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Abstract

Background
The gut microbiota in the hepatitis B virus related acute-on-chronic liver failure (HBV-ACLF) is poorly
defined. We aim to uncover the characteristics of the gut microbiota in HBV-ACLF and in other HBV
associated pathologies.

Methods
We analyzed the gut microbiome in patients with HBV-ACLF or other HBV associated pathologies and
healthy individuals by 16S rRNA sequencing and metagenomic sequencing of fecal samples. 212
patients with HBV-ACLF, 252 with chronic hepatitis B (CHB), 162 with HBV-associated cirrhosis (HBV-LC)
and 877 healthy individuals were recruited for the study. CHB and HBV-LC patients are grouped as HBV-
Other.

Results
We discovered striking differences in the microbiome diversity between the HBV-ACLF, HBV-Other and
healthy groups using 16S rRNA sequencing. The ratio of cocci to bacilli was significantly elevated in the
HBV-ACLF group compared with healthy group. Further analysis within the HBV-ACLF group identified 52
genera showing distinct richness within the group where Enterococcus was enriched in the progression
group whilst Faecalibacterium was enriched in the regression group. Metagenomic sequencing validated
these findings and further uncovered an enrichment of Lactobacillus casei paracasei in progression
group, while Alistipes senegalensis, Faecalibacterium prausnitzii and Parabacteroides merdae dominated
the regression group. Importantly, our analysis revealed that there was a rapid increase of Enterococcus
faecium during the progression of HBV-ACLF.

Conclusions
The gut microbiota displayed distinct composition at different phases of HBV-ACLF. High abundance of
Enterococcus is associated with progression while that of Faecalibacterium is associated with regression
of HBV-ACLF. Therefore the microbiota features hold promising potential as prognostic markers for HBV-
ACLF.

Background
Acute-on-chronic liver failure (ACLF) is a common type of end-stage liver disease characterized by rapid
deterioration of underlying chronic liver disease with organ failures and high mortality[1]. Hepatitis B
Virus (HBV) is a human hepadnavirus that causes acute and chronic hepatitis and hepatocellular



Page 4/21

carcinoma. ACLF occurs in about 30% of HBV-related cirrhosis patients with acute decompensation[2, 3].
The short-term prognosis of HBV-associated ACLF (HBV-ACLF) is poor, with 28-day mortality ranging
from 40–50%[2–4].

Gut microbiota is the collection of microorganisms that inhabit in the gastrointestinal tract[5], with an
estimated number of gut microorganisms of over 1014[6]. Gut microbiota has a complicated and
mutually beneficial relationship with the host[7], and plays an important role in the metabolism, nutrition,
pathological processes and immune function of the host[8, 9]. Human gut microbiota composition is
affected by multiple factors such as age, nutrition, ethnicity, disease, and medication intake[10–12].
Intestinal microbes can produce short-chain fatty acids to improve the energy metabolism of the colon
cells[13]. Some short-chain fatty acids have anti-inflammatory effects[14]. Changes in the composition of
the gut microbiota have been linked to several clinical conditions, such as obesity, nonalcoholic fatty liver
disease, allergic diseases, gastrointestinal diseases, autoimmune diseases and cancers[15, 16].

Growing evidences suggest that gut microbiota plays a crucial role in the induction and the progression
of liver diseases[17, 18]. Bacteria and bacterial components from the gut microflora have been
associated with systemic inflammation and severe liver diseases[19, 20]. Translocation of gut microbe or
their microbial products can induce inflammation, liver cell apoptosis and progression of liver failure[18],
chronic liver disease [21] and intestinal dysfunction in liver cirrhosis[22, 23]. Chen et al shown that
changes in the microbiota composition are correlated with liver disease severity in non-viral ACLF
patients[17].

In clinical practice, intestinal microecological modulators are commonly used for the treatment of HBV-
ACLF, especially for those with abdominal pain, diarrhea, hepatic encephalopathy and suspicious
abdominal infection[24–26]. However, the therapeutic efficacy varies considerably likely due to the
differences in gut microbiota composition. This study aims to define the composition of the gut
microbiota in HBV-ACLF patients and other HBV associated pathologies including chronic hepatitis B
(CHB) and HBV-associated cirrhosis (HBV-LC) and healthy individuals to uncover their relationships to
disease progression and potential as prognosis markers.

Results
Distinct gut microbiota distribution and genera in HBV-ACLF 

To uncover the microbiota distribution and genera in HBV-ACLF, HBV-Other and healthy groups, fecal
samples were performed 16S rRNA sequencing and Shannon indexes calculated. The diversities of
microbiome were significantly different between HBV-Other, HBV-ACLF and healthy group (Fig.1A). The
overall gut microbiota distribution in each group was visualized using a t-distributed stochastic neighbor
embedding (t-SNE) visualization and further demonstrated distinct microbiota distribution between
groups, especially between the healthy and liver disease groups (Fig.1B). 
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To identify the predominant gut microbiota in HBV-ACLF, LEfSe analysis was performed. The results
showed that there were a number of different genera of gut microbiota between the healthy and the liver
disease groups, and a trend could be observed that the HBV-ACLF had more Enterococcus relative
richness than the healthy group (Fig.1C). Clinically, cocci to bacilli ratio is a common parameter used to
inform the status of gut microbiota and the choice of antibiotics, therefore are often tested for patients
with ACLF or abdominal and intestinal infections[27, 28]. We found that the ratio of
cocci to bacilli richness was significantly different among the three groups where HBV-
ACLF group exhibited the highest ratio (Fig.1D), suggesting the balance of gut microbiota in these
patients were severely disrupted.

Establishing a microbiota classification model for the healthy, HBV-Other and the HBV-ACLF group

A classification model for the healthy, HBV-Other and the HBV-ACLF group was established
by Random Forest classifier. The classification model included 18 most important taxa of the 3 groups
(Fig.2A), with an AUC value of 0.89. In addition, the decomposition visualization (Fig.2B) demonstrated
that the 18 selected taxa could be well distinguished among the 3 groups, suggesting the model was
validly established.

Correlation between clinical/demographic variable and gut microbiota

To investigate the correlation between each clinical/demographic variable and gut microbiota among the
3 groups, adonis analysis was performed. The analysis showed that with the exception of sex, AST,
HBsAg and HBeAb, all the other clinical/demographic variables were significantly associated with gut
microbiota differences among the 3 groups (P<0.05, Table 1), which were consistent with previous
reports[27-30]. 

Gut microbiota taxa difference between the progression and regression groups 

To investigated whether gut microbiota differs within the HBV-ACLF group, we sub-assigned the group
into progression group (disease progression at discharge; n = 47) and regression group (improved
outcomes at discharge; n = 165) according to the Model for End-Stage Liver Disease (MELD) score at
discharge. Fifty-two genera with different community richness between the HBV-ACLF progression and
regression groups were identified with the most abundant genera (p < 0.005) listed
in Table 2 and Supplementary Table S1 (p < 0.05). Enterococcus and Faecalibacterium showed the
highest richness within the 52 genera, highlighting the importance of these two genera in ALCF which
may contribute to disease progression. The relative abundance of Enterococcus was significantly
elevated in the progression group, and that of Faecalibacterium was significantly elevated in the
regression group (Fig.3).

Gut microbiota genera associated with blood biochemical indicators

To investigate whether there is a link between the gut microbiota and clinical parameters, we evaluate the
association between different genera and blood biochemical indicators in all groups. The blood
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biochemical indicators were divided into three categories according to their clinical relevance as
follows: Liver inflammation - alanine aminotransferase (ALT) and aspartate aminotransferase (AST);
Liver disease severity - total bilirubin (TBIL), international normalized ratio (coagulation function)
(INR) and end-stage liver disease model (MELD); Degree of infection - white blood cell
count (WBC), neutrophil percentage (NEUT%) and procalcitonin (PCT).

The gut microbiota genera associated with each blood biochemical indicator were identified using a
Random Forest regressor via microbe's Mean Decrease Gini. We trained several
models using microbiota richness to predict their clinical relevance. By comparing the feature importance
of the trained Regressor, we detected
that Filifactor, Rikenellaceae, Clostridium, Bilophila and Comamonas were associated
with ALT and AST(Fig.4A); Enterococcus, Enterococcaceae and Abiotrophin were associated
with TBIL, INR and MELD (Fig.4B); and Enterococcus and Streptococcus were associated
with WBC, NEUT% and PCT (Fig.4C). These results have the potential to inform the use of intestinal
microbial intervention to alleviate or prevent the progression of liver disease.

Metagenomic sequencing between the progression and regression group in HBV-ACLF patients

The results of genus Enterococcus and Faecalibacterium by 16S rRNA sequencing were validated by the
metagenomic sequencing (Fig.5A) where the richness of Enterococcus was higher in the
progression group than in the regression group, and the richness of Faecalibacterium was higher in the
regression group than in the progression group. 

The time series samples of HBV-ACLF patients

The dynamic change of gut bacteria in patients with liver failure is an important indicator to predict the
optimal time to introduce therapeutic interventions and to adjust follow-up treatments. We performed
the time series samples analysis on day 1, 7 and 14 upon patient admission by metagenomic
sequencing. The results showed that the richness of Lactobacillus casei paracasei was
significantly higher in the progression group compared with the regression group (P<0.05); while the
richness of Alistipes senegalensis, Faecalibacterium prausnitzii and Parabacteroides
merdae were significantly higher in the regression group (P<0.05, Fig.5B). The results
of Faecalibacterium prausnitzii were consistent with the 16sRNA sequencing results that
genus Faecalibacterium was higher in the regression group. Further analysis revealed that the regression
group had a small increase in the richness of Enterococcus faecium, while the progression group had a
marked increase in the richness of Enterococcus faecium during the period of 14 days.
Importantly, the richness of Enterococcus was significantly higher in the progression group than the
regression group in day 1 (Fig.5A).

Bayes network analysis to identify the key species of gut microbiota differences
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Finally, the key species of gut microbiota which were different between the progression group and the
regression group were identified using Bayes network analysis. As shown in Table 3, 7 species
(Streptococcus vestibularis, Peptostreptococcus unclassified, Scardovia unclassified, Prevotella
salivae, Prevotella histicola, Actinomyces odontolyticus, Streptococcus parasanguinis) were enriched in
the regression group while 3 species (Ruminococcus obeum, Dorea longicatena, Clostridium
citroniae) were enriched in the progression group. These results were further validated by qPCR
(Fig.6). Consistently, the progression group of HBV-ACLF exhibited significantly abundant Enterococcus
faecium and Lactobacillus casei paracasei, while the regression group presented significantly
abundant Faecalibacterium prausnitzii, Clostridium citroniae and Dorea longicatena.

Discussion
In this study, we investigated the gut microbiota in patients with HBV-ACLF, HBV-Other (CHB, HBV-LC) and
healthy individuals and our analysis demonstrated a significant difference in microbiota diversity among
the HBV-ACLF, HBV-Other and healthy groups. The ratio of cocci to bacilli was significantly elevated in the
HBV-ACLF group compared with the healthy group. We further identified 52 genera with different richness
in the HBV-ACLF progression and regression groups. The progression group showed a high relative
abundance of Enterococcus, while the regression group presented a high relative abundance
Faecalibacterium. Further, metagenomic sequencing showed that the richness of Lactobacillus casei
paracasei was significantly higher in the progression group than in the regression group, while Alistipes
senegalensis, Faecalibacterium prausnitzii, and Parabacteroides merdae showed a significantly higher
richness in the regression group than in the progression group. Further analysis revealed that
Enterococcus faecium exhibited a rapid increase during the disease progression of HBV-ACLF. Taking
together, these findings highlighted an important role for the composition of gut microbiota in the
progression of HBV-ACLF which has important clinical implications.

Consistent with a previous report[17], our results demonstrated that gut microbiota diversity and richness
were different among the HBV-ACLF group, HBV-Other group and the healthy group. Adonis analysis
showed that multiple clinical/demographic variables may contribute to the differences of gut microbiota
among the 3 groups, suggesting that the composition of gut microbiota was affected by multiple factors.
Nevertheless, how individual factors contribute to the composition of the gut microbiota warrant further
investigation.

Enterococcus is an intestinal symbiotic bacterium in healthy individuals and is emerging as an infectious
drug-resistant pathogen[31]. It has been shown that the levels of Enterococcus were elevated in CHB and
liver cirrhosis patients[32]. Our 16S rRNA sequencing showed that the ACLF progression group had a
higher relative abundance of Enterococcus than the regression group, indicating Enterococcus may
contribute to the progression of HBV-ACLF. Moreover, in the dynamic series of samples analysis of HBV-
ACLFHBV-ACLFEnterococcus richness in the disease progression of HBV- ACLF.
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Faecalibacterium prausnitzii accounts for approximately 5% of total fecal microbiota in healthy
adults[33]. Faecalibacterium prausnitzii depletion has been associated with several intestinal
disorders including inflammatory bowel diseases[34], chronic intestinal inflammatory disorder[35], and
colorectal cancer[36]. Lu et al. showed that the abundance of Faecalibacterium prausnitzii decreased in
HBV-LC patients[37]. Our metagenomic sequencing showed that the abundance of Faecalibacterium
prausnitzii was significantly increased in the regression group of HBV-ACLF patients, indicating that
Faecalibacterium prausnitzii may be a beneficial factor of HBV-ACLF. Consistently, Enterococcus was
increased in the progression group and Faecalibacterium was increased in the regression group,
confirming the data generated by 16S rRNA sequencing and metagenomic sequencing were highly
convincing.

Clinically, the cocci to bacilli ratio of the fecal sample is often tested in HBV-ACLF patients. Most of the
them showed the imbalance of cocci and bacilli, suggesting intestinal infection or gut microbiota
disorder[27, 38]. Likewise, in this study, the cocci to bacilli ratio was significantly elevated in the HBV-
ACLF group, suggesting that the HBV-ACLF patients may have cocci infection. Furthermore, this study
detected an increase of Enterococcus but a decrease of Faecalibacterium in the progression HBV-ACLF
group, consistent with the increased cocci to bacilli ratio in clinical findings.

Lactobacillus casei paracasei is one of the most studied and applied probiotic species of Lactobacilli[39].
Nevertheless, we found that the progression group showed a higher relative abundance of Lactobacillus
casei paracasei compared with the regression group, suggesting that Lactobacillus casei paracasei was
associated with disease progression in HBV-ACLF and seemed contradictory to its probiotic function.
Since the composition of gut microbiota is influenced by multiple factors and context dependent, the
same bacterial species may play distinctive roles in different intestinal states. Therefore, the exact role of
Lactobacillus casei paracasei in the progression of HBV-ACLF requires further characterization.

In the analyses of the correlation between the liver inflammationTBIL, INR, and MELD (liver disease
severity); and 2 WBC, NEUT% and PCT (degree of infection). Nevertheless, the precise causal
relationships between these intestinal bacteria and biochemical parameters still require further
investigation. Likewise, in our Bayes network analysis, 7 species elevated in the regression group and 3
species enriched in the progression group and the roles of these intestinal bacteria and how they
contribute to disease progression remain to be investigated.

There are still some limitations to this study. First, the differences in patients’ antibiotic used before and
after admission may have an impact on the results of the microbiota. Secondly, the immune function and
severity of liver failure at the time of admission were not consistent among the groups. Thirdly,
considering the gastrointestinal symptoms and possible hepatic encephalopathy of the patients, the diet
during the hospitalization was mainly based on digestible low-protein and low-fat carbohydrates, which
may affect the results of microbiota. Therefore, a well-designed prospective study should be conducted to
validate our findings.
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Conclusions
Our study demonstrated that the composition of gut microbiota changed at different phases of HBV-
ACLF. High abundance of Enterococcus is associated with progression while high abundance of
Faecalibacterium is associated with regression of HBV-ACLF, which is consistent with the high ratio of
cocci to bacilli in HBV-ACLF patients and clinical imaging findings. The gut microbiome in HBV-ACLF
patients may provide a useful prognosis marker for disease progression. Further studies should be
conducted to characterize the exact roles of these gut microbiota in the progression of HBV-ACLF.

Methods
Study subject

1503 participants admitted to the Third Affiliated Hospital of Sun Yat-sen University were recruited for this
study between October 2017 and November 2018 including patients with CHB (n= 252), HBV-LC (n = 162)
and HBV-ACLF (n = 212) and healthy individuals (n = 877, from the physical examination center of the
hospital). To characterize the gut microbiota, CHB and HBV-LC patients were combined and defined as
the HBV-Other group. Comparative analysis was conducted among the HBV-ACLF (progression +
regression) group, HBV-Other group and the healthy group. This study was approved by the institutional
review board of our hospital. Written informed consent was obtained from the participants. The Medical
Ethics Committee, Third Affiliated Hospital of Sun Yat-sen University (ID[2018]02-018-01).

All enrolled patients were hospitalized with HBsAg positive for > 6 months. For CHB patients, the inclusion
criteria were: alanine transaminase (ALT ) ≥ 5 upper limit of the normal (ULN), total bilirubin (TBIL) ≥ 2
ULN, international normalized ratio (INR) < 1.5, imaging findings (abdominal ultrasound, CT or abdominal
MRI) did not support cirrhotic change. For HBV-LC patients, the inclusion criteria were: ALT ≥ 2 ULN, TBIL
≥ 2 ULN, INR < 1.5, imaging findings supported cirrhotic changes. HBV-ACLF was diagnosed according to
the 2014 APASL diagnostic guidelines (TBIL > 5 ULN, INR > 1.5, with ascites or hepatic encephalopathy
symptoms within 2 weeks).

Participants’ demographic and clinical characteristics were summarized in Table 4. Age, white blood cell
count, neutrophil percentage, aspartate aminotransferase, alanine aminotransferase, total bilirubin,
international normalized ratio (coagulation function), procalcitonin and end-stage liver disease model
were significantly different among groups.

For ethical reasons, we did not distinguish patients whether they had received antibiotics, anti-hepatitis B
virus and other treatments before admission. The attending doctor was free to conduct relevant medical
treatment based on clinical diagnosis post-admission. HBV-ACLF patients have been routinely supplied
with low-protein, low-fat diets and easily digestible carbohydrates. The use of antibiotics was only
provided with symptoms including fever, abdominal pain, diarrhea, imaging based biliary infections as
well as the level and ratio of white blood cells and neutrophils and procalcitonin (PCT).



Page 10/21

16S rRNA sequencing

To analyze the gut microbiota, fecal samples of the participants were collected for 16S rRNA sequencing.
The genomic bacterial DNA was extracted using Fecal Microbial Genomic DNA Extraction Kit (LS-R-N-015,
Longsee biomedical corporation, China). The forward primer: 338F (5'-ACTCCTACGGGAGGCAGCA-3') and
reverse primer: 806R (5'-GGACTACHVGGGTWTCTAAT-3') and sample-specific barcode sequence were
used to amplify the V3-V4 highly variable region of the 16S rRNA gene (around 480 bp). The 16S rRNA
was PCR-amplified by using Q5® High-Fidelity DNA Polymerase (M0491, NEB, USA) according to
manufacturer’s protocol. Sequencing was performed by MiSeq Reagent Kit V3 (MS-102-3003, Illumina
Inc., USA) using a MiSeq-PE250 sequencer (Illumina).

Bioinformatic analysis of the bacterial 16S rRNA amplicon data was conducted using a custom QIIME2
software pipeline (https://qiime2.org). Sequence quality control and filtering were conducted by FastQC
v.0.11.2 and Trimmomatic v.0.32, followed by feature table construction by dada2 (Qiime2). The
taxonomy of each 16S rRNA gene sequence was assigned by q2-feature-classifier (Qiime2). Pre-trained
Naive Bayes taxonomy classifier gg-13-8-99-515-806-nb-classifier was used in the classification.

Metagenomic sequencing

Genomic bacterial DNA was extracted using Fecal Microbial Genomic DNA Extraction Kit (LS-R-N-015,
Longsee biomedical corporation, China). PCR-amplification was performed using KAPA Hyper Plus Kit
(KK8510, Kapa Biosystems, USA) and KAPA Dual-Indexed Adapter Kit (KK8722, Kapa Biosystems)
followed by sequencing using NextSeq 500/550 High Output Kit v2.5 (Illumina). All procedures were
performed according to the manufacturer’s protocol.

For Tagenomic Sequencing Bioinformatics Analysis, sequence quality control and filtering were
conducted by fastp v.0.20.0. Human genome (hg38) sequence was filtered by bowtie2. Taxonomy
analysis was performed by using MetaPhlAn2 (http://huttenhower.sph.harvard.edu/metaphlan2). To
identify specific species contributing to the differential genera between groups, we included 8 patients
with complete HBV-ACLF (including 5 cases of regression and 3 cases of progression) for metagenomic
sequencing. Fecal samples were collected at day 1 (Day-1), day 7 (Day-7) and day 14 (Day-14) after
admission.

qPCR validation

Quantitative real-time PCR was used to quantify the species to validate the sequencing results. Primers
were presented in Table S2. The qPCR was performed according to the PrimeScriptTM RT Reagent Kit
(TAKAA). Reactions were performed on a LightCycler® System (Roche, Germany) as follows: 95 °C for 3
min, followed by 40 cycles of 95 °C for 5 s and 60 °C for 15 s. The relative mRNA levels of target samples
to control samples were calculated according to 2−ΔΔCt method, in which the difference in Ct values (ΔCt)
between the target gene and the reference gene (β-actin) was calculated for normalization and the ΔCt of

http://huttenhower.sph.harvard.edu/metaphlan2
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the different samples was compared directly (ΔΔCt). And data were expressed as least square means ±
standard error of the mean (S.E.M.).

Statistical analysis

Mann–Whitney U test, Kruskal–Wallis test by ranks and LEfSe (Linear discriminant analysis Effect Size)
analysis were conducted to identify different genus between groups. A Random Forest regressor was
used to figure the genus related to certain clinical indicators by regression model’s feature importance.
Meanwhile, a classification model was adopted to identify a small genus set with good discriminatory
power. A classification model for the healthy, CHB, HBV-LC and HBV-ACLF groups was established by
using the Random Forest classifier according to the relative abundance of each genus of gut microbiota.
In the model tuning process, a grid search was adopted for hyperparameter tuning, and the best score
was used. Bayes network analysis was performed to figure out interaction between each species and the
source of turbulence of the microbe community. Adonis (Multivariate Analysis Of Variance Using
Distance Matrices) was conducted to figure the correlation between the clinical indicators and the
richness of the gut microbe. A P value < 0.05 was considered significantly different between groups. In
the figures * denotes p < 0.05, **denotes p < 0.01, ***denotes p <0.001, n.s. denotes non-significant.

Abbreviations
ACLF: Acute-on-chronic liver failure; HBV: Hepatitis B Virus; HBV-ACLF: HBV-associated ACLF; CHB:
chronic hepatitis B; HBV-LC: HBV-associated cirrhosis; ALT: alanine transaminase; ULN: upper limit of the
normal; TBIL: total bilirubin; INR: international normalized ratio; PCT: procalcitonin; MELD: the Model for
End-Stage Liver Disease; AST: aspartate aminotransferase; WBC: white blood cell count; NEUT%:
neutrophil percentage.
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Figure 1

Gut microbiota distribution among groups. (A) Alpha diversity analysis. (B) A t-distributed stochastic
neighbor embedding (t-SNE) visualization. (C) Lef Se analysis showed predominant gut microbiota. (D)
The ratio of cocci to bacilli was compared among the three groups. **P<0.01.
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Figure 2

A classification model for the healthy, HBV-Other and the HBV-ACLF group. (A) 18 most important taxa in
the classification model among the 3 groups. (B) The decomposition visualization of the 18 most
important taxa among the 3 groups.

Figure 3

The abundance of the genera with the highest richness Enterococcus and Faecalibacterium. The relative
abundance of Enterococcus was significantly elevated in the progression group, and that of
Faecalibacterium was significantly elevated in the regression group.
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Figure 4

Correlation between the gut microbiota and clinical indicators. The genera associated with ALT/AST
(relevant to liver inflammation), TBIL/INR/MELD (relevant to liver disease severity) and WBC/NEUT%/PCT
(relevant to the degree of infection). Blue square represents the genera selected by the trained Regressor
that with clinical relevant.
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Figure 5

Difference of gut microbiota between the progression and regression groups. Relative abundance of
genus at day-1 (fecal sample collected at day 1 after admission), day 7 and day 14 between the
progression and regression group of HBV-ACLF. (A) Enterococcus and Faecalibacterium, and (B) species
Lactobacillus casei paracasei, Alistipes senegalensis, Faecalibacterium prausnitzii and Parabacteroides
merdae. **P<0.05.
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Figure 6

The key species of different gut microbiota were further validated by qPCR. qPCR validation of the
relative abundance of Enterococcus faecium, Faecalibacterium prausnitzii, Lactobacillus casei paracasei,
Clostridium citroniae and Dorea longicatena between progression and regression group of HBV-ACLF.
**P<0.01.
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