Over time scales between 10 days and 10–20 years – the macroweather regime – atmospheric fields, including the temperature, respect statistical scale symmetries, such as power-law correlations, that imply the existence of a huge memory in the system that can be exploited for long-term forecasts. The Stochastic Seasonal to Interannual Prediction System (StocSIPS) is a stochastic model that exploits these symmetries to perform long-term forecasts. It models the temperature as the high-frequency limit of the (fractional) energy balance equation (fractional Gaussian noise) which governs radiative equilibrium processes when the relevant equilibrium relaxation processes are power law, rather than exponential. They are obtained when the order of the relaxation equation is fractional rather than integer and they are solved as past value problems rather than initial value problems. StocSIPS was first developed for monthly and seasonal forecast of globally averaged temperature. In this paper, we extend it to the prediction of the spatially resolved temperature field by treating each grid point as an independent time series. Compared to traditional global circulation models (GCMs), StocSIPS has the advantage of forcing predictions to converge to the real-world climate. It extracts the internal variability (weather noise) directly from past data and does not suffer from model drift. Here we apply StocSIPS to obtain monthly and seasonal predictions of the surface temperature and show some preliminary comparison with multi-model ensemble (MME) GCM results. For one month lead time, our simple stochastic model shows similar values of the skill scores than the much more complex deterministic models.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Loading...

Posted 17 Mar, 2021

###### No community comments so far

###### First submitted

On 12 Mar, 2021

###### Editor assigned

On 12 Mar, 2021

Posted 17 Mar, 2021

###### No community comments so far

###### First submitted

On 12 Mar, 2021

###### Editor assigned

On 12 Mar, 2021

Over time scales between 10 days and 10–20 years – the macroweather regime – atmospheric fields, including the temperature, respect statistical scale symmetries, such as power-law correlations, that imply the existence of a huge memory in the system that can be exploited for long-term forecasts. The Stochastic Seasonal to Interannual Prediction System (StocSIPS) is a stochastic model that exploits these symmetries to perform long-term forecasts. It models the temperature as the high-frequency limit of the (fractional) energy balance equation (fractional Gaussian noise) which governs radiative equilibrium processes when the relevant equilibrium relaxation processes are power law, rather than exponential. They are obtained when the order of the relaxation equation is fractional rather than integer and they are solved as past value problems rather than initial value problems. StocSIPS was first developed for monthly and seasonal forecast of globally averaged temperature. In this paper, we extend it to the prediction of the spatially resolved temperature field by treating each grid point as an independent time series. Compared to traditional global circulation models (GCMs), StocSIPS has the advantage of forcing predictions to converge to the real-world climate. It extracts the internal variability (weather noise) directly from past data and does not suffer from model drift. Here we apply StocSIPS to obtain monthly and seasonal predictions of the surface temperature and show some preliminary comparison with multi-model ensemble (MME) GCM results. For one month lead time, our simple stochastic model shows similar values of the skill scores than the much more complex deterministic models.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Loading...