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Abstract
Purpose: Intraretinal hyper-re�ective foci (IHRF) are optical coherence tomography (OCT) risk factors for
progression of age-related macular degeneration (AMD). In this study we assess the change in the
number and distribution of IHRF over two years.

Methods: The axial distribution of IHRF were quanti�ed in eyes with intermediate AMD (iAMD) at baseline
and 24 months, using a series of 5 sequential equidistant en face OCT retinal slabs generated between
the outer border of the internal limiting membrane (ILM) and the inner border of the retinal pigment
epithelium (RPE). Following thresholding and binarization, IHRF were quanti�ed in each retinal slab using
ImageJ. The change in IHRF number in each slab between baseline and month 24 was calculated.

Results: Fifty-two eyes showed evidence of IHRF at baseline, and all continued to show evidence of IHRF
at 24 months (M24). The total average IHRF count/eye increased signi�cantly from 4.67 ± 0.63 at
baseline to 11.62 ± 13.86 at M24 (p<0.001) with a mean increase of 6.94 ± 11.12 (range: - 9 to + 60).
Overall, at M24, 76.9% eyes showed an increase in IHRF whereas 15.4% of eyes showed a decrease (4
eyes [7.6%] showed no change). There was a greater number of IHRF and a greater increase in IHRF over
M24 in the outer slabs.

Conclusions: IHRF are most common in the outer retinal layers and tend to increase in number over time.
The impact of the distribution and frequency of these IHRF on the overall progression of AMD requires
further study.

Summary
What was known before:

1. Intraretinal hyper-re�ective foci are optical coherence tomography biomarkers that are associated
with an increased risk for progression from intermediate age-related macular degeneration to late
AMD.

2. These lesions are believed to correspond to either degenerating retinal pigment epithelium or
in�ammatory microglia.   

What this study adds:

1. IHRF are found mainly in the outer retinal layers and once present in an eye, their numbers tend to
increase over time in the vast majority of cases.

2. The maximum increase in IHRF numbers is observed in the outer retinal layers, whereas the number
of IHRF in the inner retinal layers tends to remain stable. This may point to a different pathogenesis
or origin of IHRF in the different layers.

Introduction
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Among the structural optical coherence tomography (OCT) biomarkers in eyes with intermediate age-
related macular degeneration (iAMD), intraretinal hyper-re�ective foci (IHRF) have emerged as one of the
strongest risk factors for progression to late AMD.1–13 These IHRF lesions typically correspond to
hyperpigmentation on color photographs, which is also a well-established risk factor for AMD
progression. Although an in�ammatory origin has been proposed,14 the majority of reports suggest a
dissociation of the dying or stressed retinal pigment epithelial (RPE) cells as a more common source of
these lesions.12,15,16 Regardless of the origin, both clinic-based and population-based studies have
con�rmed the prognostic importance of these lesions.13

Longitudinal studies suggests that not only the presence, but also an increase in the number of IHRF over
time is an independent risk factor for progression to late AMD.4,8,9,13 According to Cao et al, these
disintegrating cells may get “subducted” underneath the RPE monolayer to enter the sub-RPE space, or
get scattered in the intra-retinal compartment.12, 16–19 Migration of these cells towards the deep capillary
vascular plexus (DCP) is thought to trigger the development of macular neovascularization (MNV).16,17 In
a recent study, we identi�ed that IHRF present in the outer retina, and in particular the outer nuclear layer,
were most strongly associated with the risk for progression to late-stage AMD, though IHRF may be
identi�ed in more inner layers as well.20 Given the differential risk for progression, we speculated that
IHRF present in the more inner retinal layers may differ in their source compared to outer retinal IHRF, but
this requires further histopathologic correlation.

While these data highlight that not only the presence, but also the distribution (inner vs outer) of IHRF
matters with regards to progression risk, the evolution of these lesions over time is not de�ned, as most
previous studies were cross-sectional nature. This leaves several unanswered questions, for example,
does the proportion of IHRF in the inner retina increase in the inner retina over time, suggesting a
progressive inward migration of these lesions? Do the numbers of IHRF progressively increase once they
appear or are they more dynamic showing a waxing and waning pattern? Understanding the longitudinal
evolution of IHRF in intermediate AMD is essential, if quantitative assessment of IHRF is to be used as a
biomarker in future studies.

Thus, to address these questions, we conducted a longitudinal analysis of the quantity and distribution
(axial location) of IHRF in eyes with intermediate AMD over a 24-month period in a cohort of eyes enrolled
in the Amish Eye Study.10,13

Methods
The details of the Amish Eye Study (supported by NEI R01EY023164 and 1R01EY030614) have been
described in prior reports. Brie�y, the Amish Eye Study was a longitudinal prospective observational study
aimed at understanding the OCT-based risk factors and their genetic association with AMD progression.10

All subjects in the study (N = 1339) underwent baseline volume OCT assessment and approximately half
of the individuals (N = 666) returned for a 24-month follow-up visit including OCT imaging. All
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participants in this IRB-approved study signed written informed consent. The study was performed in
accordance with the Health Insurance Portability and Accountability Act and adhered to the tenets of the
Declaration of Helsinki.

OCT volume scans were obtained of both eyes of all subjects using the Cirrus OCT (Carl Zeiss Meditec,
Dublin, CA; 512x128 macular cube; 6x6 mm scan region centered at the fovea). Deidenti�ed OCT volumes
were exported and transmitted to the Doheny Image Reading and Research Lab for analysis. To be
eligible for this analysis, subjects had to have evidence of intermediate AMD (Beckman classi�cation)21

and IHRF on the baseline OCT scans. Eyes with evidence of a retinal disease other than iAMD (evidence
of early or late AMD, diabetic retinopathy, epiretinal membrane, etc) were excluded. Eyes with OCT scans
with gross segmentation errors which could impact retinal slab selection and poor-quality images were
also excluded.

OCT Analysis Protocol:
Assessment of the quantity and distribution of IHRF across various levels of the retina requires
assessment of multiple en face OCT slabs through the mid-retina. The methodology for generating these
slabs and quantitatively analyzing IHRF has been detailed in prior reports.20,22,23 In brief, the procedure
includes the following steps: 1) identi�cation of the presence of IHRF on structural OCT B-scans
(identi�ed as well-circumscribed hyperre�ective lesions ≥ 3 pixels in size, located within the neurosensory
retina); 2) generation of 5 equidistant en-face slabs generated from the mid-retina (each representing 20%
of the retinal thickness between the RPE and ILM with the inner surface of the slab following the ILM
contour and the outer surface following the RPE contour, using the offset and range function); 3)
thresholding and binarization of slabs with ImageJ (version 1.50; National Institutes of Health, Bethesda,
MD; available at http://rsb.info.nih.gov/ij/index.html);24 4) manual removal of other hyper-re�ective
artifacts surrounding the IHRF (drusen, subretinal drusenoid deposits, blood vessels etc); and �nally, 5)
automatic quanti�cation (using ‘analyze particles’ function in Image J) of IHRF (number) from each
retinal slab thus generated. This procedure was followed for each eye at baseline and at the 24-month
follow up (Fig. 1). The slabs were numerically ordered with slab 1 being the outermost (closest to the RPE
layer- the presumed source of many of these lesions) and slab 5 being innermost.

Statistical analysis:
Statistical analyses were performed using SPSS Statistics version 21 (IBM, Armonk, NY). Qualitative
features were described by frequency (n) and percentage (%). Descriptive statistics were reported as
means ± standard deviations. The 24-month change in the number of iHRFs in the total retina and each
individual slab was assessed using paired t-tests. A P < 0.05 was considered statistically signi�cant.

Results
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Of the 666 subjects with two years of follow-up data in the Amish Eye Study, 120 eyes of 71 subjects had
evidence of iAMD at baseline. The mean age ± standard deviation [SD] of these subjects was 72.27 ± 
10.52 years, 36 (50.7%) were females. Of these 120 eyes, 52 eyes (43.3%) from 42 subjects had evidence
of both iAMD and IHRF, and this group constituted the �nal analysis cohort for this study [mean age ± SD 
= 74.17 ± 9.37 years; 24 (57.1%) females]. All eyes continued to show the evidence of IHRF at the 24-
month follow-up visit. IHRF were seen in both eyes in 10 subjects (20 eyes), and in only one in 32 subjects
(16 each in the right and the left eye).

Quantitative analysis revealed that the total IHRF count/eye (entire retina – all 5 slabs) increased
signi�cantly from 4.67 ± 5.39 (mean/eye ± standard deviation, SD; range = 1–33; median = 3) at baseline
to 11.61 ± 13.72 (range = 0–64; median = 6.5) at M24, and this difference was statistically signi�cant (p < 
0.001). The average change over the 24 months was + 6.94 ± 11.12 (range = − 9 to + 60; median = + 3).
Figure 2 illustrates the IHRF counts at baseline, M24, and the change over two years for all eyes in the
study cohort. At month 24, an overall reduction in the IHRF count was noted in 8 of the 52 eyes (15.4%), 4
eyes (7.6%) showed no change, and the IHRF count increased in the remaining 40 eyes (76.9%).

With regards to the distribution of IHRF for the entire cohort, at baseline 24.27% were located in slab 1,
54.32% in slab 2, 19.75% in slab 3, 0.016% in slab 4, and 0% in slab 5 (the innermost slab). At 24 months
follow-up, 32.11% were located in slab 1, 47.51% in slab 2, 16.55% in slab 3 and 0.038% in slab 4,
whereas slab 5 continued to show no IHRF lesions. The IHRF counts in the individual slabs at baseline,
M24, and the 24 months change for Slabs 1–4 is shown in Fig. 3. Overall, 17 of the 52 eyes (32.7%)
showed a decrease in the IHRF count in at least one slab. The percentage of cases showing a decrease,
increase, or stable IHRF count in each slab is shown in Table 1. Overall, it is apparent that the maximum
increase is noted in the outer retinal slabs (spanning from inner border of RPE till the outer nuclear layer,
ONL) with a small percent of eyes showing a decrease, whereas the inner slabs showed a stable count in
the majority of cases.

Table 1
The percentage of cases showing a decrease, increase, or stable IHRF

count in each slab.
Retinal slabs Increase (%) Decrease (%) No change (%)

Slab 1 (outermost) 65.5 13.4 21.1

Slab 2 67.4 21.1 11.5

Slab 3 36.6 9.6 53.8

Slab 4 11.5 0 88.5

Discussion
In this study, we demonstrated that once IHRF are noted to be present, they can increase dramatically
over 24 months (2.5x fold on average). In addition, once present, they persist over at least 24 months,
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though a minority (~ 15%) of eyes can demonstrate a decrease in the number of IHRF over this timespan.
While the overall trend is for IHRF to increase, at a given location the presence of IHRF can change
dynamically with lesions appearing or disappearing. The dramatic increase in IHRF counts over time is
most evident in the outermost retinal layers, whereas the IHRF counts overall tend to be stable in the inner
retinal layers.

Indeed, as shown in Table 1, the IHRF counts in the outer slabs (1 and 2) increased in ~ 2/3 of cases,
whereas it only increased in 11.5% of cases slab 4, and IHRF never appeared in the innermost slab 5
throughout the 24-month period of study. These results would appear to argue against a continuous and
progressive inward migration of IHRF as has been reported previously.4,12 IHRF have been suggested to
originate from either the degenerating RPE or from microglia.12,14–16, 25,26 The inward migration of
distressed RPE cells towards DCP has been implicated as a precursor and precipitating factor for the
development of type 3 MNV.16,17 Our results do suggest that there is a dramatic increase in IHRF over
time in the outer retina up to the DCP. This rate of increase, however, does not appear to continue beyond
the DCP level. To explain this observation, we hypothesize that the intraretinal migration of RPE cells is
triggered by underlying choriocapillaris ischemia and the RPE cells are drawn inward by the possibility of
perfusion and nourishment from the retinal DCP. Thus, once reaching the DCP vasculature, there is no
further ischemic drive or oxygenation gradient to pull the RPE cells further inward. If one were to accept
this explanation, how can one account for the presence of some IHRF lesions (albeit at lower frequency)
at some inner retinal levels. We would theorize that many of these IHRF in the inner retina layers may be
of a different source, possibly of in�ammatory or microglial origin.27

Further supporting the hypothesis of a differential origin of inner and outer retinal IHRF, in a recent
analysis (unpublished) we observed that the risk of progression to late AMD was primarily attributable to
outer retinal IHRF. This would be consistent with the concept that outer retinal IHRF are primarily of RPE
origin and a re�ection of choriocapillaris ischemia. While these hypotheses require histopathologic
con�rmation, the possibility of multiple sources of IHRF highlight that multiple pathophysiologic
pathways may be at play during the progression the AMD, and this has potential implications for future
therapeutic development.

In addition, to the changes in distribution over time, another important observation of this longitudinal
analysis is the dramatic increase in IHRF count over the 24-month period. This suggests that the
appearance on IHRF may represent a critical tipping point in the eye, highlighting an eye that may be in
severe distress. Once an IHRF appears, there may be dramatic disease acceleration with many more IHRF
appearing. This is not surprising, as IHRD are perhaps the strongest biomarker for progression to late
AMD and atrophy.1,4–9,13 This might also highlight a potential intervention point for future therapeutics.
Pegcetocoplan has recently been cleared by the FDA for treatment of geographic atrophy, and approval of
avacincaptad is anticipated in the near future.28–30 Post-hoc analyses suggest that these agents may be
even more effective if given earlier in the disease process, reducing conversion from incomplete RPE and
outer retinal atrophy (iRORA) to complete RORA (cRORA).31 Earlier intervention at the �rst appearance of
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IHRF may be a target for future therapies and trials, and prevention of an increase in IHRF could
potentially serve as an endpoint to assess effectiveness of treatment.

This study is not without limitations. The number of eyes with both iAMD and IHRF were relatively small,
and we only had 2 years of follow-up data. Second, the Amish are a relatively homogenous population
with regards to both environmental (such as no or minimal smoking, similar diet etc) and genetic factors,
and therefore, the results may not be generalized to other population groups.10 Third, we quanti�ed the
distribution of IHRF lesions, but did not quantify their area or other characteristics such as their re�ectivity
or shape. Fourth, while we assessed the position of IHRF relative to the ILM and RPE, we did not quantify
IHRF within speci�c retinal layers. On the other hand, segmentation of retinal layers in eyes with AMD can
be challenging and may not be reliable, particularly over drusen where the outer retinal bands are
commonly not well seen because of the altered re�ectivity. Finally, while we quanti�ed overall numbers of
IHRF within an eye, we did not systematically track progression or regression of individual IHRF lesions.
This can be a topic of future studies, particularly with datasets including more frequently obtained OCT
scans.

Our study also has several strengths including the use of a standardized OCT acquisition protocol, dense
volume OCT scanning, and the use of certi�ed reading center OCT graders with a previously
demonstrated high level of reproducibility.

In summary, IHRF can dramatically increase in number over time, particularly in the outer retina. The
increase in IHRF in the inner retina is less extensive, suggesting that IHRF originating from the RPE tend
to not migrate beyond the outer retina. This suggests that IHRF in the inner and outer retina may have a
different origin and pathophysiology. Regardless, IHRF counts over time may be a quantitative measure
of disease progression and may serve as biomarkers or endpoints in future therapeutic trials. Further
longitudinal studies, however, are required.
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Figure 1

Structural OCT B scan with corresponding slab locations at baseline (A, slab 5 to E, slab 1), and month 24
(K, slab 5 to O, slab 1), showing the presence of intra-retinal hyperre�ective foci, with corresponding
depiction of these lesions on the en-face images extracted using imageJ. Note the presence of IHRF
lesions in slab 2 (Fig 1D and 1I) at baseline, which were similar in number but at different locations at
Month 24 (Fig 1D and 1I). Note, new IHRF appeared in Slab 1 (Fig 1O and 1T) and slab 3 (Fig 1M and
1R).
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Figure 2

Frequency histograms showing the number of IHRF in all 5 en face slabs combined for each case at
baseline (A) and Month 24 (B), and the difference (C) between Month 24 and baseline.

Figure 3
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Frequency histograms showing the number of IHRF in individual en face slabs (1-4) for each case at
baseline (A-D) and Month 24 (E-H), and the difference (I-L) between Month 24 and baseline. Slab 1 (A, E, I)
is the outermost slab, closest to the retinal pigment epithelium. The positions of the slabs are shown in
Figure 1.


