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Abstract 

This study introduces a semi-analytical New Trigonometric Radial Basis Function (NTRBF) 

method for solving strongly nonlinear differential equations in vibration problems. The method 

uses a particular trigonometric function to deal with differential equations in an extraordinary 

and original approach. It was compared to four different problems, including the Global 

Residue Harmonic Balance Method (GRHBM) in solving circular sector oscillator problem, 

the Continuous Piecewise Linearization method (CPLM) in solving strong nonlinear 

differential equation of a tapered beam, the Differential Transform Method (DTM) to solve 

centrifugal rotating frame motion, and Akbari-Ganji's Method (AGM) to solve Duffing-type 

nonlinear oscillator. These problems were solved in different conditions. The plots and tables 

represent both cumulative and maximum errors between the NTRBF and other methods, which 

use the numerical 4th-order Runge-Kutta method as a benchmark for accuracy. The outcomes 

prove the high accuracy and efficiency of the innovative technique and its unique capability in 

solving various nonlinear vibration problems. 

Keywords: RBF method; Semi-analytical approach; Nonlinear equations; Vibration problems; 

Oscillation parameters; 

1. Introduction 

Scientists have always been looking for new methods to solve mathematical problems with no 

answer or improve the solution that has already been achieved. These improvements can be in 

the shape of higher accuracy, less computation time, etc. [1], [2], [3]. The radial basis function 

(RBF) method is a powerful method for solving differential equations related to many physical 

problems [4], [5], [6]. Radial basis functions are a type of function whose value depends only 
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on the distance between a point and the origin. Linear combinations of these functions can 

bring us the solution for many ordinary or partial differential equations with strong 

nonlinearity. The most significant merits of the RBF method are accuracy and convergence 

power. Even though the RBF method has many advantages, it is impossible to apply RBF 

approximation to all differential problems. Nevertheless, many modifications have been made 

to increase the efficiency and accuracy of the RBF method; for instance: Liu et al. [7] invented 

a multiple-scale multiquadric RBF for solving elliptic PDEs and the related inverse Cauchy 

problems. The results showed that the technique was precise and stable against large noises. 

Sun et al. [8] improved the ordinary RBF to a local radial basis function meshless method for 

solving the heat transfer problem with radiation. In that paper, the RBF was compounded to a 

polynomial basis to form the approximating function, so meshes were not needed. The 

proposed function was more effective, with outstanding stability for solving the radiative 

problems. Jankowska et al. [9] applied the Kansa-RBF method to two dimensions boundary 

value problems. They solved some numerical examples to indicate the accuracy and efficiency 

of the method. Shankar et al. [10] used RBF to solve the 2D problem of the surfaces. They used 

the least orthogonal interpolation for the functions. The method was free of stagnation errors 

and showed high orders of convergence. In the research of Li et al. [11], a new hybrid scheme 

based on the multiquadric RBF-FD method was proposed to solve the convection-dominated 

diffusion problems. The numerical outcomes illustrated that the new scheme has an advantage 

over the standard scheme in feasibility and correction. Zhang [12] created a precise RBF 

method for solving partial differential equations. The novel method, coupled radial basis 

function, was not dependent on shaping parameters–two examples in the paper proved the 

method's robustness. Bhardwaj and Kumar [13] found a new solution for the time–fractional 

Tricomi-type equations based on the RBF meshless method. They evidenced that the proposed 

method was practicable and stable for all problem conditions. Reutsky and Lin [14] applied an 

innovative RBF method for an anisotropic inhomogeneous medium for 3D convection-

diffusion-reaction problems. Several examples demonstrated the high effectiveness of the 

method in single and double-connected domains. Aràndiga et al. [15] applied a multiquadric 

radial basis function to examine tactics to rebuild discontinuous one-dimensional functions for 

indicating the shape parameter of the RBF. They presented numerical examples to validate 

their study. Ullah [16] searched for a solution for high-dimensional Black–Scholes partial 

differential equations. He used the radial basis function-finite difference method in the 

multiquadric form and demonstrated its efficiency and precision. Qiao et al. [17] invented a 

fast finite difference/RBF meshless technique for time-fractional convection-diffusion 
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problems. The method was so effective for complicated boundaries and regions and lessened 

the calculation time while increasing accuracy. Mai-Duy and Strunin [18] used the integral 

radial basis function to solve the second-order nonlinear differential equation by a new 

compressed approximation scheme. The outcomes showed great convergence of the offered 

method. Ma et al. [19] presented a new Kansa method with the fictitious center approach in 

which polynomial basis functions amplify the radial basis function (RBF) approximation. Once 

again, the shape parameter dependency was eliminated in the article to improve the accuracy 

and stability. Zeng and Zhu [20] invented an RBF-based method with application in implicit 

surface reconstruction. The technique unifies both interpolation and approximation of the 

RBFs. Moreover, the outcomes show that the method is precision-controlled and rapid. Ang 

[21] found a numerical solution for Cattaneo–Vernotte hyperbolic equation using the RBF 

approximation. Several equations were solved to confirm the validness and precision of the 

presented solution. Wu et al. [22] proposed a new RBF that integrates multi-dimensional 

scaling for carbon decrease in industries. They assessed the outcomes and the real data and 

proved the technique's efficiency and reliability. Some other significant researches in the 

literature are presented in [23], [24], [25], [26], [27], [28]. 

This research introduces an original technique, namely a new trigonometric radial basis 

function for solving strongly nonlinear differential equations with application in vibration 

problems. The method uses a unique trigonometric function with inherent oscillatory features 

to fill the gap in solving differential equations related to vibrations. Compared to all other radial 

basis functions, improvements in this technique result in less significant maximum and average 

errors, higher accuracy and convergence, and high adaptability to multifarious vibration 

problems. In order to prove the method's spectacular properties, we explained the process of 

solution and solved four distinct vibration problems from the literature. Then we compared the 

outcomes with the previous methods and used a numerical method to benchmark accuracy. 

2. New Trigonometric Radial Basis Function Approximation 

Approximation for solving vibration problems is possible through a wide range of radial basis 

functions; however, our choices are restricted by the problem's inherent characteristics. For 

example, multiquadric functions are a proper choice for velocity in fluid mechanics, whereas 

it is not suitable for displacement in harmonic oscillation problems. Table 1 shows the popular 

radial basis functions. Here we introduce a new trigonometric radial basis function (NTRBF) 

for solving nonlinear vibration problems. This novel function is  , in which 2 2sin( ( ) )x Ce -
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 represents the distance between the input  and some fixed point and  is the shape 

parameter. Fig. 1. shows the graph of the mentioned function in three different shape 

parameters and when the fixed point is considered the origin . 

 

Table 1 List of common radial basis functions [29], [30] 

Name Function 

Gaussian  

Multiquadric  

Inverse Multiquadric  

Inverse Quadratic  

Generalized Multiquadric  

Laguerre–Gaussian  

Poisson  

Radial Power  

Thin Plate spline  

Wendland  

Gneiting  

Hyperbolic Secant  
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Fig. 1 Graph of new trigonometric radial basis function in different shape parameters 

 

Symmetry, oscillatory form, and high dependence on shape parameters are prominent features 

in the new trigonometric RBF plot. Unlike the other common RBFs, these features make it an 

excellent choice for vibration problems. In general, the procedure of solving a problem via the 

new trigonometric radial basis function is slightly different from solving a problem with the 

usual RBF [30]. In the first step, we introduce a set of finite points  called center or origin 

. The value of each center in the primary function is real– . The goal is to 

approximate an unknown function at those points. For a set of differential equations with  

unknown functions (or it can be just one differential equation with one unknown function), we 

have: 

         (1) 

The corresponding initial or boundary conditions are: 

( )C

( )CÎ ( )g C Î

n n

( )( ) ( ): ( ), ( ),..., ( ), ( ), ( ),..., ( ),... 0, 1,...,j k

i iDE f g x g x g x h x h x h x i n¢ ¢ = =
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                                                                                                 (2)

We form a series of new trigonometric radial basis functions based on differential equations to 

approximate the main functions. The series can have any number of sentences with a value 

between one to infinity based on convergence, precision, and calculation time. 

                    (3)

are new trigonometric radial basis functions, and  are the corresponding real 

coefficients . A more expanded form of Eq. (3) is: 

       (4)

 are the shape parameters of radial basis functions for adjusting the intensity of inlet 

values, and  are centers. Centers, shape parameters, and the number of sentences in the 

series are three levers to regulate the series. Based on the presented series, and their 

derivatives are: 

( )

( )

( )

( )

( )

( )

0 0

1 1

( 1) ( 1)

1 ( 1)

0 0

1 1

( 1) ( 1)

1 ( 1)

0 , ( ) ,

0 , ( ) ,

0 , ( ) ,

0 , ( ) ,

0 , ( ) ,

0 , ( ) ,

L

L

j j

j L j

L

L

k k

k L k

g g g L g

g g g L g

g g g L g

h h h L h

h h h L h

h h h L h

- -

- -

- -

- -

= =

¢ ¢= =

= =

= =

¢ ¢= =

= =







( )

( )

1

1

( ), 1 .

( ), 1 .

m

p p

p

s

q q

q

g x A G x m

h x B H x s

=

=

= £ <¥

= £ <¥

å

å

M

,p qG H ,p qA B

( , )p qA B Î

( )

( )

2 2

1

2 2

1

sin( ( ) ), 1 .

sin( ( ) ), 1 .

m

p g gp

p

s

q h hq

q

g x A x C m

h x B x C s

e

e

=

=

= × - £ <¥

= × - £ <¥

å

å

M

,g he e

,p qC C

( ), ( )g x h x



7 
 

   (5) 

In , the following sentences are formed: 

                     (6)                                                    
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       (7) 

By replacing Eq. (5) in Eq. (1), we can obtain the following: 

  (8) 

Each sentence of Eq. (8) is correct in every  in domain, like  or , so: 

  (9) 

When we have  sentences in Eq. (3), the initial or boundary conditions in Eqs. (6)–(7) 
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function coefficients. 
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                               (10) 

So, we differentiate Eq.(9) in the initial or boundary condition points to add more sentences to 

the problem in order to indicate the desired coefficients: 

                               (11)  

Furthermore, if that was not enough, we differentiate the Eq. (11) one more time and continue 

to do so until all coefficients can be found. 

                  (12) 

In the last step, we solve the system of unknowns resulting from Eqs. (6)–(7), (9) and maybe 

Eqs. (11)–(12) and compute the coefficients; consequently, the ultimate answer of  and 

is built. It should be mentioned that coefficients are correct for specific problem 

parameters, and we should redo some parts of the process for new ones. 

3. Result and Discussion 

In this section, we solved four vibration problems with various physics via the new 

trigonometric radial basis function based on the previous section's procedure. All problems 

have a second-order nonlinear ordinary differential equation and are initial value problems. 

Each problem was solved for different conditions, and plots for displacement or rotation were 

extracted. Furthermore, to determine the NTRBF method's accuracy, we calculated the 

cumulative and maximum errors with the contribution of the numerical 4th-order Runge-Kutta 

method and presented it in figures and tables. 
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3.1. Example I: Circular Sector Oscillator 

The first problem is a nonlinear differential equation of a sectorial oscillator solved by the 

Global Residue Harmonic Balance Method (GRHBM) [31]. The oscillator is solid and 

homogenous, and there is no surface friction. The radius  and angle  of the sector 

should be indicated to solve the problem. Fig. 1 shows a schematic of the oscillator. 

 

Fig. 2 Schematic figure of the circular sector oscillator 

 

The main equation and initial conditions for oscillation are as follows: 

            (13) 

                   (14) 

We introduce  the center of mass and  a dimensionless parameter: 

                   (15) 

By using the mentioned parameters, Eq. (13) transforms to: 
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2 23 4sin( ) 3 sin( ) 2sin( )
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2 3 3 3

R
R R R g

a a a
q q q q q

a a a

æ ö æ ö
- + + =ç ÷ ç ÷
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y l

2 sin
, ,
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R y
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l

a
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                        (16) 

Where , and  are (  is the acceleration of gravity for all problems): 

                 (17) 

The reference study solved the Eq. (16) by GRHBM for several problem conditions and 

compared the results with the Modified Homotopy Perturbation Method (MHPM) and the 

classic numerical Runge-Kutta method. The outcomes show the excellent accuracy of GRHBM 

compared to MHPM; however, we applied the NTRBF to the problem. As a sample of the 

solution, the corresponding centers and shape parameters for the problem are as follows: 

                     (18) 

If we consider four sentences in the series of , we have: 

               (19) 

The expanded form of Eq. (19) is: 

              (20) 

Regarding the number of sentences in Eq. (20), we need four boundary conditions to determine 

the unknowns. For , , and , the boundary conditions are as follows 

(BC4 is achieved by differentiating the Eq. (16)): 

                    (21) 
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Subsequently, we have: 

(22) 

By solving the system of unknowns in Eq. (22), the ultimate function of  and will be 

achieved: 

             (23) 

             (24) 

Figs. 2–7 show the rotation profile in the correct time scale and error for NTRBF, and GRHBM, 

based on the numerical 4th-order Runge-Kutta method. As can be seen in Fig. 5, the NTRBF 

method error is in a symmetric form with a maximum error of  and the cumulative 

error of , and GRHBM has a maximum error of , and the cumulative error 

about when . Likewise, based on Fig. 8, when , the utmost errors 

are and , and the cumulative errors are , and for the 

NTRBF method and GRHBM, respectively, which illustrates the strength of the NTRBF 

method due to better accuracy. At this stage, the question is whether or not another RBF can 

solve this problem. Among the presented RBFs in Table 1, the Poisson function is the best 

option to approximate, but even in that case, the most significant absolute error is about , 

which is a poor result. We should mention that selecting centers is limited when using the 

Poisson function because of the denominator's independent variable; however, it might be 

appropriate for vibration problems with damping. 

1 2 3 4

1 2 3 4

1: 0.02531803320 0.03100319483 0.1201679870 0.3075209946 ,
6

2 : 0.05560959216 0.06135750046 0.1151058868 0.1633593335 0,

3 :  

4:  

BC A A A A

BC A A A A

BC

BC

p
+ + + =

- - - - =





( )tq ( )tq

2 2

2 2

( ) 10.26989096 (0.177 0.1597956) 7.679735285 (0.177 0.177)

6.927704803 (0.177 0.354) 4.338468036 (0.177 0.587817)

t sin t sin t

sin t sin t

q = - - - -

- + -

( ) 3.6355414sin(0.177 0.1597956)cos(0.177 0.1597956)

2.718626291sin(0.177 0.177)cos(0.177 0.177)

2.4524075sin(0.177 0.354)cos(0.177 0.354)

1.535817685sin(0.177 0.587817)cos(0.177 0.587817)

t t t

t t

t t

t t

q = - - -

- - -

- - +

- -



0.011750-

0.040032- 0.026070

0.240067 / 8A p= / 6A p=

0.013880 0.120860 0.178994- 0.837080

0.2
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Fig. 3 Comparison of the numerical method, NTRBF method, and GRHBM, for , with 

, , and  

 

 

Fig. 4 Comparison of the numerical method, NTRBF method, and GRHBM, for , with 

, , and  

( )tq

15R = / 3a p= / 8A p=

( )tq

15R = / 3a p= / 8A p=
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Fig. 5 Error for NTRBF method and GRHBM, with , , and  

 

 

Fig. 6 Comparison of the numerical method, NTRBF method, and GRHBM, for , with 

, , and  
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Fig. 7 Comparison of the numerical method, NTRBF method, and GRHBM, for , with 

, , and  

 

 

Fig. 8 Error for NTRBF method and GRHBM, with , , and  

( )tq

15R = / 3a p= / 6A p=
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3.2. Example II: Vibration of a Tapered Beam with non-uniform Cross-section 

The second example investigates the free vibration of a tapered beam. Physical characteristics 

along the beam are uniform, and no energy loss is assumed. Fig. 9 shows the tapered beam 

related to the problem. Beam displacement as an effect of free vibration can be achieved by 

solving the related equation and corresponding initial conditions (Eqs. (25)–(26)) [32]. 

 

Fig. 9 Shape of a typical tapered beam

 

                (25) 

                    (26) 

In the reference paper, Eq. (25) was solved for two initial conditions by the Continuous 

Piecewise Linearization Method (CPLM), and the results were compared to the Linearized 

Harmonic Balance Method (LHBM) and RKM. The achievements of the paper show that 

CPLM overcomes the LHBM. As an alternative, we used NTRBF to approximate the solution. 

The comparison of the results with errors are shown in Figs. 10–13. The outcomes show that 

the maximum error for the function are , and for the NTRBF 

method, and , and for CPLM, when , and , respectively. 

 

3 2 2 6 6 5

4 2 4

2 [3( ) ( )
0,

3(1 ) 1

u A u A u u u
u

u u

a b b

a a

- + - +
+ + =

+ +

&&

(0) , (0) 0,u A u= =&

( )u t 0.019010- 0.030700-

0.024040 0.051880 0.5A = 1A =
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Fig. 10 Comparison of the numerical method, NTRBF method, and CPLM, for , with 

 

 

 

Fig. 11 Error for NTRBF method and CPLM, with  

( )u t

0.5A =

0.5A =
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Fig. 12 Comparison of the numerical method, NTRBF method, and CPLM, for , with 

 

 

 

Fig. 13 Error for NTRBF method and CPLM, with  

( )u t

1A =

1A =
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3.3. Example III: Centrifugal Rotating Frame with an Oscillator Mass 

This research considers a centrifugal rotating frame with an oscillator mass (Fig. 14). The 

nonlinear differential equation of the problem in Eq. (27), solved by the Differential Transform 

Method (DTM), Variational Iteration Method (VIM), and Homotopy Perturbation Method 

(HPM) [33]. One more time, the NTRBF method is applied to solve the equation for two values 

for (initial condition). Outcomes are demonstrated in Figs. 15–17. 

 

Fig. 14 Geometry of the rotating frame and oscillator mass 

                   (27) 

                    (28) 

Where is: 

                     (29) 

A

2

2
(1 cos )sin 0,

d

dt

j
j j+ -L =

(0) , (0) 0,
d

A
dt

j
j = =

L

2

.
L

g

w
L =
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Apparently, DTM and NTRBF methods perfectly match the numerical Runge-Kutta method. 

Nevertheless, if we look at Table 2, which presents the errors, we are able to understand that 

for , and , the maximum error of  for the NTRBF method are about 

, , and , whereas for DTM are near , , 

and , respectively. 

 

Fig. 15 Comparison of the numerical method, NTRBF method, and DTM, for , with 

 

 

0.25,0.5L = 0.75 ( )tj
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( )tj

0.25L =
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Fig. 16 Comparison of the numerical method, NTRBF method, and DTM, for , with 

 

 

Fig. 17 Comparison of the numerical method, NTRBF method, and DTM, for , with 
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Table 2 Errors for the NTRBF method and DTM 
 

NTRBF 

method 

DTM NTRBF 

method 

DTM NTRBF 

method 

DTM 

t    

0.0 0.000000 -0.001250 0.000000 0.003120 0.000000 0.000000 

0.5 -0.001190 0.001980 -0.002320 -0.005350 0.005770 0.001012 

1.0 -0.003180 0.000635 -0.006270 -0.010110 0.016940 0.003215 

1.5 -0.003960 0.000662 -0.005520 -0.010090 0.020160 0.005316 

2.0 -0.003770 0.000215 0.002050 -0.002550 0.007240 0.006839 

2.5 -0.004030 0.006330 0.010070 0.010610 -0.015840 0.007840 

3.0 -0.005570 -0.002930 0.011260 0.011200 -0.033350 0.008308 

3.5 -0.007080 0.011750 0.006420 0.003270 -0.033980 0.007943 

4.0 -0.006390 0.006020 0.001930 0.002400 -0.020710 0.006228 

4.5 -0.004140 0.012450 0.001960 0.004270 -0.006770 0.002464 

5.0 -0.002740 0.009750 0.004700 0.003990 -0.003020 0.003666 

5.5 -0.002700 0.014600 0.004140 -0.002090 -0.008960 0.010875 

6.0 -0.002800 0.007190 -0.002950 -0.011000 -0.013520 0.016932 

6.5 -0.001810 0.006630 -0.011380 -0.018010 -0.005140 0.020756 

7.0 -0.000226 0.003170 -0.013220 -0.018670 0.016220 0.022660 

7.5 -0.000342 -0.012500 -0.007810 -0.008160 0.037390 0.023055 

8.0 -0.002580 -0.006180 -0.001340 0.001580 0.043500 0.021585 

8.5 -0.004610 -0.009540 0.001010 0.007280 0.031380 0.017354 

9.0 -0.005090 -0.006370 -0.000226 0.010090 0.011670 0.009683 

9.5 -0.004850 -0.008120 0.000396 0.014900 -0.001750 0.001361 

10.0 -0.005300 0.000826 0.007040 0.028440 -0.003600 0.014147 

3.4. Example IV: Duffing-type Nonlinear Oscillator 

In a Duffing-type oscillator, a spring's stiffness does not strictly obey Hooke's law or the 

damping term exists in the equation of motion. In this problem, a disk is attached to a solid 

hub, so as the disk rotates, the hub plays the springs roll and makes the disk oscillate (Fig. 18). 

Eqs.(30)–(32) are the general Duffing equation, the nonlinear equation of the problem, and the 

boundary conditions [34]. The problem is analyzed by Akbari-Ganji's Method (AGM). 

0.25L = 0.5L = 0.75L =
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Fig. 18 Disk with the hub as a Duffing-type oscillator 

                             (30) 

                   (31) 

                   (32) 

Figs. 19–22 demonstrate the amount of disk rotation in different conditions for initial rotation. 

When the disk's initial rotation is slight, the error for AGM is in the maximum state. When we 

increase the initial rotation from , the maximum error decreases, and when , we 

have the best match for the AGM. On the contrary, the NTRBF method for all values of  has 

an acceptable error. Tables 3–4 show the difference between the numerical, AGM, and NTRBF 

methods. For AGM, we have the most significant errors about , , 

, and , when we have , and  for , while these values for 

the NTRBF method are , , , and . The conclusion is that 

for values of initial rotation  more minor than , NTRBF has higher accuracy. 

3 o ,c s( )x x x x td a b g w+ + + = 

2 3

2 2

( )
( ) 0,

1 ( )

d t
t

dt t

g
g

g
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+

(0) , (0) 0.
d

A
dt

g g= =

0.01 10A =
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0.02429- 0.29491- 0.01,  0.1,  1 10 A
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Fig. 19 Comparison of the numerical method, NTRBF method, and AGM, for , with 

 

 

Fig. 20 Comparison of the numerical method, NTRBF method, and AGM, for , with 
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Fig. 21 Comparison of the numerical method, NTRBF method, and AGM, for , with 

 

 

 

( )tg

1A =
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Fig. 22 Comparison of the numerical method, NTRBF method, and AGM, for , with 

 

 

Table 3 Errors for the NTRBF method and AGM 

 
NTRBF 

method 
AGM  

NTRBF 

method 
AGM 

t  t  

0 0.000000 -0.000022 0 0.000000 0.000095 

80 0.000607 -0.004220 8 0.005800 0.007810 

160 0.000491 -0.012910 16 0.004270 0.006920 

240 -0.0003`83 0.001740 24 -0.004810 -0.008640 

320 -0.000108 0.018470 32 -0.002080 -0.012790 

400 -0.000079 0.016640 40 -0.000844 -0.008640 

480 -0.000863 0.008450 48 -0.007740 -0.001740 

560 -0.000299 -0.001120 56 -0.001690 0.013860 

640 0.000329 -0.010660 64 0.004820 0.017030 

720 -0.000042 -0.018540 72 0.000195 0.001720 

800 0.000127 -0.023120 80 0.001410 -0.014190 

 

 

Table 4 Errors for the NTRBF method and AGM 

 
NTRBF 

method 
AGM  

NTRBF 

method 
AGM 

t  t  

0 0.00000 0.00355 0 0.00000 0.01150 

1 0.03703 -0.00188 1 0.00950 -0.02367 

2 0.04381 0.00635 2 -0.00987 0.04070 

3 -0.02106 0.00608 3 0.21504 0.08399 

4 -0.00929 0.00631 4 0.46414 0.01765 

5 0.02182 -0.02429 5 0.55521 0.00597 

6 -0.02048 0.00973 6 0.17619 -0.02116 

7 -0.02183 0.00828 7 -0.35530 -0.00140 

8 0.04231 0.00184 8 -0.58344 -0.00470 

( )tg

10A =

0.01A = 0.1A =

1A = 10A =
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9 0.02609 -0.00127 9 -0.12855 0.02142 

10 0.00149 0.00441 10 0.71387 -0.29491 

 

4. Conclusion 

The presented study proposed a novel trigonometric radial basis function for approximating 

vibration system nonlinear differential equations. The proposed function applied to four 

different problems previously solved by GRHBM, CPLM, DTM, and AGM. The results of the 

comparison, which prove the greater accuracy of the presented method, are as follows: 

§ In the circular sector oscillator, the NTRBF method has a maximum error of 

, and the cumulative error is about , whereas GRHBM has a 

maximum error of , and the cumulative error about  when 

. For , the utmost errors are and , and the 

cumulative errors are  and  for the NTRBF method and the 

GRHBM. 

§ The outcomes illustrate that the maximum error for tapered beam displacement function 

( ) are and for the NTRBF method and and 

for CPLM, when , and , respectively. 

§ For , and , in the rotating frame, the maximum error of  for 

NTRBF method are about ,  and , and for DTM is 

near , and , correspondingly. 

§ Considering the AGM in Duffing-type oscillator, for rotation function, we have the 

most significant error about , ,  and , when 

we have , , , and  for , while these values for the NTRBF method are 

, ,  and . These values demonstrate that for small 

values of , NTRBF has better precision, though it is relatively reverse for more than 

one. 
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