–9. https://doi.org/10.1182/blood-2004-02-0637
7. Patel PM, Ottensmeier CH, Mulatero C, et al (2018) Targeting gp100 and TRP-2 with a DNA vaccine: Incorporating T cell epitopes with a human IgG1 antibody induces potent T cell responses that are associated with favourable clinical outcome in a phase I/II trial. Oncoimmunology 7:e1433516. https://doi.org/10.1080/2162402x.2018.1433516
8. Gordy JT, Sandhu AK, Fessler K, et al (2023) IFNα and 5-Aza-2’-deoxycytidine combined with a dendritic-cell targeting DNA vaccine alter tumor immune cell infiltration in the B16F10 melanoma model. Front Immunol 13:1074644. https://doi.org/10.3389/fimmu.2022.1074644
9. Ju S-A, Park S-M, Lee S-C, et al (2007) Marked expansion of CD11c+CD8+ T-cells in melanoma-bearing mice induced by anti-4-1BB monoclonal antibody. Mol Cells 24:132–8
10. Vinay DS, Kwon BS (2010) CD11c+CD8+ T cells: Two-faced adaptive immune regulators. Cell Immunol 264:18–22. https://doi.org/10.1016/j.cellimm.2010.05.010
11. Beyer M, Wang H, Peters N, et al (2005) The beta2 integrin CD11c distinguishes a subset of cytotoxic pulmonary T cells with potent antiviral effects in vitro and in vivo. Respir Res 6:70. https://doi.org/10.1186/1465-9921-6-70
12. Kim YH, Seo SK, Choi BK, et al (2005) 4-1BB costimulation enhances HSV-1-specific CD8+ T cell responses by the induction of CD11c+CD8+ T cells. Cell Immunol 238:76–86. https://doi.org/10.1016/j.cellimm.2006.01.004
13. Takeda Y, Azuma M, Matsumoto M, Seya T (2016) Tumoricidal efficacy coincides with CD11c up-regulation in antigen-specific CD8+ T cells during vaccine immunotherapy. J Exp Clin Cancer Res Cr 35:143. https://doi.org/10.1186/s13046-016-0416-x
14. Saoulli K, Lee SY, Cannons JL, et al (1998) CD28-independent, TRAF2-dependent Costimulation of Resting T Cells by 4-1BB Ligand. J Exp Med 187:1849–1862. https://doi.org/10.1084/jem.187.11.1849
15. Joshi NS, Cui W, Chandele A, et al (2007) Inflammation Directs Memory Precursor and Short-Lived Effector CD8+ T Cell Fates via the Graded Expression of T-bet Transcription Factor. Immunity 27:281–295. https://doi.org/10.1016/j.immuni.2007.07.010