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Abstract
Machine learning approaches using structural magnetic resonance imaging (sMRI) can be informative for disease classi�cation, although their ability to
predict psychosis is largely unknown. We created a model with individuals at CHR who developed psychosis later (CHR-PS+) from healthy controls (HCs) that
can differentiate each other. We also evaluated whether we could distinguish CHR-PS + individuals from those who did not develop psychosis later (CHR-PS-)
and those with uncertain follow-up status (CHR-UNK).

T1-weighted structural brain MRI scans from 1,165 individuals at CHR (CHR-PS+, n = 144; CHR-PS-, n = 793; and CHR-UNK, n = 228), and 1,029 HCs, were
obtained from 21 sites. We used ComBat to harmonize measures of subcortical volume, cortical thickness and surface area data and corrected for non-linear
effects of age and sex using a general additive model. CHR-PS+ (n = 120) and HC (n = 799) data from 20 sites served as a training dataset, which we used to
build a classi�er. The remaining samples were used external validation datasets to evaluate classi�er performance (test, independent con�rmatory, and
independent group [CHR-PS- and CHR-UNK] datasets).

The accuracy of the classi�er on the training and independent con�rmatory datasets was 85% and 73% respectively. Regional cortical surface area measures-
includingthose from the right superior frontal, right superior temporal, and bilateral insular cortices strongly contributed to classifying CHR-PS + from HC. CHR-
PS- and CHR-UNK individuals were more likely to be classi�ed as HC compared to CHR-PS+ (classi�cation rate to HC: CHR-PS+, 30%; CHR-PS-, 73%; CHR-UNK,
80%).

We used multisite sMRI to train a classi�er to predict psychosis onset in CHR individuals, and it showed promise predicting CHR-PS + in an independent
sample. The results suggest that when considering adolescent brain development, baseline MRI scans for CHR individuals may be helpful to identify their
prognosis. Future prospective studies are required about whether the classi�er could be actually helpful in the clinical settings.

Introduction
The clinical high risk (CHR) paradigm is widely used with the goal of improving early detection of and prevention of psychotic disorders.1 Individuals are
considered at CHR for psychosis if they meet criteria for attenuated positive symptom syndrome (APSS), brief intermittent (limited) psychotic syndrome
(BLIPS), and/or genetic risk and deterioration syndrome (GRDS) based on semistructured interviews.2–6 The CHR state is present in 1.7% of the general
population and 19.2% of clinical samples.7 CHR individuals have a higher risk of developing psychosis (0.15 at 1 year ) comparing to healthy controls, the
transition risk increased from 0.09 at half years to 0.27 at 4 years.8 However,most CHR subjects who do not transition to psychosis will continue to meet CHR
criteria or experience attenuated psychosis symptoms at follow-up and only 33% will eventually remit .8,9

The CHR state, is also associated with alterations in proxy measures of brain structure. Previous structural magnetic resonance imaging (MRI) studies
reported a progressive decrease in gray matter volume in the medial and superior temporal and medial frontal cortex during the transition period among CHR
individuals.10–13 Gray matter volume continued to decrease several years after disease onset.10,13,14 Widespread lower cortical thickness has also been
identi�ed in cross-sectional MRI data in individuals at CHR in a large-scale pooled analysis of the Enhancing Neuro Imaging Genetics through Meta-Analysis
(ENIGMA) CHR Working Group15,16, with CHR individuals exhibiting a pattern of lower cortical thickness similar to individuals with established
schizophrenia.17 Furthermore, longitudinal reductions of cortical thickness in the paracentral, superior temporal, and fusiform gyrus have been reported to be
associated with psychosis conversion in those at CHR.11,18 Recent work has indicated that whole-brain sMRI patterns of schizophrenia forecasted 2-year
psychosocial impairments in individuals with CHR.19, suggesting that alterations in brain structure may predict real-life outcomes.

Adolescent development is a crucial time window that is associated with brain-wide changes, including reductions in cortical thickness and volume.20,21

Cortical characteristics such as gray matter volume, cortical surface area, and cortical thickness decline by about 10% during adolescence.22 On the other
hand, white matter volume was reported peaking in young adulthood.22 Since the period from adolescence to early adulthood is a high risk time window for
psychosis onset,18 age-related anatomical deviations from typically-occuring declines may hold valuable information to predict later psychosis conversion,
especially in frontal and temporal regions that have been implicated in CHR15,18,23–25 and schizophrenia26–31. Further, greater brain age deviations were found
to be associated with a higher risk for psychosis over time.24,32 Importantly, these results suggest that the adolescent brain development pattern of CHR
individuals may differ from that of HCs. Indeed, the ENIGMA CHR Working Group has reported that CHR compared to HC participants exhibit altered non-linear
age associations with cortical thickness 15, suggesting that cross-sectional between-group differences in sMRI metrics may involve altered adolescent
development, trait characteristics associated with psychosis liability, and/or progressive brain pathology around the onset of psychosis.18,25,33

An increasing number of studies have attempted to use (cross-sectional) sMRI data to predict outcome or case-control status. These prior studies show that
machine learning approaches are informative for differentiating individuals with schizophrenia from HCs34–39. Similar �ndings were observed in different
clinical stages of psychosis, including �rst episode schizophrenia and CHR individuals.35,36 A major limitation, however, is the need for large and diverse
sample sizes to establish a well-tuned classi�er that also provides generalized predictive performance.40,41 Since single sites cannot typically provide the
necessary sample sizes,36,42,43 multisite consortia data may be advantageous if site effects are adequately accounted for (e.g., via cross-site harmonization
procedures).36,42,44 For example, without harmonization, a prior study failed to build a useful model with multi site data.24 In the current study, we aimed to
investigate whether cross-sectional sMRI data can be used to build a classi�er to differentiate the neuroanatomical developmental patterns of HCs relative to
participants who later developed a psychotic disorder later (CHR-PS+) as biomarkers for future psychosis conversion. As altered developmental processes are
implicated in psychosis risk, we considered the potential non-linear effects of age and sex to gain optimal predictive accuracy of trained classi�ers.
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Here, we combined data from 21 sites harmonized through the ENIGMA CHR Working Group using ComBat45 to minimize differences related to site-,, scanner-
and scanning protocols. Second, to model non-linear age effects, we �tted generalized additive models (GAMs)46,47 to the HC data, and then applied the �tted
GAMs to obtain non-linear age- and sex-corrected features for the entire sample.48 More speci�cally, we estimated the model in HCs and applied it to
individuals at CHR to capture deviations from the expected patterns of physiological aging. As for patients with early-onset psychosis49 and schizophrenia27

have been reported to have abnormally low ICV, all procedures were performed after adjusting the MRI features for effects of ICV. Third, we developed an
XGBoost50 classi�er using only HCs and CHR-PS + to determine deviation in neuroanatomical developmental patterns as potential predictors of future
psychosis conversion. Finally, we tested the predictive performance of the classi�er with the left-out site data, to avoid the potential for information leakage
between the training and test data.

We hypothesized that CHR-PS + individuals would be distinguishable from HCs based on features derived from structural MRI features, based on the
assumption that those CHR individuals who are most likely to convert to psychosis would show the greatest baseline anatomical alterations. Second, we
expected our classi�er to label individuals at CHR who had not developed a psychotic disorder (CHR-PS-) at follow-up, and most of the CHR with unknown
transition status (CHR-UNK, for unknown), as HCs. Third, we expected the classi�ers to perform similarly in independent con�rmatory datasets, and expected
to �nd associations between classi�cations and symptom severity.

Methods
Participants 

We included data from a total of 1,165 CHR individuals (144 CHR-PS+, 793 CHR-PS−, and 228 CHR-UNK individuals) and 1,029 healthy controls (HCs) from 21
ENIGMA Clinical High Risk for Psychosis Working Group sites (Table 1). CHR individuals met criteria for high-risk status via the Comprehensive Assessment of
At-Risk Mental States (CAARMS51; n = 650) or the Structured Interview for Prodromal Syndromes (SIPS52,53; n = 799).Site-speci�c inclusion and exclusion
criteria, the available scale scores in premorbid IQ, symptom severity, global functioning, and antipsychotic use at scan are the same as in a prior publication
(Supplementary Table S1).15 All sites obtained local institutional review board approval prior to data collection. Written informed consent was obtained from
every participant, or from the participant’s guardian for participants younger than 18 years. All studies were conducted in accordance with the Declaration of
Helsinki.54

We applied a two-step approach36  to evaluate the performance of the models by dividing the data into four datasets: training, test, independent con�rmatory,
and independent group datasets (Figure 1). Test and independent con�rmatory datasets were used as external validation datasets. First, the training and test
datasets comprised the data from CHR-PS+ and HC from 20 sites except for Toyama, which was used as the independent con�rmatory dataset. We chose this
dataset because the Toyama site  contributed the largest HC sample and excluding this dataset reduced sample imbalance between groups in building a
machine learning classi�er. Ninety percent of the data were randomly sorted as the training dataset, and the remaining 10% as the test dataset. A
Kolmogorov–Smirnov test did not show any signi�cant differences between training and test datasets in any structural features. The independent
con�rmatory dataset comprised the data from HCs and CHRs at the Toyama site; this data was completely excluded from the training partition, and was used
to perform an independent �rst-step evaluation without site information leakage. To evaluate the classi�er on unseen new data, we de�ned the CHR-PS− and
CHR-UNK individuals in all sites as the independent group dataset to perform the second step.

MRI data acquisition and preprocessing

Image Acquisition and Processing

Participating sites contributed to T1-weighted MRI brain scans from 31 MRI scanners, including 29 3-T scanners and 2 1.5-T scanners (Supplementary Table
S2). Detailed scan protocols and the number of scans for each protocol are described in the Supplementary Materials. After processing the data using
FreeSurfer analysis software at each site15, we extracted structural features from 153 regions of interest (ROI) including 68 regional measures of cortical
thickness, 68 surface area (SA), 16 subcortical volume, and one intracranial volume according to the Desikan-Killiany atlas.55 We implemented the ENIGMA
consortium quality assessment pipeline26,27,56,56–59 and 8 samples were excluded for lacking 20% of the ROIs data. Remaining missing values (1.20%) were
imputed using a k-Nearest Neighbor (k = 3) approach. 

ComBat harmonization

ComBat45 is a harmonization method used to remove scanner and protocol effects based on an adjusted general linear model harmonization method. Based
on recent work demonstrating that neuroComBat harmonization increases statistical power within a mega-analytic framework, primary analyses were
conducted within a mega-analysis framework using data that were corrected for site and scanner associations using neuroComBat harmonization.60 Further
analyses were conducted using Python version 3.7.12. We applied the extracted cortical thickness, surface area, subcortical volume, and intracranial volume
measures with participants’ age and sex as covariates, along with protocol and site effects. To con�rm that group status had no signi�cant in�uence on the
ComBat harmonization steps, we also conducted ComBat harmonization using the training dataset only (see Supplementary Materials). 

Features engineering

First, we �tted a general linear model to regress out effects of intracranial volume. Next, we �tted GAMs to only the HC data to estimate non-linear effects of
age and sex for every structural feature; then we applied the �tted GAMs to obtain non-linear age- and sex-corrected features. To verify the absence of
information leakage and the stability of the GAMs, we also repeated this procedure 1,000 times on randomly sub-sampled HC data to estimate the GAMs
(see Supplementary Materials).
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XGBoost

XGBoost is a scalable tree boosting algorithm.50 We applied standardization for the structural features to building a classi�er. The use of input data
standardization, optimization of the hyperparameters of the classi�er (eta, min_child_weight, max_depth, subsample, colsample_bytree) were tuned using
GridSearchCV implemented in the ‘scikit-learn’ module (version 1.0.2) in Python (https://scikit-
learn.org/stable/auto_examples/release_highlights/plot_release_highlights_1_0_0.html).61 We plotted the weights of the classi�er to determine the
importance of the features for generalization. The classi�er was optimized using a 10-fold cross-validated grid search over a de�ned parameter grid. Data
from the HC group were randomly downsampled to the same sample size as the CHR-PS+ group in each fold. To reduce downsampling bias, downsampling
and grid search were repeated 1,000 times and strati�ed 10-fold for the training data. Then, we applied 10-fold cross-validation and 1,000 permutations to
evaluate the signi�cance of the cross-validation scores of the model with the best hyperparameters for the training dataset. The best cross-validation
accuracy score was averaged across 1,000 repeats. Permutation tests were conducted by shu�ing the labels in the training data, and the permutation-based
p-value was calculated.62 The �nal model with the best hyperparameters was trained using the entire training dataset. Finally, the trained classi�er was
applied to the test set and the independent con�rmatory dataset with the best parameters tuned by grid search. The predict probability was calculated by the
trained classi�er for each sample. Predict probability ranges from 0 to 1, with smaller values indicating more likely classi�cation as CHR-PS+. The cut-off
point for the predictive performance was set to 0.5.

          The predictive performance of the classi�er was evaluated using an independent group dataset (CHR-PS− and CHR-UNK). We compared the classi�ers
built from four different feature sets: (i) only cortical thickness values, (ii) only surface area values, (iii) only subcortical volumes only, and (iv) all features. The
classi�er with the best predictive performance for the independent con�rmatory dataset was used for subsequent analysis.

Statistical analysis

Evaluation metrics

First, the classi�er was evaluated using the test, independent con�rmatory, and independent group datasets by the given scores of the tuned classi�er. We
calculated the confusion matrix, macro, and weighted average accuracies to evaluate the classi�er because the data used were imbalanced (see
Supplementary Materials).36

Predictive performance of the classi�er

The predictive performance of the classi�er was de�ned as its performance on unseen data (in the independent con�rmatory/group datasets) and was
assessed using standard evaluation metrics. Chi-squared tests were applied to the classi�ed labels of the test, independent con�rmatory, and independent
group datasets. Since we compared 6 pairs of groups, respectively, a Bonferroni’s correction was applied to adjust for the multiple statistical comparisons
(p<0.05/6 = 0.008). Predict probabilities generated by the XGBoost classi�er were also tested using an analysis of variance for all samples. A GAM was used
to assess non-linear relationships between age and the predictive performance of the classi�er. Moreover, we conducted 4 comparisons (HCs vs CHR-PS+,
CHR-PS+ vs CHR-PS-, CHR-PS+ vs CHR-UNK and CHR-PS+ vs CHR-PS- and CHR-UNK) of the decision curve analysis63–65 using ‘dcurves’ package (version
0.4.0) in R software to estimate the classi�er as well.

Relationship between predict probability and demographic and clinical characteristics

We tested the difference in the predictive performance with respect to sex and the existence of APSS, BLIPS, and GRDS using t tests (p < 0.05/3 = 0.016).
Pearson’s correlation analyses were also conducted between standardized IQ and the predict probability. Bonferroni’s correction was applied to the subscores
(p < 0.05/4 = 0.0125). To determine the relationship between the predict probability and symptom severity, Pearson’s correlation analyses were performed
using the SIPS and CAARMS subscores and global functioning score for CHR-PS+, CHR-PS-, and CHR-UNK groups. We tested z-score normalized positive,
negative and general subscores of the SIPS and CAARMS using Pearson’s correlation coe�cients. Bonferroni’s correction was applied to the SIPS or CAARMS
subscores (p < 0.05/4 = 0.0125). To determine the potential effect of antipsychotic medication on the classi�cation, we also tested the difference in predict
probabilities between those with and without medication use for each CHR subgroup using a t-test. 

Results

Model evaluation
A non-linear effect of age, sex, and age x sex interaction on SA was found in HCs, as shown in Fig. 2. The classi�er using only non-linear �tted SA features (i.e.,
�t to HCs, applied to all) obtained the best performance in differentiating HC and CHR-PS + groups (Supplementary Table S3). For the SA model, the best
cross-validation accuracy within the training dataset was 85% (± 0.00008). The permutation test showed that the classi�er performed signi�cantly better than
chance level (50%, p < 0.001). The accuracies with the best estimator for the test and independent con�rmatory datasets were 68% and 73% (Fig. 3B),
respectively. Regions with the largest features weights were the superior temporal, insula, superior frontal, superior parietal, fusiform, isthmus of cingulate, and
parahippocampal gyri to differentiate HC from CHR-PS + groups (Fig. 3A, Supplementary Table S2). For SA in the right superior temporal gyrus, which was the
strongest contributing feature of the classi�er, the ComBat harmonized feature showed no signi�cant difference among the groups (p > 0.05), while ComBat
harmonized and non-linear age- and sex-adjusted feature revealed a difference between CHR-PS + and CHR-PS- (t = 2.14, p = 0.033), and CHR-PS + and CHR-
UNK (t = 2.14, p = 0.033; Fig. 4).
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For a con�rmatory analysis, machine learning classi�ers using 152 sMRI raw brain characteristics showed poorer performance compared to the
corresponding age- and sex-adjusted machine learning classi�ers (Supplementary Materials). We also tried to build classi�ers to differentiate CHR from HCs
or CHR-PS + from CHR-PS-, however, those ones only showed approximate chance level (50%) accuracies.

Predictive performance of the classi�er for the test, independent con�rmatory, and
independent group datasets
A chi-squared test showed a signi�cant difference in the classi�ed labels for the independent con�rmatory, and independent group datasets, respectively (X2(1,
n = 151) = 6.34, p = 0.012 and X2(1, n = 1021) = 4.39, p = 0.036). Further residual analysis showed that the HC group was signi�cantly more likely to be
classi�ed as HCs than the CHR-PS + group (73% vs. 30%, corrected p = 0.004, Fig. 3B). For the independent group dataset, no difference between CHR-PS- and
CHR-UNK groups was found (73% vs. 80%, corrected p = 0.029).

For the overall sample, a chi-square test showed a signi�cant difference in the classi�ed labels between the four groups (X2(3, 1172) = 15.12, p = 0.002).
Further residual analysis showed a signi�cant difference in the classi�ed labels between CHR-PS + and the other three groups (Bonferroni corrected p’s < 0.05;
Fig. 3B). For the predict probability, an ANOVA showed a signi�cant difference between the four groups (F = 169.84, p < 0.001). Post-hoc comparisons showed
that CHR-PS + group was different from all other groups and that the CHR-PS- group was in between CHR-PS + and HC and CHR-PS- groups (HC > CHR-PS- >
CHR-PS+), while the predict probability did not differ between CHR-UNK and HCs (CHR-UNK > CHR-PS- > CHR-PS+; Bonferroni corrected p’s < 0.05; Fig. 3C).
Although the classi�er was built according to the features after controlling for non-linear age effect, a GAM analysis demonstrated that the predict probability
was associated with age (F = 11.33, p = 0.003), and differed between CHR-PS + and HC (t = 20.72, p < 0.001), CHR-PS + and CHR-PS- (t = 17.83, p < 0.001), and
CHR-PS + and CHR-UNK (t = 17.64, p < 0.001; Fig. 3D). No signi�cant age × group interaction was found in the predict probability.

The estimated decision curve for all comparisons (HCs vs CHR-PS+, CHR-PS + vs CHR-PS-, CHR-PS + vs CHR-UNK and CHR-PS + vs CHR-PS- and CHR-UNK
showed the that on the basis of getting MRI measurement to get a prediction from current classi�er/model leads to higher bene�t to discoverer transition of
CHR (Fig. 3E).

Relationship between predict probability and demographic and clinical characteristics
We observed no effects of sex or APSS, BLIPS, or GRDS status, on the predict probability (p > .05). No signi�cant correlations were found between
standardized IQ and the predict probability for each group. No signi�cant correlation was found between symptom severity scores and predict probability. No
signi�cant difference was found for the antipsychotics use was found among each CHR group (p > 0.05).

Discussion
To the best of our knowledge, the current study is the one of a few to apply a machine learning approach to discriminate HC and CHR-PS + groups in a large
multisite sample.40 To evaluate the classi�er, we employed a two-step approach using an independent con�rmatory dataset, obtained at a different site and
using a different protocol from the ones used to build the classi�er; we also used an independent group dataset including CHR-PS- and CHR-UNK groups.
Although previous study reported 94% accuracy40, we have achieved 85% accuracy in the 2-class classi�cation in the training dataset using non-linear
adjustment of SA features for age and sex. The patterns of neuroanatomical alterations were also useful in identifying CHR-PS- individuals. Specially, of the
CHR groups, the CHR-UNK group was the most likely to be classi�ed as HC by the classi�er, than those in other CHR groups, showing no difference in the
predict probability from HC.

In this study, we were able to differentiate HC from CHR-PS + group with 85% and 68% accuracy in the training and test sets, respectively. The performance
accuracy achieved by the classi�er on the independent con�rmatory dataset was 73%. In contrast to prior studies,24,40,41 we successfully built a model with
promising predictive performance for new data. Our �ndings suggest that ComBat is not only useful to increase statistical power43,45,60 but also crucial for
improving the accuracy in building a machine learning model out of multisite data. As expected, the majority of CHR-PS- and CHR-UNK individuals were
classi�ed as HCs. Moreover, no signi�cant associations were found between the predict probability and sex or IQ, or antipsychotics use for each CHR group.
We suggest that a machine learning classi�er trained to identify differences between CHR-PS + and healthy controls may be helpful to identify UHR individuals
at risk for conversion.

In line with prior studies of cortical alterations in CHR,23–25,29,32 we found that the pattern of surface area features, including the superior temporal, insula,
superior frontal, superior parietal, fusiform, isthmus of cingulate, and parahippocampal gyri, contributed to identifying CHR-PS + from HCs (Fig. 2A, Fig. 4).
CHR individuals who converted or presented with greater clinical symptom within a 2-year follow-up exhibited smaller SA in the rostral anterior cingulate,
lateral and medial prefrontal regions, and parahippocampal gyrus.32 SA is more closely related to volume than cortical thickness,66 and the volume of the
isthmus of cingulate gyrus has been reported to be different in resilient and non-resilient CHR individuals.25 The neuroanatomical alteration/ deviance pattern
of SA found in the current study between HCs and CHR-PS + groups are consistent with �ndings from other studies, which implicate the volume of superior
temporal, frontal and fusiform regions in CHR transitions15,16,24 and schizophrenia.17,27,28 Although our initial ENIGMA CHR study showed the difference
mainly in the cortical thickness between HC and CHR, the effect size of the group difference was equivalent to almost 8 years of healthy aging.15 In addition,
the age trajectory showed a non-linear pattern and differed by group.15,67 It is possible that the current study engineered the features that made the differences
in SA more prominent, by using GAM to estimate the brain age gap in a non-linear manner. Moreover, as the result of GAM eliminating the non-linear
adolescent development of SA in differentiating HCs and CHR-PS+, our classi�er achieved promising generalization of predictive performance.

The predict probability given by the classi�er based on the neuroanatomical deviance showed signi�cant differences among the HC or CHR-UNK, CHR-PS-, and
CHR-PS + groups at baseline (HC, CHR-UNK > CHR-PS- > CHR-PS+; Fig. 2C). The results suggest that predict probability is a useful index allowing us to better
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understand how neuroanatomical deviance is associated with psychosis conversion. This further implies that the neuroanatomical deviance was already
observed at baseline in CHR-PS + group. Moreover, the predict probability was associated with age (Fig. 3D), in line with previous clinical follow-up studies that
older individuals at CHR are with lower rate of psychosis conversion.68,69 These results suggest that psychosis-related brain characteristics may decrease
according to brain development which may effect on the onset of psychosis. Since this study focused on baseline brain features and future prognosis about
the onset of psychosis, prospective investigation for follow-up MRI scans as well as clinical severity and social functioning may clarify the course of brain
alteration in individuals with CHR along with adolescent development..

Our study has several limitations. First, to harmonize site effects, ComBat was applied to both HC and CHR subjects which by assuming a common covariate
model (that is typically preserved by ComBat) might potentially lead to an information leak70. However, without traveling subject harmonization, ComBat was
considered the most appropriate method for testing a classi�er on individual samples from multi-site datasets.42–44 Second, we could not test the effect of
psychosis-by-age interaction on the predict probability as longitudinal MRI data were not available. Longitudinally tracking neuroanatomical changes around
the onset of psychosis would offer more detailed information to understand the progressive brain pathology. Third, substance use of cannabis or alcohol was
not available for the current study which is reported associated with increased risk of developing depression in young adulthood.71 Fourth, mainly due to
low(er) group sizes for CHR-PS-, we did not explicitly train our classi�er to distinguish between CHR-PS + and CHR-PS- -even though this is the actual clinical
scenario when CHR individuals presents at baseline and for whom a prediction is sought.

In conclusion, we successfully trained a 2-class XGBoost classi�er (HC versus CHR-PS+) and showed promising predictive performance on a multi-site dataset
after considering age and sex differences. This classi�er successfully identi�ed 73% of CHR-PS- individuals as HC, and further 80% of CHR individuals who
were not follow-up for the onset. These results suggest that when considering adolescent brain development, baseline MRI scans for CHR individuals may be
helpful to identify their prognosis. Future prospective studies are required about what and how the psychosis-related brain characteristics change according to
the adolescent development, and whether the classi�er could be helpful in the clinical settings.
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Table 1. Demographic characteristics of study participants
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  HC CHR CHR-PS+ CHR-PS- CHR-UNK

  N Female,
No. (%)

Age,
mean
(SD;
range)

N Female,
No. (%)

Age,
mean
(SD;
range)

N Female,
No. (%)

Age,
mean
(SD;
range)

N Female,
No. (%)

Age,
mean
(SD;
range)

N Female,
No. (%)

Total                              

  Total 1029 438
(43)

22.48
(5.17;
11.30-
39.87)

1165 535
(46)

20.78
(4.82;
10.30-
39.00)

144 59 (41) 19.85
(4.60;
12.6-
35.00)

793 373
(47)

20.83
(4.95;
10.30-
39.00)

228 103
(45)

  Training  799 342
(43)

22.07
(5.20;
11.30-
39.87)

120 52 (43) 19.76
(4.62;
12.6-
35.00)

120 52 (43) 19.76
(4.62;
12.6-
35.00)

0 NA NA 0 NA

  Test  89 29 (33) 22.07
(5.08;
12.90-
39.25)

14 4 (29) 19.96
(3.73;
14.00-
26.00)

14 4 (29) 19.96
(3.73;
14.00-
26.00)

0 NA NA 0 NA

  Independent
con�rmatory 

141 67 (48) 25.07
(4.22;
18.00-
38.00)

10 3 (30) 20.76
(5.72;
14.90-
31.40)

10 3 (30) 20.76
(5.72;
14.90-
31.40)

0 NA NA 0 NA

  Independent
group 

0 NA NA 1021 476
(47)

20.91
(4.84;
10.30-
39.00)

0 NA NA 793 373
(47)

20.83
(4.95;
10.30-
39.00)

228 103
(45)

Site                              

  Columbia 9 2 (22) 24.35
(4.05;
19.58-
33.09)

17 9 (53) 22.89
(4.96;
14.87-
30.69)

3 2 (67) 19.40
(7.32;
14.87-
27.84)

14 7 (50) 23.63
(4.32;
15.91-
30.69)

0 NA

  Copenhagen 58 29 (50) 24.78
(3.30;
20.00-
35.00)

163 86 (53) 24.18
(4.18;
18.00-
38.00)

13 5 (38) 23.08
(3.40;
18.00-
29.00)

95 54 (57) 24.51
(4.57;
18.00-
38.00)

55 27 (49)

  CSU 59 25 (42) 21.49
(3.14;
15.00-
30.00)

52 24 (46) 19.48
(5.00;
13.00-
35.00)

21 12 (57) 19.43
(5.07;
13.00-
35.00)

31 12 (39) 9.52
(5.04;
13.00-
30.00)

0 NA

  Glasgow 46 30 (65) 22.80
(3.62;
18.00-
32.00)

80 63 (79) 22.24
(4.79;
17.00-
34.00)

6 5 (83) 18.50
(1.87;
17.00-
22.00)

74 58 (78) 22.54
(4.83;
17.00-
34.00)

0 NA

  Heidelberg 33 16 (48) 15.73
(0.91;
14.00-
17.00)

22 13 (59) 15.14
(1.08;
14.00-
17.00)

0 NA NA 18 12 (67) 15.11
(1.02;
14.00-
17.00)

4 1 (25)

  IDIBAPS 54 35 (65) 15.86
(1.63;
11.30-
18.30)

74 49 (66) 15.26
(1.69;
10.30-
18.10)

17 11 (65) 15.07
(1.38;
12.60-
17.20)

42 28 (67) 15.49
(1.90;
10.30-
18.10)

15 10 (67)

  ISMMS 12 5 (42) 27.94
(3.77;
22.79-
34.83)

25 13 (52) 23.39
(5.43;
17.11-
34.89)

1 0 26.31
(NA)

12 7 (58) 23.63
(5.46;
17.17-
34.89)

12 6 (50)

  London 29 10 (34) 24.52
(4.73;
20.00-
36.00)

81 25 (31) 22.61
(4.41;
18.00-
38.00)

6 0 23.99
(4.41;
18.00-
28.92)

62 20 (32) 22.26
(4.62;
18.00-
38.00)

13 5 (38)

  Maastricht 38 12 (32) 25.61
(5.68;
18.35-
39.25)

48 14 (29) 20.19
(4.10;
12.00-
29.00)

6 2 (33) 20.50
(5.17;
15.00-
26.00)

25 8 (32) 18.64
(3.44;
12.00-
27.00)

17 4 (24)

  MHRC 51 0 22.21
(2.81;
16.07-
27.07)

38 0 20.11
(2.50;
16.30-
27.59)

3 0 19.02
(2.37;
16.30-
20.60)

35 0 20.20
(2.52;
16.72-
27.59)

0 NA

  MPRC 20 8 (40) 17.75
(4.31;

30 15 (50) 17.13
(3.25;

3 1 (33) 16.00
(4.36;

9 4 (44) 16.00
(2.78;

18 10 (56)
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12.00-
24.00)

12.00-
22.00)

13.00-
21.00)

12.00-
20.00)

  Oslo Region 62 23 (37) 19.90
(3.62;
15.20-
29.40)

21 8 (38) 19.88
(3.63;
15.55-
29.08)

2 1 (50) 20.01
(5.43;
16.18-
23.85)

18 7 (39) 19.85
(3.71;
15.55-
29.08)

1 0

  Pitt 64 26 (41) 22.70
(5.56;
14.03-
38.24)

26 14 (54) 20.75
(5.32;
12.39-
35.84)

2 1 (50) 17.05
(0.72;
16.55-
17.56)

11 7 (64) 19.52
(6.38;
12.39-
35.84)

13 6 (46)

  Singapore 53 25 (47) 21.96
(4.18;
14.51-
29.84)

100 32 (32) 21.92
(3.57;
14.52-
29.77)

11 3 (27) 20.08
(3.06;
14.76-
26.50)

88 28 (32) 22.14
(3.60;
14.52-
29.77)

1 1 (100)

  SNUH 74 24 (32) 21.23
(2.49;
17.00-
27.00)

74 19 (26) 20.70
(3.77;
15.00-
34.00)

9 3 (33) 22.00
(4.97;
16.00-
33.00)

46 11 (24) 20.37
(3.70;
15.00-
34.00)

19 5 (26)

  Toho 16 8 (50) 23.19
(2.86;
18.00-
28.00)

40 28 (70) 23.73
(6.95;
13.00-
39.00)

4 3 (75) 19.00
(4.40;
14.00-
24.00)

36 25 (69) 24.25
(7.02;
13.00-
39.00)

0 NA

  Tokyo 25 12 (48) 22.08
(2.84;
16.00-
25.00)

39 18 (46) 20.92
(3.50;
14.00-
29.00)

3 0 22.67
(4.73;
19.00-
28.00)

25 15 (60) 20.48
(3.10;
14.00-
27.00)

11 3 (27)

  Toronto 39 16 (41) 25.46
(5.21;
18.17-
38.24)

27 12 (44) 20.77
(1.84;
18.12-
26.65)

0 NA NA 4 2 (50) 19.70
(1.09;
18.12-
20.55)

23 10 (43)

  Toyama 141 67 (48) 25.07
(4.22;
18.00-
38.00)

78 35 (45) 18.47
(4.06;
12.60-
31.40)

10 3 (30) 20.76
(5.72;
14.90-
31.40)

68 32 (47) 18.13
(3.69;
12.60-
29.80)

0 NA

  UCSF 103 43 (42) 23.74
(7.55;
12.82-
39.87)

70 33 (47) 19.39
(4.37;
12.39-
32.36)

13 5 (38) 21.35
(4.40;
15.85-
29.00)

46 22 (48) 19.04
(4.13;
12.39-
28.75)

11 6 (55)

 Zurich 43 22 (51) 22.23
(5.56;
13.00-
36.00)

60 25 (42) 19.20
(4.90;
13.00-
35.00)

11 2 (18) 18.55
(3.36;
14.00-
24.00)

34 14 (41) 19.15
(5.43;
13.00-
35.00)

15 9 (60)

Abbreviations: HC, healthy control; CHR, clinical high risk for psychosis; CHR-PS+, individuals at CHR who developed psychosis later individuals at CHR who
developed psychosis later; CHR-PS-, individuals at CHR who did not develop psychosis later; CHR-UNK, could not follow up; SD, standard deviation. Site name
abbreviations as follows: Columbia, New York State Psychiatric Institute, Columbia University, New York; Copenhagen, Mental Health Center Copenhagen and
CINS, Mental Health Center Glostrup, University of Copenhagen, Copenhagen, Denmark; CSU, Central South University, Changsha, China; Glasgow, Institute of
Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland; Heidelberg, Heidelberg University Hospital, Heidelberg, Germany; IDIBAPS, August Pi I
Sunyer Biomedical Research Institute, Barcelona, Spain; ISMMS, Icahn School of Medicine at Mount Sinai, New York, New York; London, Institute of Psychiatry,
Psychology and Neuroscience, King’s College London, London, United Kingdom; Maastricht, Maastricht University, Maastricht, the Netherlands; MHRC, Mental
Health Research Center Moscow, Moscow, Russia; MPRC, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore; Oslo
region, NORMENT, University of Oslo and Oslo University Hospital, Oslo, Norway; Pitt, University of Pittsburgh, Pittsburgh, Pennsylvania; Singapore, Institute of
Mental Health and National University of Singapore, Singapore; SNUH, Seoul National University, Seoul, Republic of Korea; Toho, Department of
Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan; Tokyo, Department of Neuropsychiatry, Graduate School of Medicine, The University of
Tokyo, Tokyo, Japan; Toronto, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Toyama, University of Toyama
Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; UCSF, University of California, San Francisco; Zurich, Psychiatric Hospital,
University of Zurich, Zurich, Switzerland. Additional site details can be found in the Supplement. 
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Figure 1

Diagram employed for the processing and analysis

Abbreviations: HC, healthy control; CHR, clinical high risk for psychosis; CHR-PS+, individuals at CHR who developed psychosis later; CHR-PS-, individuals at
CHR who did not develop psychosis later; CHR-UNK, individuals at CHR who could not follow up; SD, standard deviation.
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Figure 2

Non-linear age associations of the surface area in healthy controls

Each graph shows a partial effect of the best �t in GAMs. Shading around the line indicates the standard error. The bar underneath the age plots re�ects the
derivative of the slope.
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Figure 3

Surface area feature contributions and predictive performance comparisons of the XGBoost classi�er

(A) Weighted surface area features of XGBoost classi�cation in Desikan-Killiany atlas. (B) Predictive performance of HC and CHR-PS+ groups was evaluated
using the independent con�rmatory dataset, and CHR-PS- and CHR-UNK groups using the independent group dataset. (C) Box and scatter plot of predict
probabilities of XGBoost. P-values of post hoc comparisons were corrected using a Bonferroni method (***p < 0.001, **p < 0.01, *p < 0.05). (D) Best �t for the
association of age with the predict probability in a GAM. Shading around the line indicates the standard error. (E) Decision curve analysis showed the bene�ts
of XGBoost predicting the risk of psychosis conversion according to MRI scan.
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Figure 4

Age association of the surface area in the right superior temporal gyrus

Each graph shows a GAM �t of age, group, and age by group interaction. Shading around the line indicates the standard error.
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