Amongst the major archaeal filament types, several have been shown to closely resemble bacterial homologues of the Type IV pili (T4P). Within Sulfolobales, member species encode for three types of T4P, namely the archaellum, the UV-inducible pilus (Uvp) and the archaeal adhesive pilus (Aap). Whereas the archaellum functions primarily in swimming motility, and the Uvp in UV-induced cell aggregation and DNA-exchange, the Aap plays an important role in adhesion and twitching motility. All previously solved Aap appear to have almost identical helical structures. Here, we present a cryoEM structure of the Aap of the archaeal model organism Sulfolobus acidocaldarius. We identify the component subunit as AapB and find that while its structure follows the canonical T4P blueprint, it adopts three distinct conformations within the pilus. The tri-conformer Aap structure that we describe challenges our current understanding of pilus structure and sheds new light on the principles of twitching motility.