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Positive solution for an elliptic system with critical exponent

and logarithmic terms: the higher dimensional cases *

Hichem Hajaieja,, Tianhao Liub,, Wenming Zoub,

a Department of Mathematics, California State University at Los Angeles, Los Angeles, CA 90032, USA
b Department of Mathematical Sciences, Tsinghua University, Beijing 100084

Abstract

In this paper, we consider the coupled elliptic system with critical exponent and logarithmic terms:





−∆u = λ1u+ µ1|u|2p−2u+ β|u|p−2|v|pu+ θ1u log u
2, x ∈ Ω,

−∆v = λ2v + µ2|v|2p−2v + β|u|p|v|p−2v + θ2v log v
2, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

where Ω ⊂ R
N is a bounded smooth domain, 2p = 2∗ = 2N

N−2 is the Sobolev critical exponent. When

N ≥ 5, for different ranges of β, λi, µi, θi, i = 1, 2, we obtain existence and nonexistence results of positive

solutions via variational methods. The special case N = 4 was studied by the authors in (arXiv:2304.13822).

Note that for N ≥ 5, the critical exponent is given by 2p ∈ (2, 4), whereas for N = 4, it is 2p = 4. In the

higher dimensional cases N ≥ 5 brings new difficulties, and requires new ideas. Besides, we also study the

Brézis-Nirenberg problem with logarithmic perturbation

−∆u = λu+ µ|u|2p−2u+ θu log u2 in Ω,

where µ > 0, θ < 0, λ ∈ R, and obtain the existence of positive local minima and least energy solution under

some certain assumptions.

Key words: Schrödinger system; Brézis-Nirenberg problem; Critical exponent; Logarithmic perturbation;

Positive solution;
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1 Introduction

In this paper, we consider the solitary wave solutions of the following time-dependent nonlinear logarithmic-

type Schrödinger system





ı∂tΨ1 = ∆Ψ1 + µ1|Ψ1|2p−2Ψ1 + β|Ψ1|p−2|Ψ2|pΨ1 + θ1Ψ1 logΨ
2
1, x ∈ Ω, t > 0,

ı∂tΨ2 = ∆Ψ2 + µ2|Ψ2|2p−2Ψ2 + β|Ψ1|p|Ψ2|p−2Ψ2 + θ2Ψ2 logΨ
2
2, x ∈ Ω, t > 0,

Ψi = Ψi(x, t) ∈ C, i = 1, 2

Ψi(x, t) = 0, x ∈ ∂Ω, t > 0, i = 1, 2,

(1.1)

where ı is the imaginary unit, Ω ⊂ R
N is a bounded smooth domain, N ≥ 4, 2p = 2∗ = 2N

N−2 is the

critical Sobolev exponent, λ1, λ2, θ1, θ2 ∈ R, µ1, µ2 > 0 and β ̸= 0 is a coupling constant. System (1.1)

appears in many physical fields, such as quantum mechanics, quantum optics, nuclear physics, transport and

diffusion phenomena, open quantum systems, effective quantum gravity, theory of superfluidity and Bose-

Einstein condensation. We refer the readers to the papers [1, 3, 4, 9, 10, 11, 17, 18] for a survey on the related

physical backgrounds.

To study the solitary wave solutions of the system (1.1), we set Ψ1(x, t) = eıλ1tu(x) and Ψ2(x, t) =
eıλ2tv(x), then system (1.1) is reduced to the following coupled elliptic system with logarithmic terms





−∆u = λ1u+ µ1|u|2p−2u+ β|u|p−2|v|pu+ θ1u log u
2, x ∈ Ω,

−∆v = λ2v + µ2|v|2p−2v + β|u|p|v|p−2v + θ2v log v
2, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

(1.2)

The logarithmic terms present in themselves many mathematical interests and difficulties. It is easy to see that

u = o(u log u2) for u very close to 0. Compared to the critical term |u|2p−2u, the logarithmic term u log u2 has

a lower-order term at infinity. Additionally, the logarithmic term has indefinite sign and makes the structure of

the corresponding functional complicated.

Problem (1.2) is connected to the following Bose-Einstein condensates coming from the Gross-Pitaevskii

coupled equations.





−∆u = λ1u+ µ1|u|2p−2u+ β|u|p−2|v|pu, x ∈ Ω,

−∆v = λ2v + µ2|v|2p−2v + β|u|p|v|p−2v, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

Starting from the cerebrated work by Brézis and Nirenberg [5], this critical system has received great attention

in the past thirty years, in particular for the existence of positive least energy solutions, we refer to [7, 8, 16, 22]

and references therein.

For the single equation setting of (1.2), Deng et al.[12] investigated the existence of positive least energy

solutions for the following related single equation

−∆u = λu+ |u|2p−2u+ θu log u2, u ∈ H1
0 (Ω), Ω ⊂ R

N , i = 1, 2, (1.3)

In [12], the authors proved that equation (1.3) has a positive least energy solution if λ ∈ R, θ > 0 for all N ≥ 4.

Also, they obtained some existence and nonexistence results under other conditions, we refer the readers to [12]

for details. Recently, the authors studied the particular case p = 2 and N = 4 in [13], and proved various

existence and nonexistence results for the system (1.2).
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In this paper, we continue our previous work [13] to study the existence and nonexistence of positive

solutions for system (1.2) in the higher dimensional case. That is, we always work under the assumptions

N ≥ 5 and 2p = 2∗.

The higher dimensional case introduces different phenomena and challenges compared to the specific case

where N = 4, since the critical exponent is given by 2p ∈ (2, 4) for N ≥ 5, whereas for N = 4, it is 2p = 4.

This brings some difficulties and requires us to develop some new ideas.

Define H := H1
0 (Ω) ×H1

0 (Ω). To find a positive solution to the system (1.2), we borrow the ideas from

[12] to define a modified functional L : H → R

L(u, v) = 1

2

∫

Ω

|∇u|2 − λ1
2

∫

Ω

|u+|2 − µ1

2p

∫

Ω

|u+|2p − θ1
2

∫

Ω

(u+)2(log(u+)2 − 1)

+
1

2

∫

Ω

|∇v|2 − λ2
2

∫

Ω

|v+|2 − µ2

2p

∫

Ω

|v+|2p − θ2
2

∫

Ω

(v+)2(log(v+)2 − 1)− β

p

∫

Ω

|u+|p|v+|p,

where u+ := max {u, 0}, u− := −max {−u, 0}. We can see that the functional L is well-defined in H.

Moreover, any nonnegative critical point of L corresponds to a solution of the system (1.2).

We call a solution (u, v) fully nontrivial if both u ̸≡ 0 and v ̸≡ 0; we call a solution (u, v) semi-trivial if

u ≡ 0, v ̸≡ 0 or u ̸≡ 0, v ≡ 0; we call a solution (u, v) positive (resp. nonnegative) if both u > 0 and v > 0
(resp. both u ≥ 0 and v ≥ 0 ). We say a solution (u, v) of (1.2) is a least energy solution if (u, v) is fully

nontrivial and L(u, v) ≤ L(φ, ψ) for any other fully nontrivial solution (φ, ψ) of system (1.2). As in [14], we

consider

N = {(u, v) ∈ H : u ̸≡ 0, v ̸≡ 0,L′(u, v)(u, 0) = 0 and L′(u, v)(0, v) = 0} .
It is easy to check that N ̸= ∅. Then we set

CN := inf
(u,v)∈N

L(u, v).

Define

Σ1 := {(λ, µ, θ) : λ ∈ R, µ > 0, θ > 0} .
Theorem 1.1. Assume that N ≥ 5 and (λi, µi, θi) ∈ Σ1 for i = 1, 2, then there exists β0 ∈ (0,min {µ1, µ2}]
such that the system (1.2) has a positive least energy solution for all β ∈ (−β0, 0) ∪ (0,+∞).

Remark 1.1. (1) For the special case N = 4 and 2p = 2∗, when (λ1, µ1, θ1) ∈ Σ1 and (λ2, µ2, θ2) ∈ Σ1,

[13, Theorem 1.1] proved that system (1.2) has a positive least energy solution, provided that β ∈
(
−β̃0, 0

)
∪

(
0, β̃1

)
∪
(
β̃2,+∞

)
, where β̃i, i = 0, 1, 2, are some specific constants satisfying

0 < β̃0, β̃1 ≤ min {µ1, µ2} ≤ max {µ1, µ2} ≤ β̃2.

However, we do not know whether a least energy solution for (1.2) exists or not if β̃1 ≤ β ≤ β̃2. Therefore,

comparing this with Theorem 1.1, the general case N ≥ 5 behaves differently from the special case N = 4.

The reason is that p = 2 if N = 4, whereas 1 < p < 2 if N ≥ 5. The fact that 1 < p < 2 introduces significant

differences for β > 0, which means that the method used in [13] cannot apply directly to this paper, and so

we require some new ideas and techniques. As we will see in Proposition 2.4, the approach to establish energy

estimate for β > 0 is completely different from that in the case N = 4 [13].

(2) In the particular case θ = 0, [8, Theorem 1.3] said that the system (1.2) has a positive least energy

solution for any β ̸= 0 and λ1, λ2 ∈ (0, λ1(Ω)). Comparing this with Theorem 1.1, the logarithmic term
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θiu log u
2 has a significant impact on the existence of solutions, and introduces different and more challenging

situations. One of the main difficulties comes from the uncertain sign of the logarithmic term, which implies

that the Nehari set N may not be a C1-manifold for all β < 0. As a result, N cannot be a natural constraint. So

we have to restrict the range of β to β ∈ (−β0, 0) and demonstrate that we can find the free critical points on

a special set, see Proposition 2.1 and 2.2. Another difficulty is do to the presence of logarithmic terms, which

makes the structure of functional complicated by using variational method. This requires us to make more

careful calculations and develop new ideas and innovative techniques when establishing the energy estimates,

we refer to Step 1 and 2 in the proof of Proposition 2.4 for details.

Now we focus on the existence when θ1, θ2 < 0 and consider the following special sets,

A1 := {(λ1, µ1, θ1;λ2, µ2, θ2) :λ1, λ2 ∈ [0, λ1(Ω)), µ1, µ2 > 0, θ1, θ2 < 0,

(2p− 2)K
1

p−1

1 K
p

p−1

2 + p
p

p−1 (θ1 + θ2)|Ω| > 0},

A2 := {(λ1, µ1, θ1;λ2, µ2, θ2) :λ1 ∈ [0, λ1(Ω)), λ2 ∈ R, µ1, µ2 > 0, θ1, θ2 < 0,

(2p− 2)K
1

p−1

1 K
p

p−1

3 + p
p

p−1 (θ1 + θ2e
−

λ2
θ2 )|Ω| > 0},

A3 := {(λ1, µ1, θ1;λ2, µ2, θ2) :λ1, λ2 ∈ R, µ1, µ2 > 0, θ1, θ2 < 0,

(p− 1)2−
1

p−1K
1

p−1

1 + p
p

p−1 (θ1e
−

λ1
θ1 + θ2e

−
λ2
θ2 )|Ω| > 0}.

Here,

K1 :=
2pSp

max{µ1, µ2}
, K2 :=

min{λ1(Ω)− λ1, λ1(Ω)− λ2}
2λ1(Ω)

, K3 :=
λ1(Ω)− λ1
2λ1(Ω)

,

and S denotes the Sobolev best constant of D1,2(RN ) →֒ L2p(RN ),

S = inf
u∈D1,2(RN )\{0}

∫
RN |∇u|2

(∫
RN |u|2p

) 1
p

,

where D1,2(RN ) =
{
u ∈ L2p(RN ) : |∇u| ∈ L2(RN )

}
with norm ∥u∥D1,2 :=

(∫
RN |∇u|2

) 1
2 .

The following two existence results Theorem 1.2 and 1.3 correspond to Theorem 1.2 and 1.3 in [13] (which

dealt with the critical case N = 4).

Theorem 1.2. Define

Cρ := inf
(u,v)∈Bρ

L(u, v),

where Br := {(u, v) ∈ H :
√
|∇u|22 + |∇v|22 < r} and ρ will be given by Lemma 3.1. When β < 0, we assume

that one of the following holds:

(i) (λ1, µ1, θ1;λ2, µ2, θ2) ∈ A1,

(ii) (λ1, µ1, θ1;λ2, µ2, θ2) ∈ A2,

(iii) (λ1, µ1, θ1;λ2, µ2, θ2) ∈ A3;
when β > 0, we assume that there exists ϵ > 0 such that one of the following holds:

(iv) (λ1, µ1 + βϵ, θ1;λ2, µ2 +
β
ϵ
, θ2) ∈ A1,

(v) (λ1, µ1 + βϵ, θ1;λ2, µ2 +
β
ϵ
, θ2) ∈ A2,
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(vi) (λ1, µ1 + βϵ, θ1;λ2, µ2 +
β
ϵ
, θ2) ∈ A3.

Then system (1.2) has a positive solution (ũ, ṽ) such that L(ũ, ṽ) = Cρ < 0, which is a local minima.

Remark 1.2. Comparing with the case θ1, θ2 > 0, the presence of negative θ1 and θ2 changes the geometry of

L, and makes it not straightforward to obtain the Palais-Smale sequence in N . The assumptions (i)-(vi) establish

the existence of a local minimum Cρ for the functional L, thus we can obtain the corresponding Palais-Smale

sequence by taking minimizing sequence for Cρ, and we prove that the weak limit of Palais-Smale sequence is

a positive solution of system (1.2). Unfortunately, we do not know whether it is a positive least energy solution.

Theorem 1.3. Define

CK := inf
(u,v)∈K

L(u, v),

where

K = {(u, v) ∈ H : L′(u, v) = 0}.
Assume that the conditions stated in Lemma 3.1 hold, and

min{θ1, θ2} ≥ − 2

N
λ1(Ω) or β ∈ (−√

µ1µ2, 0) ∪ (0,∞) .

Then the system (1.2) possesses a nonnegative solution (û, v̂) ̸= (0, 0) such that L(û, v̂) = CK < 0.

Remark 1.3. In Theorem 1.3, we obtain a nonnegative solution (û, v̂). However, we do not know whether it is

a positive least energy solution since we cannot prove that (û, v̂) is fully nontrivial.

For the nonexistence of positive solutions for the system (1.2), we have the following results.

Theorem 1.4. Assume that N ≥ 5, (λ1, µ1, θ1) ∈ Σ2 or (λ2, µ2, θ2) ∈ Σ2 , where

Σ2 :=

{
(λ, µ, θ) : θ < 0 and

(N − 2)|θ|
2

+
(N − 2)θ

2
log

(
(N − 2)|θ|

2µ

)
+ λ− λ1(Ω) ≥ 0

}
.

If β > 0, then the system (1.2) has no positive solutions.

Now we consider the Brézis-Nirenberg problem with logarithmic perturbation

−∆u = λu+ µ|u|2p−2u+ θu log u2 in Ω, (1.4)

where λ ∈ R, µ > 0, θ < 0. We define the associated modified energy functional by

J (u) =
1

2

∫

Ω

|∇u|2 − λ

2

∫

Ω

|u+|2 − µ

2p

∫

Ω

|u+|2p − θ

2

∫

Ω

(u+)2
(
log(u+)2 − 1

)
.

Set

Σ3 :=

{
(λ, µ, θ) : λ ∈ [0, λ1(Ω)), µ > 0, θ < 0,

(λ1(Ω)− λ)2

λ1(Ω)2µ
S2 + 2θ|Ω| > 0

}
,

Σ4 :=
{
(λ, µ, θ) : λ ∈ R, µ > 0, θ < 0, µ−1S2 + 2θe−

λ
θ |Ω| > 0

}
.

Then we have the following result:

Theorem 1.5 (Existence of a local minima). Assume that N ≥ 5 and (λ, µ, θ) ∈ Σ3 ∪Σ4. Define

C̃ρ := inf
|∇u|2<ρ

J(u),

where ρ will be given by Lemma 4.1. Then equation (1.4) has a positive solution u such that J(u) = C̃ρ < 0.
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Theorem 1.6 (Existence of the least energy solution). Assume that N ≥ 5 and (λ, µ, θ) ∈ Σ3 ∪Σ4. Define

C̃K := inf
u∈K

J(u)

where

K = {u ∈ H1
0 (Ω) : J

′(u) = 0}.
Then equation (1.4) has a positive least energy solution u such that J(u) = C̃K < 0.

Remark 1.4. In [12], the authors obtained the existence of positive solution for (1.4) only in the case N = 3, 4
and θ < 0 under certain additional conditions. But they do not give the existence result of positive solutions for

the general case N ≥ 5 and θ < 0. Here, we give a positive answer to this question in Theorem 1.5, 1.6, and

improve the results in [12]. Furthermore, we give the type of the positive solution (a local minimum or a least

energy solution) and show that its energy level is negative.

Before closing the introduction, we give the outline of our paper and introduce some notations. In Section

2, we will prove Theorem 1.1. In Section 3, we will prove Theorem 1.2, 1.3 and 1.4. In Sections 4, we will

prove Theorem 1.5 and 1.6.

Throughout this paper, we denote the norm of Lp(Ω) by | · |p for 1 ≤ p ≤ ∞. We use “→” and “⇀” to

denote the strong convergence and weak convergence in corresponding space respectively. The capital letter C
will appear as a constant which may vary from line to line, and C1, C2, C3 are prescribed constants.

2 Proof of Theorem 1.1

In this section, we always assume that N ≥ 5 and (λi, µi, θi) ∈ Σ1 for i = 1, 2. Now we establish both

lower and upper uniform estimates on the L2p-norms of elements in the Nehari set that fall below a certain

energy level.

Lemma 2.1. Let −√
µ1µ2 < β < 0. Then there exist C2 > C1 > 0, such that for any (u, v) ∈ N with

L(u, v) ≤ 2
N

(
µ
−N−2

2

1 + µ
−N−2

2

2

)
S N

2 , there holds

C1 ≤ |u+|2p2p, |v+|2p2p ≤ C2.

Here, C1, C2 depend only on λi, µi, θi for i = 1, 2.

Proof. Take any (u, v) ∈ N with L(u, v) ≤ 2
N

(
µ
−N−2

2

1 + µ
−N−2

2

2

)
S N

2 . Since we have the inequality

s log s ≤ (p− 1)−1e−1sp for any s > 0,

then by the Sobolev inequality and the fact that β < 0, we have

S|u+|22p ≤ |∇u|22 = λ1|u+|22 + µ1|u+|2p2p + θ1

∫

Ω

(u+)2 log(u+)2 + β|u+v+|pp

≤ µ1|u+|2p2p + θ1

∫

Ω

(u+)2 log(e
λ1
θ1 (u+)2)

≤
(
µ1 +

θ1
(p− 1)

e(p−1)
λ1
θ1

−1

)
|u+|2p2p.
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Therefore, |u+|2p2p ≥ S N
2

(
µ1 +

θ1
(p−1)e

(p−1)
λ1
θ1

−1
)−N

2

. Similarly, we have |v+|2p2p ≥ S N
2

(
µ2 +

θ2
(p−1)e

(p−1)
λ2
θ2

−1
)−N

2

.

On the other hand, we have

2

N

(
µ
−N−2

2

1 + µ
−N−2

2

2

)
S N

2 ≥ L(u, v) = L(u, v)− 1

2p
L′(u, v)(u, v)

=
1

N
|∇u|22 −

θ1
N

∫

Ω

(u+)2 log
(
e

λ1
θ1 (u+)2

)
+
θ1
2
|u+|22

+
1

N
|∇v|22 −

θ2
N

∫

Ω

(v+)2 log
(
e

λ2
θ2 (v+)2

)
+
θ2
2
|v+|22.

(2.1)

Moreover,

2

N

(
µ
−N−2

2

1 + µ
−N−2

2

2

)
S N

2 ≥ L(u, v) = L(u, v)− 1

2
L′(u, v)(u, v)

=
1

N

(
µ1|u+|2p2p + µ2|v+|2p2p + 2β|u+v+|pp

)
+
θ1
2
|u+|22 +

θ2
2
|v+|22.

(2.2)

Since β > −√
µ1µ2, there exists some positive constants c0, C0 > 0 such that

c0

(
|u+|2p2p + |v+|2p2p

)
≤ µ1|u+|2p2p + µ2|v+|2p2p + 2β|u+v+|pp ≤ C0

(
|u+|2p2p + |v+|2p2p

)
.

Therefore, we have

|u+|22 ≤ 4

N

(
µ
−N−2

2

1 + µ
−N−2

2

2

)
θ−1
1 S N

2 and |v+|22 ≤ 4

N

(
µ
−N−2

2

1 + µ
−N−2

2

2

)
θ−1
2 S N

2 . (2.3)

Recalling the following useful inequality (see [19] or [15, Theorem 8.14])

∫

Ω

u2 log u2 ≤ a

π
|∇u|22 +

(
log |u|22 −N(1 + log a)

)
|u|22 for u ∈ H1

0 (Ω) and a > 0.

Let w+ = e
λ1
2θ1 u+ and z+ = e

λ2
2θ2 v+. Since |s2 log s2| ≤ Cs2−τ + Cs2+τ for any τ ∈ (0, 1), we have

1

N

(
|∇u|22 + |∇v|22

)
≤ 2

N

(
µ
−N−2

2

1 + µ
−N−2

2

2

)
S N

2 +
θ1
N
e−

λ1
θ1

∫

Ω

(w+)2 log(w+)2 +
θ2
N
e−

λ2
θ2

∫

Ω

(z+)2 log(z+)2

≤ 2

N

(
µ
−N−2

2

1 + µ
−N−2

2

2

)
S N

2 +
θ1
N
e−

λ1
θ1

[ a
π
|∇w|22 + |w+|22 log |w+|22 −N(1 + log a)|w+|22

]

+
θ2
N
e−

λ2
θ2

[ a
π
|∇z|22 + |z+|22 log |z+|22 −N(1 + log a)|z+|22

]

≤ 2

N

(
µ
−N−2

2

1 + µ
−N−2

2

2

)
S N

2 +
1

2N
|∇u|22 + C|u+|2−τ

2 + C|u+|2+τ
2 + C|u+|22

+
1

2N
|∇v|22 + C|v+|2−τ

2 + C|v+|2+τ
2 + C|v+|22,

(2.4)

where we fix a > 0 with a
π
θ1 <

1
2 and a

π
θ2 <

1
2 . Therefore, combining this with (2.3), we can see that there

exists C2 > 0, such that

|u+|2p2p ≤ S−p|∇u|2p2 ≤ C2.

Similarly, we can prove that |v+|2p2p ≤ C2.
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Consider the matrix M(u, v) = (Mij(u, v))2×2 with

M11(u, v) := (2p− 2)µ1|u+|2p2p + (p− 2)β|u+v+|pp + 2θ1|u+|22,
M22(u, v) := (2p− 2)µ2|v+|2p2p + (p− 2)β|u+v+|pp + 2θ2|v+|22,
M12(u, v) =M21(u, v) := pβ|u+v+|pp,

and the set

Q := {(u, v) ∈ H : the matrix M(u, v) is strictly diagonally dominant}
= {(u, v) ∈ H :M11(u, v)− |M12(u, v)| > 0,M22(u, v)− |M21(u, v)| > 0} .

Then we show that the set N ∩Q is a natural constraint when β < 0.

Proposition 2.1. Assume that β < 0 and the energy level CN is achieved by (u, v) ∈ N ∩Q . Then (u, v) is a

critical point of the functional L.

Proof. Let

G1(u, v) := L′(u, v)(u, 0) and G2(u, v) := L′(u, v)(0, v).

Take (u, v) ∈ N ∩Q. Since the matrix M(u, v) is strictly diagonally dominant and β < 0, we have

G′
1(u, v)(u, v) = −

[
(2p− 2)µ1

∫

Ω

|u+|2p + (2p− 2)

∫

Ω

β|u+|p|v+|p + 2θ1

∫

Ω

|u+|2
]
< 0.

Similarly, we have G′
2(u, v)(u, v) < 0. Therefore, it follows that Gi(u, v) defines, locally, a C1-manifold of

codimension 1 in H for any (u, v) ∈ N ∩Q and i = 1, 2.

Now we claim that in a neighborhood of (u, v) ∈ N ∩Q, the set N is a C1-manifold of codimension 2 in

H. For that purpose, we only need to show that (G′
1(u, v),G′

2(u, v)) is a surjective as a linear operator H → R
2.

Notice that

G′
1(u, v)(t1u, t2v) = −M11(u, v)t1 −M12(u, v)t2,

G′
2(u, v)(t1u, t2v) = −M21(u, v)t1 −M22(u, v)t2,

Since (u, v) ∈ Q and θ1, θ2, µ1, µ2 > 0, the matrix M(u, v) is positive definite. Then for any s1, s2 ∈ R, there

exist t1, t2 ∈ R such that

(G′
1(w, z),G′

2(w, z)) = (s1, s2),

where (w, z) = (t1u, t2v). Therefore, the claim is true.

Now we suppose that CN is achieved by (u, v) ∈ N ∩ Q. By the Sobolev embedding theorem, the set

N∩Q is an open set of N in the topology of H. Thus (u, v) is an inner critical point of L in an open subset of N ,

and in particular it is a constrained critical point of L on N . Since the set N is a C1-manifold of codimension

2 in H in a neighborhood of (u, v) ∈ N ∩ Q. Then by the Lagrange multipliers rule, there exist L1, L2 ∈ R,

such that

L′(u, v)− L1G′
1(u, v)− L2G′

2(u, v) = 0.

Multiplying the above equation with (u, 0) and (0, v), we deduce from L′(u, v)(u, 0) = L′(u, v)(0, v) = 0 that

M11(u, v)L1 +M12(u, v)L2 = 0, (2.5)

M21(u, v)L1 +M22(u, v)L2 = 0. (2.6)

Since the system (2.5)-(2.6) has a strictly positive determinant, by the Cramer’s rule, the system has a unique

solution L1 = L2 = 0, which implies that L′(u, v) = 0 and the Nehari manifold N ∩Q is a natural constraint

in H.
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Let

β0 := min

{
√
µ1µ2, µ1

√
C1

C2
, µ2

√
C1

C2

}
≤ min {µ1, µ2} ,

where C1, C2 are given by Lemma 2.1. Then the following result, together with Proposition 2.1, show that the

constrained critical points of L on N ∩
{
(u, v) ∈ H : L(u, v) ≤ 2

N

(
µ
−N−2

2

1 + µ
−N−2

2

2

)
S N

2

}
are in fact the

free critical points of L.

Proposition 2.2. Let β ∈ (−β0, 0), then we have

N ∩
{
(u, v) ∈ H : L(u, v) ≤ 2

N

(
µ
−N−2

2

1 + µ
−N−2

2

2

)
S N

2

}
⊂ N ∩Q.

Proof. Take

(u, v) ∈ N ∩
{
(u, v) ∈ H : L(u, v) ≤ 2

N

(
µ
−N−2

2

1 + µ
−N−2

2

2

)
S N

2

}
.

Since β ∈ (−β0, 0) and θ1 > 0, we deduce from Lemma 2.1 and the Hölder’s inequality that

M11(u, v)− |M12(u, v)| = (2p− 2)µ1

∫

Ω

|u+|2p + (2p− 2)

∫

Ω

β|u+|p|v+|p + 2θ1

∫

Ω

|u+|2

≥ (2p− 2)

[
µ1|u+|2p2p + β

(
|u+|2p2p

) 1
2
(
|v+|2p2p

) 1
2

]

≥ (2p− 2)C
1
2

1

[
µ1 (C1)

1
2 + β (C2)

1
2

]
> 0.

Similarly, we can prove that M22(u, v) − |M21(u, v)| > 0. Therefore, (u, v) ∈ N ∩ Q. This completes the

proof.

Consider the Brézis-Nirenberg problem with logarithmic perturbation

−∆u = λiu+ µi|u|2p−2u+ θiu log u
2 in Ω, i = 1, 2,

where λi ∈ R, µi, θi > 0. As in [12], we define the associated modified energy functional

Li(u) =
1

2

∫

Ω

|∇u|2 − λi
2

∫

Ω

|u+|2 − µi

2p

∫

Ω

|u+|2p − θi
2

∫

Ω

(u+)2
(
log(u+)2 − 1

)
,

and the level

Cθi = inf
u∈Ni

Li(u),

where

Ni =
{
u ∈ H1

0 (Ω) \ {0} : L′
i(u)u = 0

}
.

Then we have the following proposition, which plays crucial role in the proof of Theorem 1.1.

Proposition 2.3. Let β ∈ (−β0, 0), then

CN < min

{
Cθ1 +

1

N
µ
−N−2

2

2 S N
2 , Cθ2 +

1

N
µ
−N−2

2

1 S N
2 ,

1

N

(
µ
−N−2

2

1 + µ
−N−2

2

2

)
S N

2

}
.
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Proof. The main idea of the proof is similar to the proof of [13, Proposition 2.4] in the case N = 4, here we

give the details for the sake of clarity and completeness. Without loss of generality, we prove that

CN < Cθ1 +
1

N
µ
−N−2

2

2 S N
2 .

By [12], the energy level Cθ1 can be achieved by a positive solution uθ1 . Moreover, we know that uθ1 ∈ C2(Ω)
and uθ1 ≡ 0 on ∂Ω. Then, there exists a ball

B2R0
(y0) := {x ∈ Ω : |x− y0| ≤ 2R} ⊂ Ω,

satisfying

Πp := max
B2R0

(y0)
|uθ1 |2 ≤ θ2p

2p|β| . (2.7)

Let ξ ∈ C∞
0 (Ω) be the radial function, such that ξ(x) ≡ 1 for 0 ≤ |x − y0| ≤ R, 0 ≤ ξ(x) ≤ 1 for R ≤

|x− y0| ≤ 2R, ξ(x) ≡ 0 for |x− y0| ≥ 2R, where we take arbitrary R < R0 such that B2R(y0) ⊂ B2R0
(y0).

Take wε(x) = ξ(x)Wε,y0
(x), where

Wε,y0
(x) =

[
N(N − 2))ε2

]N−2

4

(ε2 + |x− y0|2)
N−2

2

.

Then by [5] or [21, Lemma 1.46], we obtain the following

∫

Ω

|∇wε|2 = S N
2 +O(εN−2),

∫

Ω

|wε|2
∗

= S N
2 +O(εN ),

∫

Ω

|wε|2 = C̃0ε
2 +O(εN−2).

(2.8)

Also, by [12, Lemma 3.4], we have the following

∫

Ω

w2
ε logw

2
ε = C̃1ε

2| log ε|+O(ε2). (2.9)

Moreover, one has

∫

Ω

|wε|p ≤
∫

B2R(y0)

|Wε,y0
|p dx = C

∫

B2R(0)

(
ε

ε2 + |x|2

)N
2

dx

≤ Cε
N
2

(
log

2R

ε
+ 1

)
= o(ε2).

(2.10)

Then by (2.7), we infer that

|β|
∫

Ω

|uθ1 |p|wε|p = |β|
∫

B2R(y0)

|uθ1 |p|wε|p ≤ |β|Πp

∫

Ω

|wε|p ≤ θ2
2

∫

Ω

|wε|p = o(ε2). (2.11)

Now we claim that there exists s1,ε, s2,ε > 0 such that

(s1,εuθ1 , s2,εwε) ∈ N .
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For that purpose, we consider

F (t1, t2) := L(t1uθ1 , t2wε)

=
1

2
t21

∫

Ω

|∇uθ1 |2 −
λ1
2
t21

∫

Ω

|uθ1 |2 −
µ1

2p
t2p1

∫

Ω

|uθ1 |2p −
θ1
2

∫

Ω

(t1uθ1)
2
(log(t1uθ1)

2 − 1)

+
1

2
t22

∫

Ω

|∇wε|2 −
λ2
2
t22

∫

Ω

|wε|2 −
µ2

2p
t2p2

∫

Ω

|wε|2p −
θ2
2

∫

Ω

(t2wε)
2(log(t2wε)

2 − 1)

− β

p
tp1t

p
2

∫

Ω

|uθ1 |p|wε|p.

For ε small enough, we can see from (2.8) and (2.11) that the matrix

(
µ1|uθ1 |2p2p β|uθ1wε|pp
β|uθ1wε|pp µ2|wε|2p2p

)

is strictly diagonally dominant, so it is positive definite. Therefore, there exists a constant C > 0 such that

µ1

2p
t2p1

∫

Ω

|uθ1 |2p +
β

p
tp1t

p
2

∫

Ω

|uθ1 |2|wε|2 +
µ2

2p
t2p2

∫

Ω

|wε|2p ≥ C(t2p1 + t2p2 ).

Then

F (t1, t2) ≤
1

2
t21

∫

Ω

|∇uθ1 |2 −
λ1
2
t21

∫

Ω

|uθ1 |2 − Ct2p1 − θ1
2

∫

Ω

(t1uθ1)
2
(log(t1uθ1)

2 − 1)

+
1

2
t22

∫

Ω

|∇wε|2 −
λ2
2
t22

∫

Ω

|wε|2 − Ct2p2 − θ2
2

∫

Ω

(t2wε)
2(log(t2wε)

2 − 1).

It follows from 2p ≥ 2 and lims→+∞
s2p

s2 log s2
= +∞ that F (t1, t2) → −∞, as |(t1, t2)| → +∞, where

|(t1, t2)| =
√
t21 + t22. This implies that there exists a global maximum point (s1,ε, s2,ε) ∈ (R+)

2
.

Assume that (s1,ε, s2,ε) ∈ ∂(R+)
2
. Without loss of generality, we assume that s1,ε = 0 and s2,ε ̸= 0.

Note that 1 < p < 2 and lims→0+
s2 log s2

sp
= 0, thanks to β < 0, we have

F (t1, s2,ε)− F (s1,ε, s2,ε) =
1

2
t21

∫

Ω

|∇uθ1 |2 −
λ1
2
t21

∫

Ω

|uθ1 |2 −
µ1

2p
t2p1

∫

Ω

|uθ1 |2p −
θ1
2
t21 log t

2
1

∫

Ω

|uθ1 |2

− θ1
2
t21

∫

Ω

u2θ1(log u
2
θ1

− 1)− β

p
tp1s

p
2,ε

∫

Ω

|uθ1 |p|wε|p > 0

for t1 small enough. This contradicts to the fact that (s1,ε, s2,ε) is a global maximum point in (R+)
2
. Therefore,

(s1,ε, s2,ε) ̸∈ ∂(R+)
2

and it is a critical point of F (t1, t2). Also, we can see that si,ε(i = 1, 2) are bounded

from above and below for ε small enough. Then we have

∂F

∂t1
(s1,ε, s2,ε) =

∂F

∂t2
(s1,ε, s2,ε) = 0,

which is equivalent to

(s1,εuθ1 , s2,εwε) ∈ N .
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For ε small enough, since si,ε(i = 1, 2) are bounded from above and below, then by (2.8), we have

θ2 log s
2
2,ε

∫

Ω

|wε|2 = O(ε2).

By (s1,εuθ1 , s2,εwε) ∈ N , we have

s2p−2
2,ε =

∫
Ω
|∇wε|2 − λ2

∫
Ω
|wε|2 − θ2

∫
Ω
(wε)

2
log (wε)

2 − θ2 log s
2
2,ε

∫
Ω
|wε|2 − sp1,εs

p−2
2,ε β

∫
Ω
|uθ1 |p|wε|p

µ2

∫
Ω
|wε|2p

=
S N

2 +O(ε2| log ε|)
µ2S N

2 +O(εN )
→ 1

µ2
as ε→ 0+,

and

0 =

∫

Ω

|∇uθ1 |2 − λ1

∫

Ω

|uθ1 |2 − s2p−2
1,ε µ1

∫

Ω

|uθ1 |2p − θ1

∫

Ω

u2θ1 log u
2
θ1

− θ1 log s
2
1,ε

∫

Ω

|uθ1 |2 − sp−2
1,ε s

p
2,εβ

∫

Ω

|uθ1 |p|wε|p

=
(
1− s2p−2

1,ε

)
µ1

∫

Ω

|uθ1 |2p − θ1 log s
2
1,ε

∫

Ω

|uθ1 |2 + o(ε2).

Then we can see that s1,ε → 1 as ε→ 0+. Moreover, for ε small enough, we have

1

2
≤ s1,ε ≤ 2 and

1

2µ2
≤ s2p−2

2,ε ≤ 2

µ2
. (2.12)

Since (s1,εuθ1 , s2,εwε) ∈ N , there holds

CN ≤ L(s1,εuθ1 , s2,εwε) =: f1(s1,ε) + f2(s2,ε)−
β

p
sp1,εs

p
2,ε

∫

Ω

|uθ1 |p|wε|p, (2.13)

where

f1(s1) :=
1

2
s21

∫

Ω

|∇uθ1 |2 −
λ1
2
s21

∫

Ω

|uθ1 |2 −
µ1

2p
s2p1

∫

Ω

|uθ1 |2p −
θ1
2

∫

Ω

(s1uθ1)
2
(log(s1uθ1)

2 − 1),

and

f2(s2) :=
1

2
s22

∫

Ω

|∇wε|2 −
λ2
2
s22

∫

Ω

|wε|2 −
µ2

2p
s2p2

∫

Ω

|wε|2p −
θ2
2

∫

Ω

(s2wε)
2(log(s2wε)

2 − 1).

Recalling that uθ1 is a positive least energy solution of −∆u = λ1u+µ1|u|2p−2u+ θ1u log u
2. Then, we have

∫

Ω

|∇uθ1 |2 = λ1

∫

Ω

|uθ1 |2 + µ1

∫

Ω

|uθ1 |2p + θ1

∫

Ω

u2θ1 log u
2
θ1
, (2.14)

and

Cθ1 =
1

2

∫

Ω

|∇uθ1 |2 −
λ1
2

∫

Ω

|uθ1 |2 −
µ1

2p

∫

Ω

|uθ1 |2p −
θ1
2

∫

Ω

u2θ1(log u
2
θ1

− 1). (2.15)

By a direct calculation, we can see from (2.14) that

f ′(s1) = s1

∫

Ω

|∇uθ1 |2 − s1λ1

∫

Ω

|uθ1 |2 − s2p−1
1 µ1

∫

Ω

|uθ1 |2p − θ1

∫

Ω

s1uθ1 log(s1uθ1)
2

= (s1 − s2p−1
1 )µ1

∫

Ω

|uθ1 |2p − (s1 log s
2
1)θ1

∫

Ω

|uθ1 |2.
(2.16)

12



Thanks to θ1 > 0, one can see that f ′(s1) > 0 for 0 < s1 < 1 and f ′(s1) < 0 for s1 > 1. So, by (2.15),

f1(s1,ε) ≤ f1(1) = Cθ1 .

On the other hand, we deduce from (2.10),(2.12) that

|β|
p
sp1,εs

p
2,ε

∫

Ω

|uθ1 |p|wε|p ≤ θ2
2

(
2

µ2

) p
2p−2

∫

Ω

|wε|p = o(ε2).

If follows from (2.8) and (2.9) that

f2(s2,ε)−
β

p
sp1,εs

p
2,ε

∫

Ω

|uθ1 |p|wε|p

≤ 1

2
s22,ε

∫

Ω

|∇wε|2 −
λ2
2
s22,ε

∫

Ω

|wε|2 −
µ2

2p
s2p2,ε

∫

Ω

|wε|2p −
θ2
2

∫

Ω

(s2,εwε)
2(log(s2,εwε)

2 − 1)

≤
(
1

2
s22,ε −

µ2

2p
s2p2,ε

)
S N

2 +O(εN−2)− λ2 − θ2
2

s22,ε

∫

Ω

|wε|2 −
θ2
2
s22,ε log s

2
2,ε

∫

Ω

|wε|2 −
θ2
2
s22,ε

∫

Ω

w2
ε logw

2
ε + o(ε2)

≤ 1

N
µ
−N−2

2

2 S N
2 − Cθ2ε

2| log ε|+O(ε2)

<
1

N
µ
−N−2

2

2 S N
2 , for ε small enough.

Combining this with (2.13) and (2.16), we have

CN < Cθ1 +
1

N
µ
−N−2

2

2 S N
2 .

Similarly, we can also prove that CN < Cθ2 + 1
N
µ
−N−2

2

1 S N
2 . By [12, Lemma 3.3], we can easily see that

Cθi < 1
N
µ
−N−2

2

i S N
2 for i = 1, 2. Therefore, we have

CN < min

{
Cθ1 +

1

N
µ
−N−2

2

2 S N
2 , Cθ2 +

1

N
µ
−N−2

2

1 S N
2 ,

1

N

(
µ
−N−2

2

1 + µ
−N−2

2

2

)
S N

2

}
.

The proof is completed.

Proof of Theorem 1.1 for the case β < 0. Repeating the proof of Theorem 1.3 for the case β < 0 in [8] with

some slight modifications, we can construct a Palais-Smale sequence at the level CN . Then there exists a

sequence {(un, vn)} ⊂ N satisfying

lim
n→∞

L(un, vn) = CN , lim
n→∞

L′(un, vn) = 0. (2.17)

By Proposition 2.3, we can see that L(un, vn) ≤ 2
N

(
µ
−N−2

2

1 + µ
−N−2

2

2

)
S N

2 for n large enough. Then by

Lemma 2.1 and (2.4), we can see that {(un, vn)} is bounded in H. Hence, we may assume that

(un, vn)⇀ (u, v) weakly in H.

Passing to subsequence, we may also assume that

un ⇀ u, vn ⇀ v weakly in L2p(Ω),

un → u, vn → v strongly in Lq(Ω) for 2 ≤ q < 2p,

un → u, vn → v almost everywhere in Ω.
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By using the inequality |s2 log s2| ≤ Cs2−τ +Cs2+τ , τ ∈ (0, 1) and the dominated convergence theorem, one

gets

lim
n→∞

∫

Ω

u+nφ
+ log(u+n )

2 =

∫

Ω

u+φ+ log(u+)2 for any φ ∈ C∞
0 (Ω).

Then by (2.17), we have L′(u, v) = 0. Moreover, by using the weak-lower semicontinuity of norm, we have

L(u, v) ≤ 2

N

(
µ
−N−2

2

1 + µ
−N−2

2

2

)
S N

2 . (2.18)

Let wn = un − u and zn = vn − v. Then by the Brézis-Lieb Lemma (see [6] and [8, Lemma 3.3]). we have

|u+n |2p2p = |u+|2p2p + |w+
n |2p2p + on(1), |v+n |2p2p = |v+|2p2p + |z+n |2p2p + on(1),

|u+n v+n |pp = |u+v+|pp + |w+
n z

+
n |pp + on(1).

(2.19)

Since (un, vn) ∈ N and L′(u, v) = 0, by (2.19) and [12, Lemma 2.3], we have

|∇wn|22 = µ1|w+
n |2p2p + β|w+

n z
+
n |pp + on(1), |∇zn|22 = µ2|z+n |2p2p + β|w+

n z
+
n |pp + on(1). (2.20)

By a direct calculation, one gets

L(un, vn) = L(u, v) + 1

N

∫

Ω

|∇wn|2 +
1

N

∫

Ω

|∇zn|2 + on(1). (2.21)

Passing to subsequence, we may assume that
∫

Ω

|∇wn|2 = k1 + on(1),

∫

Ω

|∇zn|2 = k2 + on(1).

Letting n→ +∞ in (2.21), we have

0 ≤ L(u, v) ≤ L(u, v) + 1

N
k1 +

1

N
k2 = lim

n→∞
L(un, vn) = CN . (2.22)

Now we claim that u ̸≡ 0 and v ̸≡ 0.

Case 1. u ≡ 0 and v ≡ 0.

Firstly, we prove that k1 > 0 and k2 > 0. Without loss of generality, we assume by contradiction that

k1 = 0, then we can see that wn → 0 strongly in H1
0 (Ω) and un → 0 strongly in H1

0 (Ω), then by the Sobolev

inequality, we can see that un → 0 strongly in L2p(Ω), which is impossible by Lemma 2.1. Therefore, we have

that k1 > 0 and k2 > 0. Since (2.20) holds, it follows from the proof of [8, Theorem 1.3] that there exists

tn, sn > 0 such that (tnwn, snzn) ∈ Ñ , which is given by (2.26). Moreover, tn = 1 + on(1), sn = 1 + on(1).
Therefore, by (2.27) we have

CN =
1

N
k1 +

1

N
k2 = lim

n→∞
E(wn, zn) = lim

n→∞
E(tnwn, snzn) ≥ A =

1

N

(
µ
−N−2

2

1 + µ
−N−2

2

2

)
S N

2 ,

a contradiction with Proposition 2.3. Therefore, Case 1 is impossible.

Case 2. u ≡ 0, v ̸≡ 0 or u ̸≡ 0, v ≡ 0.

Without loss of generality, we may assume that u ≡ 0, v ̸≡ 0. Then by Case 1, we have that k1 > 0, and

we may assume that k2 = 0. Then we know that |w+
n z

+
n |pp = on(1). By (2.20), we have

∫

Ω

|∇wn|2 = µ1|w+
n |2p2p + on(1) ≤ µ1S−p

(∫

Ω

|∇wn|2
)p

.
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Thus, letting n → ∞, we have k1 ≥ µ
−N−2

2

1 S N
2 . Notice that v is a solution of −∆w = λ2w + µ2|w|2w +

θ2w logw2, we have L(0, v) ≥ Cθ2 . Therefore, by (2.22) we have that

C ≥ Cθ2 +
1

N
µ
−N−2

2

1 S N
2 ,

which is a contradiction with Proposition 2.3. Therefore, Case 2 is impossible.

Since Case 1 and 2 are both impossible, we get that u ̸≡ 0 and v ̸≡ 0. Therefore, (u, v) ∈ N and by (2.22)

we have that L(u, v) = CN . Then combining (2.18) with Proposition 2.1 and 2.2, (u, v) is a solution of system

(1.2). Since L′(u, v) = 0, we can see that

0 = L′(u, v)(u−, 0) =

∫

Ω

|∇u−|2, 0 = L′(u, v)(0, v−) =

∫

Ω

|∇v−|2.

which implies that u ≥ 0, v ≥ 0. By the Morse’s iteration, the solutions u, v belong to L∞(Ω). Then the

Hölder estimate implies that u, v ∈ C0,γ(Ω) for any 0 < γ < 1. Define gi : [0,+∞) → R, i = 1, 2 by

gi(s) :=

{
2θi|s log s2|, s > 0,

0, s = 0.

Then we follow the arguments in [12, 20], and get that u, v ∈ C2(Ω) and u, v > 0 in Ω. This completes the

proof.

It remains to prove the Theorem 1.1 for the case β > 0. For that purpose, we first introduce some definitions

and lemmas. From now on, we assume that β > 0. Let

B := inf
γ∈Γ

max
t∈[0,1]

L(γ(t)),

where Γ = {γ ∈ C([0, 1],H) : γ(0) = 0,L(γ(1)) < 0}. By a similar argument as used in Proposition 2.3, we

can see that for any (u, v) ∈ H with (u, v) ̸= (0, 0), there exists su,v > 0 such that

max
t>0

L(tu, tv) = L(su,vu, su,vv).

Moreover, we have (su,vu, su,vv) ∈ M, where

M = {(u, v) ∈ H \ {(0, 0)} : L′(u, v)(u, v) = 0} .

Note that θi > 0 for i = 1, 2, it is easy to check that

B = inf
(u,v)∈H\{(0,0)}

max
t>0

L(tu, tv) = inf
(u,v)∈M

L(u, v). (2.23)

Since N ⊂ M, one has that

B ≤ CN . (2.24)

Lemma 2.2. The functional L has a mountain pass geometry structure, that is,

(i) there exists α, ζ > 0, such that L(u, v) ≥ α > 0 for all ∥(u, v)∥H = ζ;

(ii) there exists (w, z) ∈ H, such that ∥(w, z)∥H ≥ ζ and L(w, z) < 0,
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where ∥(u, v)∥2H :=
∫
Ω

(
|∇u|2 + |∇v|2

)
.

Proof. Note that θi > 0, it follows from the inequality s2 log s2 ≤ (p− 1)−1e−1s2p for all s > 0 that

λ1
2

∫

Ω

|u+|2 + θ1
2

∫

Ω

(u+)2(log(u+)2 − 1) ≤ θ1
2

∫

Ω

(u+)2 log(e
λ1
θ1 (u+)2)

≤ θ1
2(p− 1)

e(p−1)
λ1
θ1

−1
∫

Ω

|u+|2p

≤ θ1
2(p− 1)

e(p−1)
λ1
θ1

−1S−p

(∫

Ω

|∇u|2
)p

.

Similarly, we have

λ2
2

∫

Ω

|v+|2 + θ2
2

∫

Ω

(v+)2(log(v+)2 − 1) ≤ θ2
2(p− 1)

e(p−1)
λ2
θ2

−1S−p

(∫

Ω

|∇v|2
)p

.

Notice that β
p

∫
Ω
|u+|p|v+|p ≤ β

2p

(∫
Ω
|u+|2p + |v+|2p

)
, we have

L(u, v) ≥ 1

2

∫

Ω

|∇u|2 −
(
µ1 + β

2p
+

θ1
2(p− 1)

e(p−1)
λ1
θ1

−1

)
S−p

(∫

Ω

|∇u|2
)p

+
1

2

∫

Ω

|∇v|2 −
(
µ2 + β

2p
+

θ2
2(p− 1)

e(p−1)
λ2
θ2

−1

)
S−p

(∫

Ω

|∇v|2
)p

≥ 1

2
∥(u, v)∥H − C ∥(u, v)∥2pH ,

which implies that there exists α > 0 and ζ > 0 such that L(u, v) ≥ α > 0 for all ∥(u, v)∥H = ζ.

On the other hand, let φ1, φ2 ∈ H1
0 (Ω) \ {0} be fixed positive functions, then for any t > 0, we have

L(tφ1, tφ2) =
t2

2

∫

Ω

(
|∇φ1|2 + |∇φ2|2

)
− t2p

2p

∫

Ω

(
µ1|φ1|2p + 2β|φ1|p|φ2|p + µ2|φ2|2p

)

− t2 log t2

2

∫

Ω

(
θ1φ

2
1 + θ2φ

2
2

)
− t2

2

∫

Ω

(
θ1φ

2
1 log

(
e

λ1
θ1

−1φ2
1

)
+ θ2φ

2
2 log

(
e

λ2
θ2

−1φ2
2

))

→ −∞ as t→ +∞,

which is guaranteed by 2 ≤ 2p < 4 and limt→+∞
t2p

t2 log t2
= +∞. Therefore, we can choose t0 > 0 large

enough such that

L(t0φ1, t0φ2) < 0, and ∥(t0φ1, t0φ2)∥H > ζ.

This completes the proof.

Now we consider the following limit system





−∆u = µ1|u|2p−2u+ β|u|p−2|v|pu, x ∈ R
N

−∆v = µ2|v|2p−2v + β|u|p|v|p−2v, x ∈ R
N

u, v ∈ D1,2(RN ).

(2.25)

Define D = D1,2(RN )×D1,2(RN ) and a C2-functional E : D → R given by

E(u, v) = 1

2

∫

RN

(|∇u|2 + |∇v|2)− 1

4

∫

RN

(
µ1|u|2p + 2β|u|p|v|p + µ2|v|2p

)
.
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We consider the level

A = inf
(u,v)∈Ñ

E(u, v),= inf
(u,v)∈Ñ

1

N

∫

R4

(|∇u|2 + |∇v|2).

with

Ñ = {(u, v) ∈ D : u ̸≡ 0, v ̸≡ 0, E ′(u, v)(u, 0) = 0, E ′(u, v)(0, v) = 0} . (2.26)

From [8, Theorem 1.6], we know that when β < 0,

A =
1

N

(
µ
−N−2

2

1 + µ
−N−2

2

2

)
S N

2 . (2.27)

Proposition 2.4. For any β > 0, we have

B < min {Cθ1 , Cθ2 ,A} .
Proof. The proof is inspired by [8, Lemma 3.4], but the logarithmic terms in (1.2) make the proof much more

delicate, and we require some new ideas. To prove this proposition, we divide the proof into two steps.

Step 1. We prove that B < A. By [8, Theorem 1.6], A can be achieved by a positive least energy solution

(U, V ) of the system (2.25), which is radially symmetric decreasing. Moreover, there exists a constant C > 0,

such that

U(x) + V (x) ≤ C(1 + |x|)2−N , |∇U(x)|+ |∇V (x)| ≤ C(1 + |x|)1−N . (2.28)

Define

(Uε(x), Vε(x)) :=
(
ε−

N−2

2 U
(x
ε

)
, ε−

N−2

2 V
(x
ε

))
.

Without loss of generality, we assume that 0 ∈ Ω. Then there exist a ball B2R(0) := {x ∈ Ω : |x| ≤ 2R} ⊂ Ω.

Let ξ ∈ C∞
0 (Ω) be the radial function, such that ξ(x) ≡ 1 for 0 ≤ |x| ≤ R, 0 ≤ ξ(x) ≤ 1 for R ≤ |x| ≤ 2R,

and ξ(x) ≡ 0 for |x| ≥ 2R. We define

(uε, vε) := (ξUε, ξVε) .

It follows from [8, Lemma 3.4] and the choice of ξ that
∫

Ω

|∇uε|2 ≤
∫

RN

|∇U |2 +O(εN−2),

∫

Ω

|∇vε|2 ≤
∫

RN

|∇V |2 +O(εN−2),

∫

Ω

|uε|2p =

∫

RN

|U |2p +O(εN ),

∫

Ω

|vε|2p =

∫

RN

|V |2p +O(εN ),

∫

Ω

|uε|2 = Cε2 +O(εN−2),

∫

Ω

|vε|2 = Cε2 +O(εN−2),

∫

Ω

|uε|p|vε|p =

∫

RN

|U |p|V |p +O(εN ).

(2.29)

Moreover, we claim that
∫

Ω

|∇uε|2 ≥
∫

RN

|∇U |2 +O(εN−2),

∫

Ω

|∇vε|2 ≥
∫

RN

|∇V |2 +O(εN−2). (2.30)

In fact, by a similar argument as used in that of [8, Lemma 3.4], we have
∫

Ω

|∇uε|2 =

∫

Ω

|∇Uε|2|ξ|2 +
∫

Ω

|∇ξ|2|Uε|2 + 2

∫

Ω

ξUε∇ξ∇Uε

≥
∫

BR(0)

|∇Uε|2 +O(εN−2)

=

∫

RN

|∇Uε|2 −
∫

Bc
R(0)

|∇Uε|2 +O(εN−2).
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Note that ∫

RN

|∇Uε|2 =

∫

RN

|∇U |2,

and ∫

Bc
R(0)

|∇Uε|2 = ε−N

∫

Bc
R(0)

|∇xU (x/ε)|2 dx

≤
∫

Bc
R/ε

(0)

|∇U(x)|2 dx

≤
∫

Bc
R/ε

(0)

|x|2(1−N)dx = O(εN−2).

Therefore, we have ∫

Ω

|∇uε|2 ≥
∫

RN

|∇U |2 +O(εN−2).

Similarly, we can prove that ∫

Ω

|∇vε|2 ≥
∫

RN

|∇V |2 +O(εN−2).

Because of the presence of logarithmic terms in system (1.2), we also need the following new inequalities,

∫

Ω

u2ε log u
2
ε = Cε2| log ε|+O(ε2),

∫

Ω

v2ε log v
2
ε = Cε2| log ε|+O(ε2). (2.31)

Note that ∫

Ω

u2ε log u
2
ε =

∫

Ω

(
ξ2 log ξ2

)
U2
ε +

∫

Ω

ξ2U2
ε logU2

ε

=: I1 + I2,

Since |s2 log s2| ≤ C for 0 ≤ s ≤ 1, we have

I1 =

∫

Ω

(
ξ2 log ξ2

)
U2
ε ≤ C

∫

Ω

U2
ε = O(ε2),

and

I2 = ε2−N log ε2−N

∫

Ω

ξ2U2
(x
ε

)
dx+ ε2−N

∫

Ω

ξ2U2
(x
ε

)
log
(
U2
(x
ε

))
dx

=: I21 + I22.

Note that

I21 = log ε2−N

∫

Ω

ξ2U2
ε = log ε2−N

∫

Ω

|uε|2 = Cε2| log ε|+O(ε2),

and

I22 ≤ ε2−N

∫

B2R(0)

U2
(x
ε

)
log
(
U2
(x
ε

))
dx

= ε2
∫

B 2R
ε

(0)

U2 (y) log
(
U2 (y)

)
dy

≤ ε2
∫

RN

U2 logU2.
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By (2.28), there exists R0 > 0 such that

U(x) ≤ C(1 + |x|)2−N ≤ e−1 for all |x| ≥ R0, (2.32)

then we have ∫

RN

|U2 logU2| =
∫

BR0
(0)

|U2 logU2|+
∫

Bc
R0

(0)

|U2 logU2|,

it is easy to see that there exists a constant C > 0 such that
∫
BR0

(0)
|U2 logU2| ≤ C. On the other hand, since

f(s) = |s log s| is increasing for 0 ≤ s ≤ e−1, we can see from (2.32) that

∫

Bc
R0

(0)

|U2 logU2| ≤
∫

Bc
R0

(0)

∣∣∣∣
C

(1 + |x|)2(N−2)
log

C

(1 + |x|)2(N−2)

∣∣∣∣ dx

≤ C

∫

RN

1

(1 + |x|)2(N−2)− 1
2

dx ≤ C.

Therefore, I22 ≤ ε2
∫
RN U

2 logU2 = O(ε2) and

∫

Ω

u2ε log u
2
ε = I1 + I21 + I22 = Cε2| log ε|+O(ε2).

Similarly, we can prove that ∫

Ω

v2ε log v
2
ε = Cε2| log ε|+O(ε2).

Let h(t) := L(tuε, tvε). By Lemma 2.2, h(0) = 0 and limt→+∞ h(t) = −∞, we can find tε ∈ (0,∞),
such that

L(tεuε, tεvε) = h(tε) = sup
t≥0

h(t) = sup
t≥0

L(tuε, tvε).

and

(tεuε, tεvε) ∈ M,

which is equivalent to the following
∫

Ω

(
|∇uε|2 + |∇vε|2

)
−
∫

Ω

(
λ1u

2
ε + λ2v

2
ε

)
−
∫

Ω

(
θ1u

2
ε log u

2
ε + θ2v

2
ε log v

2
ε

)

= t2p−2
ε

∫

Ω

(
µ1|uε|2p + 2β|uε|p|vε|p + µ2|vε|2p

)
+ log t2ε

∫

Ω

(
θ1u

2
ε + θ2v

2
ε

)
.

(2.33)

Recall that E(U, V ) = A, we have

NA =

∫

RN

|∇U |2 + |∇V |2 =

∫

RN

(
µ1|U |2p + 2β|U |p|V |p + µ2|V |2p

)
. (2.34)

Combining this with (2.29) and (2.31), we deduce from (2.33) that, as ε→ 0+,

2NA ≥
∫

Ω

(
|∇uε|2 + |∇vε|2

)
−
∫

Ω

(
λ1u

2
ε + λ2v

2
ε

)
−
∫

Ω

(
θ1u

2
ε log u

2
ε + θ2v

2
ε log v

2
ε

)

= t2p−2
ε

∫

Ω

(
µ1|uε|2p + 2β|uε|p|vε|p + µ2|vε|2p

)
+ log t2ε

∫

Ω

(
θ1u

2
ε + θ2v

2
ε

)

≥ t2p−2
ε

(
1

2
NA

)
− C| log t2ε|,
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which implies that there exists c1 > 0 such that tε < c1 for ε small enough.

On the other hand, we can see from (2.30) that, as ε→ 0+,

1

2
NA ≤

∫

Ω

(
|∇uε|2 + |∇vε|2

)
−
∫

Ω

(
λ1u

2
ε + λ2v

2
ε

)
−
∫

Ω

(
θ1u

2
ε log u

2
ε + θ2v

2
ε log v

2
ε

)

= t2p−2
ε

∫

Ω

(
µ1|uε|2p + 2β|uε|p|vε|p + µ2|vε|2p

)
+ log t2ε

∫

Ω

(
θ1u

2
ε + θ2v

2
ε

)

≤ t2p−2
ε (2NA) + Ct2p−2

ε ,

So, there exists c2 > 0 such that tε > c2 for ε small enough. Therefore, tε is bounded from below and above

for ε small.

Combining this with (2.29), (2.31) and (2.34), we have

L(tεuε, tεvε)

=
t2ε
2

∫

Ω

(
|∇uε|2 + |∇vε|2

)
− t2pε

2p

∫

Ω

(
µ1|uε|2p + 2β|uε|p|vε|p + µ2|vε|2p

)
− t2ε log t

2
ε

2

∫

Ω

(
θ1u

2
ε + θ2v

2
ε

)

− t2ε
2

∫

Ω

[
(λ1 − θ1)u

2
ε + (λ2 − θ2) v

2
ε

]
− t2ε

2

∫

Ω

(
θ1u

2
ε log u

2
ε + θ2v

2
ε log v

2
ε

)

≤ t2ε
2

∫

RN

(
|∇U |2 + |∇V |2

)
− t2pε

2p

∫

RN

(
µ1|U |2p + 2β|U |p|V |p + µ2|V |2p

)
− Cε2| log ε|+O(ε2)

≤ A− Cε2| log ε|+O(ε2) < A for ε > 0 small enough.

Hence, for ε > 0 small enough, there holds

B ≤ max
t>0

L(tuε, tvε) = L(tεuε, tεvε) < A.

Step 2. We prove that B < Cθ1 . It follows from [12, Theorem 1.2] that the energy level Cθ1 can be

achieved by a positive solution uθ1 . Then by an argument similar to Step 1, there exists t(s) > 0 such that

(t(s)uθ1 , t(s)suθ1) ∈ M for any s ∈ R. More precisely,

t(s)2p−2
(
µ1 + |s|2pµ2 + 2β|s|p

) ∫

Ω

|uθ1 |2p +
(
θ1

∫

Ω

u2θ1 + s2θ2

∫

Ω

u2θ1

)
log t(s)2

=

∫

Ω

|∇uθ1 |2 − λ1

∫

Ω

|uθ1 |2 − θ1

∫

Ω

u2θ1 log u
2
θ1

−
(
θ2

∫

Ω

u2θ1

)
s2 log s2

+ s2
(∫

Ω

|∇uθ1 |2 − λ2

∫

Ω

|uθ1 |2 − θ2

∫

Ω

u2θ1 log u
2
θ1

)
.

Similar to (2.16), we can prove that t(0) = 1. Since N ≥ 5, 2 < 2p < 4, a direct computation shows that

lim
s→0

t′(s)

|s|p−2s
=

−2pβ|uθ1 |2p2p
(2p− 2)µ1|uθ1 |2p2p + 2θ1|uθ1 |22

=: −A < 0, (2.35)

that is,

t′(s) = −A|s|p−2s(1 + o(1)), as s→ 0.
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Then as s→ 0, we have

t(s) = 1− A

p
|s|p(1 + o(1)),

t(s)2 = 1− 2A

p
|s|p(1 + o(1)),

t(s)2p = 1− 2A|s|p(1 + o(1)).

(2.36)

By (2.14) and (2.15), we have

Cθ1 =
µ1

N

∫

Ω

|uθ1 |2p +
θ1
2

∫

Ω

|uθ1 |2.

Combining this with (2.23), (2.35), (2.36) and recalling that 2p = 2N
N−2 ∈ (2, 4), N ≥ 5, we have

B ≤ L (t(s)uθ1 , t(s)suθ1)

=
t(s)2p

N

(
µ1 + |s|2pµ2 + 2β|s|p

) ∫

Ω

|uθ1 |2p +
θ1
2
t(s)2

∫

Ω

|uθ1 |2 +
θ2
2
t(s)2s2

∫

Ω

|uθ1 |2

= Cθ1 +
t(s)2 − 1

N
µ1

∫

Ω

|uθ1 |2p +
t(s)2p

N
2β

∫

Ω

|uθ1 |2p +
θ1
2

(
t(s)2 − 1

) ∫

Ω

|uθ1 |2 + o(|s|p)

= Cθ1 +
(
2β

N

∫

Ω

|uθ1 |2p −
2Aµ1

N

∫

Ω

|uθ1 |2p −
Aθ1
p

∫

Ω

|uθ1 |2
)
|s|p + o(|s|p)

= Cθ1 − 2β

(
1

2
− 1

N

)
|s|p

∫

Ω

|uθ1 |2p + o(|s|p)

< Cθ1 for |s| > 0 small enough,

that is, B < Cθ1 . Similarly, we can prove that B < Cθ2 . This completes the proof.

Lemma 2.3. Assume that β > 0, then there exist a constant C3 > 0, such that for any (u, v) ∈ M, there holds

∫

Ω

(|u+|2p + |v+|2p) ≥ C3.

Here, C3 depends on β, µi, λi, i = 1, 2.

Proof. Since (u, v) ∈ M and s log s ≤ (p− 1)−1e−1sp for any s > 0, we have

S(|u+|22p + |v+|22p) ≤ |∇u|22 + |∇v|22
= µ1|u+|2p2p + 2β|u+v+|pp + µ2|v+|2p2p + θ1

∫

Ω

(u+)2 log(e
λ1
θ1 (u+)2) + θ2

∫

Ω

(v+)2 log(e
λ2
θ2 (v+)2)

≤
(
µ1 + β +

θ1
p− 1

e(p−1)
λ1
θ1

−1

)
|u+|2p2p +

(
µ2 + β +

θ2
p− 1

e(p−1)
λ2
θ2

−1

)
|v+|2p2p

≤ C
(
|u+|2p2p + |v+|2p2p

)
.

Therefore, there exists a constant C3 > 0 such that
∫
Ω
(|u+|2p + |v+|2p) ≥ C3. This completes the proof.

Proof of Theorem 1.1 for the case β > 0. Assume that β > 0. By Lemma 2.2 and the mountain pass theorem

(see [2, 21]), there exists a sequence {(un, vn)} ⊂ H such that

lim
n→∞

L(un, vn) = B, lim
n→∞

L′(un, vn) = 0.
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By Proposition 2.4, we know that L(un, vn) ≤ 2A for n large enough. Then we can see from (2.1) and (2.4)

that {(un, vn)} is bounded in H. So, we may assume that

(un, vn)⇀ (u, v) weakly in H.

Let wn = un − u and zn = vn − v. For simplicity, we still use the same symbol as in the proof of Theorem 1.1

for the case β < 0. So,

|∇wn|22 = µ1|w+
n |2p2p + β|w+

n z
+
n |pp + on(1), |∇zn|22 = µ2|z+n |2p2p + β|w+

n z
+
n |pp + on(1). (2.37)

Also, we have L′(u, v) = 0 and

0 ≤ L(u, v) ≤ L(u, v) + 1

N
(k1 + k2) = lim

n→∞
L(un, vn) = B. (2.38)

Next, we will show that u ̸≡ 0 and v ̸≡ 0.

Case 1. u ≡ 0 and v ≡ 0.

Firstly, we deduce from (2.2), (2.23) and Lemma 2.3 that B > 0. Then by (2.38), we have k1 + k2 =
NB > 0. Since (2.37) holds, from an argument similar to the proof of Theorem 1.3 for the case β > 0 in [8],

we have

B =
1

N
(k1 + k2) = lim

n→∞
E(wn, vn) ≥ A,

Here, E : D → R is the functional corresponding to the system (2.25). So, we get a contradiction with

Proposition 2.4, which implies that Case 1 is impossible.

Case 2. u ≡ 0, v ̸≡ 0 or u ̸≡ 0, v ≡ 0.

Without loss of generality, we may assume that u ≡ 0, v ̸≡ 0. Notice that v is a solution of −∆w =
λ2w+µ2|w|2p−2w+θ2w logw2, we have L(0, v) ≥ Cθ2 . Therefore, by (2.38) we have that B ≥ L(0, v) ≥ Cθ2 ,

which is a contradiction with Proposition 2.4. Therefore, Case 2 is impossible.

Since Case 1 and Case 2 are both impossible, we get that u ̸≡ 0 and v ̸≡ 0. Since L′(u, v) = 0, we can

see that (u, v) ∈ N . Combining with this fact, we deduce from (2.24) and (2.38) that B ≤ CN ≤ L(u, v) ≤ B.

Hence, L(u, v) = B = CN . By L′(u, v) = 0 , we know that (u, v) is a least energy solution of (1.2). By

a similar argument as used in the proof of Theorem 1.1 for the case β < 0, we can show that u, v > 0 and

u, v ∈ C2(Ω). This completes the proof.

3 Proof of Theorem 1.2, 1.3 and 1.4

Lemma 3.1. When β < 0, we assume that one of the following holds:

(i) (λ1, µ1, θ1;λ2, µ2, θ2) ∈ A1,

(ii) (λ1, µ1, θ1;λ2, µ2, θ2) ∈ A2,

(iii) (λ1, µ1, θ1;λ2, µ2, θ2) ∈ A3;
when β > 0, we assume that there exists ϵ > 0 such that one of the following holds:

(iv) (λ1, µ1 + βϵ, θ1;λ2, µ2 +
β
ϵ
, θ2) ∈ A1,

(v) (λ1, µ1 + βϵ, θ1;λ2, µ2 +
β
ϵ
, θ2) ∈ A2,

(vi) (λ1, µ1 + βϵ, θ1;λ2, µ2 +
β
ϵ
, θ2) ∈ A3.

Then there exist δ, ρ > 0 such that L(u, v) ≥ δ for all
√
|∇u|22 + |∇v|22 = ρ.

Proof. By the choice of Ai, i = 1, 2, 3, the proof follows word by word the one of Lemma 4.1 in [13].
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Lemma 3.2. Assume that the conditions stated in Lemma 3.1 hold, then we have −∞ < Cρ < 0, where Cρ is

given by Theorem 1.2.

Proof. If |∇u|22 + |∇v|22 < ρ2, then we can easily verify that L(u, v) > −∞, which implies that Cρ > −∞.

Now we show that Cρ < 0. Since θ1 < 0, we fix (u, 0) satisfying |∇u|2 < ρ, and consider L(tu, 0) with t < 1:

L(tu, 0)

=t2
(
1

2

∫

Ω

|∇u|2 − λ1
2

∫

Ω

|u+|2 − µ1

2p
t2p−2

∫

Ω

|u+|2p − θ1
2

∫

Ω

(u+)2(log(u+)2 − 1)− θ1 log t

∫

Ω

(u+)2
)
.

Choose u such that
∫
Ω
(u+)2 > 0. Then for small t > 0 we have L(tu, 0) < 0. This completes the proof.

Lemma 3.3 (Boundedness of (PS) sequence). Let {(un, vn)} be a (PS)c sequence and θi < 0, i = 1, 2. Then

{(un, vn)} is bounded in H.

Proof. Since L′(un, vn) → 0, we have L′(un, vn)(un, vn) = on(|∇un|2+ |∇vn|2). Then for large n, we have

c+ |∇un|2 + |∇vn|2 + 1

≥ L(un, vn)−
1

2p
L′(un, vn)(un, vn)

=
1

N
|∇un|22 −

θ1
N

∫

Ω

(u+n )
2 log

(
e

λ1
θ1

−N
2 (u+n )

2
)
+

1

N
|∇vn|22 −

θ2
N

∫

Ω

(v+n )
2 log

(
e

λ2
θ2

−N
2 (v+n )

2
)
.

Since θ1 < 0, using the inequality t log t ≥ −e−1, one gets

θ1
N

∫

Ω

(u+n )
2 log

(
e

λ1
θ1

−N
2 (u+n )

2
)
≤ θ1
N

∫

e
λ1
θ1

−
N
2 (u+

n )2≤1

(u+n )
2 log

(
e

λ1
θ1

−N
2 (u+n )

2
)

≤ −θ1
N
e

N
2
−

λ1
θ1

−1|Ω|.

Similarly, we have
θ2
N

∫

Ω

(v+n )
2 log

(
e

λ2
θ2

−N
2 (v+n )

2
)
≤ −θ2

N
e

N
2
−

λ2
θ2

−1|Ω|

since θ2 < 0. For n large enough, we have

c+ |∇un|2 + |∇vn|2 + 1 ≥ 1

N
|∇un|22 +

1

N
|∇vn|22 +

θ1
N
e

N
2
−

λ1
θ1

−1|Ω|+ θ2
N
e

N
2
−

λ2
θ2

−1|Ω|,

yielding to the boundedness of {(un, vn)} in H.

Lemma 3.4. Assume that the conditions stated in Lemma 3.1 hold and

min{θ1, θ2} ≥ − 2

N
λ1(Ω) or β > 0 or β ∈ (−√

µ1µ2, 0).

Then there holds −∞ < CK < 0.

Proof. Notice that (u, v) ∈ K where (u, v) is the solution given by Theorem 1.2. Hence CK ≤ Cρ < 0. Now

we show that CK > −∞.
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Case 1. min{θ1, θ2} ≥ − 2
N
λ1(Ω).

For any (u, v) ∈ K one gets

L(u, v) = L(u, v)− 1

2p
L′(u, v)(u, v)

=
1

N
|∇u|22 −

θ1
N

∫

Ω

(u+)2 log
(
e

λ1
θ1 (u+)2

)
+
θ1
2
|u+|22

+
1

N
|∇v|22 −

θ2
N

∫

Ω

(v+)2 log
(
e

λ2
θ2 (v+)2

)
+
θ2
2
|v+|22.

Since θ1 < 0, using the inequality t log t ≥ −e−1, one gets

θ1
N

∫

Ω

(u+)2 log
(
e

λ1
θ1 (u+)2

)
≤ θ1
N

∫

e
λ1
θ1 (u+)2≤1

(u+)2 log
(
e

λ1
θ1 (u+)2

)

≤ −θ1
N
e−

λ1
θ1

−1|Ω|.

Similarly, we have
θ2
N

∫

Ω

(v+)2 log
(
e

λ2
θ2

−2(v+)2
)
≤ −θ2

N
e−

λ2
θ2

−1|Ω|

since θ2 < 0. Moreover, we have

1

N
|∇u|22 +

θ1
2
|u+|22 ≥ (

1

N
λ1(Ω) +

θ1
2
)|u+|22 ≥ 0

and similarly 1
N
|∇v|22 + θ2

2 |v+|22 ≥ 0. Hence,

L(u, v) ≥ θ1
N
e−

λ1
θ1

−1|Ω|+ θ2
N
e−

λ2
θ2

−1|Ω| > −∞,

showing that CK > −∞.

Case 2. β > 0 or β ∈ (−√
µ1µ2, 0).

Since β > 0 or β ∈ (−√
µ1µ2, 0), there exists c0 > 0 such that

µ1|u+|2p2p + µ2|v+|2p2p + 2β|u+v+|pp ≥ c0

(
|u+|2p2p + |v+|2p2p

)
.

For any (u, v) ∈ K we have

L(u, v)− 1

2
L′(u, v)(u, v)

=
1

N

(
µ1|u+|2p2p + µ2|v+|2p2p + 2β|u+v+|pp

)
+
θ1
2
|u+|22 +

θ2
2
|v+|22

≥ c0
N

(
|u+|2p2p + |v+|2p2p

)
+
θ1
2
|Ω| p−1

p |u+|22p +
θ2
2
|Ω| p−1

p |v+|22p.

Then we deduce from 2p > 2 that CK > −∞.

Proof of Theorem 1.2 and 1.3. Applying Lemma 3.1- 3.4, the proofs of Theorem 1.2 and 1.3 follow exactly

the same steps as the proofs of Theorem 1.2 and 1.3 in [13], respectively.
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Proof of Theorem 1.4. Without loss of generality, we assume that β > 0 and (λ1, µ1, θ1) ∈ Σ2. We also

suppose that the system (1.2) has a positive solution (u, v). Then we multiply the equation for u in (1.2) by the

first eigenfunction ϕ1(x) > 0 and integrate over Ω,

∫

Ω

(
λ1 + µ1u

2p−2 + βup−2vp + θ1 log u
2
)
uϕ1 =

∫

Ω

(−∆u)ϕ1 =

∫

Ω

(−∆ϕ1)u =

∫

Ω

λ1(Ω)uϕ1.

Therefore, ∫

Ω

(
λ1 − λ1(Ω) + µ1u

2p−2 + θ1 log u
2
)
uϕ1 = −

∫

Ω

βup−1vpϕ1 < 0. (3.1)

Define

g(s) := λ1 − λ1(Ω) + µ1s
p−1 + θ1 log s, s > 0,

then it is easy to see that g(s) is decreasing in (0, s0), and g(s) is increasing in (s0,+∞), where

sp−1
0 =

|θ1|
(p− 1)µ1

.

So,

g(s) ≥ g (s0) =
|θ1|
p− 1

+
θ1

p− 1
log

|θ|
(p− 1)µ1

+ λ1 − λ1(Ω) ≥ 0,

which is guaranteed by (λ1, µ1, θ1) ∈ Σ2 and p− 1 = 2
N−2 . Since u, ϕ > 0, we have

∫

Ω

(
λ1 − λ1(Ω) + µ1u

2p−2 + θ1 log u
2
)
uϕ1 =

∫

Ω

g(u)uϕ1 > 0,

which contradicts to (3.1). Therefore, u = 0. Indeed, if
∫
Ω
g(u)uϕ1 = 0, then g(u) = 0 a.e.in Ω and u = s0

a.e.in Ω, which contradicts to u ∈ H1
0 (Ω). Hence, the system (1.2) has no positive solutions.

4 The Brézis-Nirenberg problem with logarithmic perturbation

In this section, we prove Theorem 1.5 and 1.6. Firstly, we have the following basic fact.

Lemma 4.1. Assume that (λ, µ, θ) ∈ Σ3 ∪Σ4. Then there exist δ, ρ > 0 such that J(u) ≥ δ for all |∇u|2 = ρ.

Proof. The proof can be found in [12], so we omit it.

Proof of Theorem 1.5. Similar to Lemma 3.2 we obtain that −∞ < C̃ρ < 0. By Lemma 4.1, we can take a

minimizing sequence {un} for C̃ρ with |∇un|2 < ρ − τ and τ > 0 small enough. By Ekeland’s variational

principle, we can assume that J ′(un) → 0. Similar to Lemma 3.3, we can see that {un} is bounded in H1
0 (Ω).

Hence, we may assume that

un ⇀ u weakly in H1
0 (Ω).

Passing to subsequence, we may also assume that

un ⇀ u weakly in L2p(Ω),

un → u strongly in Lq(Ω) for 2 ≤ q < 2p,

un → u almost everywhere in Ω.
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By the weak lower semi-continuity of the norm, we see that |∇u|2 < ρ. Similar to the proof of Theorem 1.1 for

the case β < 0, we have J ′(u) = 0 and u ≥ 0. Let wn = un − u. Then similar to the proof of Theorem 1.1 for

the case β < 0, one gets

|∇wn|22 = µ|w+
n |2p2p + on(1).

J(un) = J(u) +
1

N

∫

Ω

|∇wn|2 + on(1). (4.1)

Passing to subsequence, we may assume that

∫

Ω

|∇wn|2 = k + on(1).

Letting n→ +∞ in (4.1), we have

C̃ρ ≤ J(u) ≤ J(u) +
1

N
k = lim

n→∞
J(un) = C̃ρ,

showing that k = 0. Hence, up to a subsequence we obtain un → u strongly in H1
0 (Ω). Since J(u) = C̃ρ < 0

we have u ̸= 0. Then by a similar argument as used in the proof of Theorem 1.1, we can show that u > 0 and

u ∈ C2(Ω). This completes the proof.

Proof of Theorem 1.6. Similar to the case 2 in the proof of Lemma 3.4 we have −∞ < C̃K < 0. Take a

minimizing sequence {un} ⊂ K for C̃K. Then J ′(un) = 0. Similar to Lemma 3.3, we can see that {un} is

bounded in H1
0 (Ω). Hence, we may assume that

un ⇀ u weakly in H1
0 (Ω).

Passing to subsequence, we may also assume that

un ⇀ u weakly in L2p(Ω),

un → u strongly in Lp(Ω) for 2 ≤ q < 2p,

un → u almost everywhere in Ω.

Then by the same arguments as used in proof of Theorem 1.5, we obtain un → u strongly in H1
0 (Ω). Since

J(u) = C̃K < 0 we have u ̸= 0. Then by a similar argument as used in the proof of Theorem 1.1 for the case

β < 0, we can show that u > 0 and u ∈ C2(Ω). This completes the proof.
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