[1] Janek, T., Łukaszewicz, M., & Krasowska, A. (2012). Antiadhesive activity of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5. BMC Microbiology, 12, 24.
[2] Silva, S., Rodrigues, C. F., Araújo, D., Rodrigues, M. E., & Henriques, M. (2017). Candida species biofilms’ antifungal resistance. Journal of Fungi, 3, 8.
[3] Dimkic´, I., Stankovic´. S., Nišavic´.M., Petkovic´. M., Ristivojevic´.P., Fira. D., & Beric. T. (2017). The profile and antimicrobial activity of Bacillus lipopeptide extracts of five potential biocontrol strains. Frontiers in Microbiology, 8, 925.
[4] Jemil, N., Ben Ayed, H., Manresa, A., Nasri, M., & Hmidet N. (2017). Antioxidant properties, antimicrobial and anti-adhesive activities of DCS1 lipopeptides from Bacillus methylotrophicus DCS1. BMC Microbiology, 17, 144.
[5] Porrini, M. P. Audisio, M. C., Sabaté, D. C., Ibarguren, C., Medici, S. K., Sarlo, E. G., Garrido, P. M., & Eguaras, M. J. (2010). Effect of bacterial metabolites on microsporidian Nosema ceranae and on its host Apis mellifera. Parasitology Research, 107, 381–388.
[6] Ramachandran, R., Shrivastava, M., Namitha, N., Narayanan, N. N., Thakur, R. L., Chakrabarti, A., & Roy, U. (2018). Evaluation of antifungal efficacy of three new cyclic lipopeptides of the class bacillomycin from Bacillus subtilis RLID 12.1. Antimicrobial Agents and Chemotherapy, 62, e01457-17.
[7] Regine, M. D., & Peypoux, F. (1994). Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology, 87, 151–174.
[8] Biniarz, P., Baranowska, G., Feder-Kubis, J., & Krasowska A. (2015). The lipopeptides pseudofactin II and surfactin effectively decrease Candida albicans adhesion and hydrophobicity. Antonie van Leeuwenhoek, 108, 343–353.
[9] Ceresa, C., Rinaldi, M., Chiono, V., Carmagnola, I., & Allegrone, G. L. (2016). Fracchia lipopeptides from Bacillus subtilis AC7 inhibit adhesion and biofilm formation of Candida albicans on silicone. Antonie van Leeuwenhoek, 109, 1375-1388.
[10] Shakerifard, P., Gancel, F., Jacques, P., & Faille C. (2009). Effect of different Bacillus subtilis lipopeptides on surface hydrophobicity and adhesion of Bacillus cereus 98/4 spores to stainless steel and Teflon. Biofouling, 25, 533–541.
[11] Piras, A.M., Maisetta, G., Sandreschi, S., Gazzarri, M., Bartoli, C., Grassi, L., Esin, S., Chiellini, F., & Batoni, G. (2015). Chitosan nanoparticles loaded with the antimicrobial peptide temporin B exert a long-term antibacterial activity invitro against clinical isolates of Staphylococcus epidermidis. Frontiers in Microbiology, 6, 1-10.
[12] Mohammed, M. A., Syeda, J. T. M., Wasan, K. M., & Wasan, E. K. (2017). An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics, 9, 53.
[13] Komi, D. E. A., & Hamblin, M. R. (2016). Chitin and chitosan: production and application of versatile biomedical nanomaterials. International Journal of Advanced Research, 4, 411–427.
[14] Silva, N. C., Silva, S., Sarmento, B., & Pintado, M. (2015). Chitosan nanoparticles for daptamycin d
elivery in ocular treatment of bacterial endophthalmitis. Drug Delivery, 22, 885-893.
[15] Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697-703.
[16] Tabbene, O., Kalai, L., Ben Slimene, I., Karkouch, I., Elkahoui, S., Gharbi, A., Cosette, P., Mangoni, M. L., Jouenne, T., & Limam, F. (2011). Anti‐Candida effect of bacillomycin D‐like lipopeptides from Bacillus subtilis B38. FEMS Microbiology Letters, 316, 108-114.
[17] Kim, P. I., Bai, H., Bai, D., Chae, H., Chung, S., Kim, Y., Park, R., Chi, & Y. T. (2004). Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. Journal of Applied Microbiology, 97, 942-949.
[18] Tabbene, O., Di Grazia, A., Azaiez, S., Ben Slimene, I., Elkahoui, S., Alfeddy, M. N., Casciaro, B., Luca, V., Limam, F., & Mangoni M. L. (2015). Synergistic fungicidal activity of the lipopeptide Bacillomycin D with amphotericin B against pathogenic Candida species. FEMS Yeast Research, 15. Fov022.
[19] Tabbene, O., Azaiez, S., Di Grazia, A., Karkouch, I., Ben Slimene, I., Elkahoui, S., Alfeddy, M .N., Casciaro, B., Luca, V., Limam, F., & Mangoni, M. L. (2016). Bacillomycin D and its combination with amphotericin B: promising antifungal compounds with powerful antibiofilm activity and wound-healing potency. Journal of Applied Microbiology, 120, 289-300.
[20] Essid, R., Rahali, F. Z., Msaada, K., Sghair, I., Hammami, K., Bouratbine, A., Aoun, K., & Limam, F. (2015). Antileishmanial and cytotoxic potential of essential oils from medicinal plants in Northern Tunisia. Industrial Crops and Products, 77, 795-802.
[21] Riezk, A., Raynes, J. G., Yardley, V., Murdan, S., & Croft, S.L. (2020). Activity of chitosan and its derivatives against Leishmania major and Leishmania mexicana In vitro. Antimicrobial Agents and Chemotherapy, 64, e01772-19
[22] Mangoni, M. L., Rinaldi, A. C., Di Giulio, A., Mignogna, G., Bozzi, A., Barra, D., & Simmaco, M. (2000). Structure–function relationships of temporins, small antimicrobial peptides from amphibian skin. European Journal of Biochemistry, 267, 1447-1454.
[23] Meena, K. R., Tandon, T., Sharma, A., & Kanwar, S. S. (2018). Lipopeptide antibiotic production by Bacillus velezensis KLP2016. Journal of Applied Pharmaceutical Science, 8, 91-98.
[24] Koyani, R. D., & Vazquez-Duhalt, R. (2016). Laccase encapsulation in chitosan nanoparticles enhances the protein stability against microbial degradation. Environmental Science Pollution Research, 23, 18850–18857.
[25] Abd Elgadir, M., Uddin, Md, S., Ferdosh, S., Aishah, A., Chowdhury, A. J. K., & Sarker, Md. Z, I. (2015). Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: A review. Journal of Food and Drug Analysis. 23, 619-629.
[26] López-Meneses, A.K., Plascencia-Jatomea, M., Lizardi-Mendoza, J., Fernández-Quiroz, D., Rodríguez-Félix, F., Mouriño-Pérez, R.R., & Cortez-Rocha, M.O. (2018) Schinus molle L. essential oil-loaded chitosan nanoparticles: Preparation, characterization, antifungal and anti-aflatoxigenic properties. LWT - Food Science and Technology, 96, 597–603.
[27] Jingou, J., Shilei, H., Weiqi, L., Danjun, W., Tengfei, W., & Yi, X. (2011) Preparation, characterization of hydrophilic and hydrophobic drug in combine loaded chitosan/cyclodextrin nanoparticles and In vitro release study. Colloids and Surfaces B: Biointerfaces, 83, 103–107.
[28] Bangun, H., Tandiono, S., & Arianto, A. (2018) Preparation and evaluation of chitosan-tripolyphosphate nanoparticles suspension as an antibacterial agent. Journal of Applied Pharmaceutical Science, 8, 147-156.
[29] Suzery, M., Hadiyanto, Majid, D., Setyawan, D., & Sutanto H. (2017) Improvement of stability and antioxidant activities by using phycocyanin - chitosan encapsulation technique. 2nd International Conference on Tropical and Coastal Region Eco Development 2016, Earth and Environmental Science, 55,1-7.
[30] Panwar, R., Asvene, K., Sharma, A. K., Kaloti, M., Dutt, D., & Pruthi, V. (2016) Characterization and anticancer potential of ferulic acid-loaded chitosan nanoparticles against ME-180 human cervical cancer cell lines. Applied Nanoscience, 6, 803–813.
[31] Dounighi, N. M., Eskandari, R., Avadi, M. R., Zolfagharian, H., Sadeghi, A. M. M., & Rezayat, M. (2012) Preparation and in vitro characterization of chitosan nanoparticles containing Mesobuthus eupeus scorpion venom as an antigen delivery system. The Journal of Venomous Animals and Toxins including Tropical Diseases, 18, 44-52.
[32] Sotelo-Boyas, M. E., Correa-Pacheco, Z. N., Bautista-Banos, S., & Corona-Rangel, M. L. (2017) Physicochemical characterization of chitosan nanoparticles and nanocapsules incorporated with lime essential oil and their antibacterial activity against food-borne pathogens. LWT - Food Science and Technology, 77, 15-20.
[33] Semete, B., Booysen, L. I., Kalombo, L., Venter, J. D., Katata, L., Ramalapa, B., Verschoor, J. A., & Swai H. (2010) In vivo uptake and acute immune response to orally administered chitosan and PEG coated PLGA nanoparticles. Toxicology and Applied Pharmacology, 249, 158–165.
[34] de Campos, A. M., Sanchez, A., & Alonso, M. J. (2001) Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporine A, International Journal of Pharmaceutics, 224,159–68.
[35] Gan, Q., & Wang, T. (2007) Chitosan nanoparticles as protein delivery carrier – systematic examination of fabrication conditions for efficient loading and release. Colloids and Surfaces B: Biointerfaces, 59, 24–34.
[36] Pan, Y., Li, Y. J., Zhao, H. Y., Zheng, J. M., Xu, H., Wei, G., Hao, J. S., & Cui, F. D. (2002) Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. International Journal of Pharmaceutics, 249, 139–47.
[37] Jarudilokkul, S., Tongthammachat, A., & Boonamnuayvittaya, V. (2011) Preparation of chitosan nanoparticles for encapsulation and release of protein. Korean Journal of Chemical Engineering, 28, 1247-1251.
[38] Koppolu, B. P., Smith, S. G., Ravindranathan, S., Jayanthi, S., Kumar, T. K. S., & Zaharoff, D. A. (2014) Controlling chitosan-based encapsulation for protein and vaccine delivery. Biomaterials, 35, 4382–4389.
[39] Chhonker, Y. S., Prasad, Y. D., Chandasana, H., Vishvkarma, A., Mitra K., Shukla, P. K., & Bhatta, R. S. (2015) Amphotericin-B entrapped lecithin/chitosan nanoparticles for prolonged ocular application. International Journal of Biological Macromolecules, 72, 1451-1458.
[40] McCall, A. D., Pathirana, R. U., Prabhakar, A., Paul, J., Cullen, P. J., & Edgerton, M. (2019) Candida albicans biofilm development is governed by cooperative attachment and adhesion maintenance proteins. NPJ Biofilms and Microbiomes, 5, 1-12.
[41] Gondim, B. L. C., Castellano, L. R. C., de Castro, R. D., Machado, G., Carlo, H. L., Valença, A. M. G., & de Carvalho, F. G. (2018) Effect of chitosan nanoparticles on the inhibition of Candida spp. biofilm on denture base surface. Archives of Oral Biology, 94, 99-107.
[42] de Carvalho, F. G., Magalhães, T. C., Teixeira, N. M., Gondim, B. L. C., Carlo, H. L., Santos, R. L., de Oliveira, A. R., & Denadai, A. M. L. (2019) Synthesis and characterization of TPP/chitosan nanoparticles: colloidal mechanism of reaction and antifungal effect on C. albicans biofilm formation. Materials Science and Engineering: C, 104, 109885.
[43] Azcurra, A. I., Barembaum, S. R., Bojanich, M. A., Calamari, S. E., Aguilar, J., Battellino, L. J., & Dorronsoro, S. T. (2006) Effect of the high molecular weight chitosan and sodium alginate on Candida albicans hydrophobicity and adhesion to cells. Medicina Oral, Patologia Oral y Cirugia Bucal, 11, 120-125.
[44] Rautela, R., Singh, A. K., Shukla, A., & Cameotra, S. S. (2014) Lipopeptides from Bacillus strain AR2 inhibits biofilm formation by Candida albicans. Antonie van Leeuwenhoek, 105, 809–821.
[45] Riezk, A., Van Bocxlaer, K., Yardley, V., Murdan, S., & Simon, L. C. (2020) Activity of amphotericin B-loaded chitosan nanoparticles against experimental cutaneous leishmaniasis. Molecules, 25, 4002.
[46] Casa, D. M., Carraro, T. C. M. M., de Camargo, L. E. A., Dalmolin, L. F., Khalil, N. M., & Mainardes, R. M. (2015) Poly(L-lactide) Nanoparticles Reduce Amphotericin B Cytotoxicity and Maintain Its In Vitro Antifungal Activity. Journal of Nanoscience and Nanotechnology, 15, 848–854.
[47] Almaaytah, A., Mohammed, G. K., Abualhaijaa, A., & Al-Balas, Q. (2017) Development of novel ultrashort antimicrobial peptide nanoparticles with potent antimicrobial and antibiofilm activities against multidrug-resistant bacteria. Drug Design, Development and Therapy, 11, 3159–3170.
[48] Zhou, Y., Li, J., Lu, F., Deng, J., Zhang, J., Fang, P., Peng, X., & Zhou, S. F. (2015) A study on the hemocompatibility of dendronized chitosan derivatives in red blood cells. Drug Design, Development and Therapy, 9, 2635–2645.
[49] Jamil, B., Abbasi, R., Abbasi, S., Imran, M., Khan, S. U., Ihsan, A., Javed, S., Bokhari, H., & Imran, M. (2016) Encapsulation of cardamom essential Oil in chitosan Nano-composites: In-vitro Efficacy on antibiotic-resistant bacterial pathogens and cytotoxicity Studies. Frontiers in Microbiology, 7.