
Integrating Optimized Item Selection with Active
Learning for Continuous Exploration in
Recommender Systems
Serdar Kadioglu  

 
Fidelity Investments (United States)

Bernard Kleynhans 
Fidelity Investments (United States)

Xin Wang 
Fidelity Investments (United States)

Research Article

Keywords: Recommendations, Exploration-Exploitation, Active Learning

Posted Date: August 25th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3280704/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

Additional Declarations: No competing interests reported.

Version of Record: A version of this preprint was published at Annals of Mathematics and Arti�cial
Intelligence on April 5th, 2024. See the published version at https://doi.org/10.1007/s10472-024-09941-x.

https://doi.org/10.21203/rs.3.rs-3280704/v1
https://doi.org/10.21203/rs.3.rs-3280704/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10472-024-09941-x


Springer Nature 2021 LATEX template

Integrating Optimized Item Selection with

Active Learning for Continuous Exploration

in Recommender Systems
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Abstract

Recommender Systems have become the backbone of personalized ser-
vices that provide tailored experiences to individual users, yet designing
new recommendation applications with limited or no available training
data remains a challenge. To address this issue, we focus on select-
ing the universe of items for experimentation in recommender systems
by leveraging a recently introduced combinatorial problem. On the
one hand, selecting a large set of items is desirable to increase the
diversity of items. On the other hand, a smaller set of items enables
rapid experimentation and minimizes the time and the amount of data
required to train machine learning models. We first present how to
optimize for such conflicting criteria using a multi-level optimization
framework. Then, we shift our focus to the operational setting of a
recommender system. In practice, to work effectively in a dynamic
environment where new items are introduced to the system, we need
to explore users’ behaviors and interests continuously. To that end,
we show how to integrate the item selection approach with active
learning to guide randomized exploration in an ongoing fashion. Our
hybrid approach combines techniques from discrete optimization, unsu-
pervised clustering, and latent text embeddings. Experimental results
on well-known movie and book recommendation benchmarks demon-
strate the benefits of optimized item selection and efficient exploration.

Keywords: Recommendations, Exploration-Exploitation, Active Learning
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1 Introduction

Recommender Systems have become central in our daily lives and are widely
employed in the industry. Prominent examples include online shopping sites
(e.g., Amazon.com [1]), music and movie services (e.g., YouTube [2], Netflix [3,
4] and Spotify [5, 6]), mobile application stores (e.g., iOS App Store and Google
Play), and online advertising [7]. The primary goal of recommender systems is
to help users discover relevant content such as movies to watch, articles to read,
or products to buy. From the user’s perspective, this creates a tailored digital
experience. From the business’ perspective, it drives incremental revenue.

These systems learn users’ preferences from historical observations to select
the right content, at the right time, for the right channel. The classical setting
is composed of a set of users, U , and a set of items, I, from which top-k items
are chosen (e.g., items with the highest probability to be clicked) and shown
to the user at time t. For each recommendation, the reward is observed, e.g.,
whether the user clicked. The feedback is incorporated into the next decision
at time t+1, and the system proceeds. However, data sparsity in feedback is a
challenge faced commonly, especially in newly launched recommender systems.

In this setting, the important realization is that there is an apriori decision
to determine the universe of items I that can be recommended, at Day–0
when the system is launched, and also at Day–1, and onward, as new items
are periodically added to the system.

To collect the necessary feedback data, recommender systems take advan-
tage of randomized experimentation (i.e., exploration) to build personalization
models (i.e., exploitation). However, randomized exploration incurs unwanted
cost. From the users’ perspective, randomized exploration is not the desired
digital experience, in fact, the exact opposite of it. From the business perspec-
tive, randomization leads to missed opportunities. It has a cost on business
KPIs from engagement metrics such as click-through rate to take-action rate
for positive outcomes such as opening an account or purchasing a product. It
is therefore critical to speed-up exploration and for the exploration policy to
efficiently explore users’ behaviors and interests as time proceeds.

We recently introduced a multi-level optimization approach to select items
to be included in the initial randomized experimentation at the inception
of a recommender system on Day–0 [8]. Our selection procedure is designed
to maximize knowledge transfer between user responses and minimize the
time-to-market for personalization. To achieve that, we jointly optimized the
cardinality of the item universe and the diversity of items in the selection.

In this paper, we take optimized item selection [8] a step further and show
how to use it beyond initial experimentation. This is a necessary and important
direction since recommender systems run continually and require exploration
beyond Day–0 to combat drift in user preferences and accommodate newly
introduced items. To bridge the static item selection on Day–0 with the need
for ongoing exploration, we show how to integrate the multi-level optimization
approach with Active Learning. This hybridization enables item selection for
exploration on Day–1+ in an ongoing fashion.
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As the recommender system proceeds, optimized item selection and active
learning work hand in hand to provide a principled approach for continuous
exploration and to determine the frequency of randomized item recommen-
dations. Overall, we extend our original approach [8] significantly with the
following contributions:

1. We present an improved warm-start procedure based on item-to-item sim-
ilarity that refines the approach in [8] to include model uncertainty. This
allows for phase transition between trained and untrained items in the
transfer learning procedure that more accurately reflects uncertainty in the
collected data (§4).

2. We embed the multi-level optimization in an active learning framework
to continuously update the selected set of items for exploration and
adjust the exploration policy dynamically. This enables efficient randomized
exploration as the system evolves beyond the initial selection of items (§5).

3. We provide further empirical evidence to demonstrate the effectiveness of
active learning for selecting items beyond Day–1+ in an ongoing fashion. We
show that the effectiveness of randomized exploration is improved through
our active learning framework (§6). As such, we advocate for a principled
approach for item selection not only at the inception of a recommender
system but also throughout the life-cycle of its operation.

More broadly, as demonstrated in our experiments (§6), our hybrid
approach serves as an integration block between modern recommender sys-
tems, classical discrete optimization techniques, unsupervised clustering, latent
item embeddings and active learning.

2 The Item Selection Problem

Let us start with a formal description of our problem definition from [8].

Definition 1 (Item Selection Problem (ISP)) Given a set of items I, the goal
of the Item Selection Problem (ISP) is to find the minimum subset S ⊆ I that covers
a set of labels Lc within each category c ∈ C while maximizing the diversity of the
selection S in the latent embedding space of items E(I).

We use a Movie Recommender system as a concrete example to illustrate a
situation where we encounter the ISP problem. We let items I correspond to
all available movie titles that could be recommended. Collecting data on user
ratings for all available movies is time-consuming. Therefore, we are interested
in finding a subset S of movies to initialize the system for collecting training
data. We need to ensure that selected movies cover a wide range of variety. The
categories of interest, C can include the genre, language and producer. Within
each category c ∈ C, we can have a set of labels, such as action, comedy, thriller
in the genre category, and English and French in the language category. Such
metadata is commonly available in recommender systems.



Springer Nature 2021 LATEX template

4

Fig. 1 Recommender System components from Item Selection Problem to Personalization.

The ISP seeks to include at least one movie from each label Lc within the
different categories c ∈ C. Additionally, we want to maximize the diversity
of selected movies in the latent embedding space E(I). The latent representa-
tion can be based on textual data (e.g., synopses, movie reviews), image data
(e.g., cover art), audio data (e.g., soundtracks), or video data (e.g., trailers),
and the representation can be created by various existing feature engineering
techniques [9–14]

The ISP is most relevant for recommender systems in new customer
experiences with no historical data. As illustrated in Figure 1, randomized
experimentation is employed to collect training data DS . This training data
is later used to build personalization models MS . The longer the exploration
phase takes, the worse the customer experience and business outcomes are. To
mitigate this, our strategy focuses on solving the ISP to guide the randomized
exploration which is later augmented with warm-started models MS′ . In the
remainder, we focus on solving the ISP and the warm-start procedure.

3 Solving the ISP

The Item Selection is a Multi-Objective Optimization Problem where the goal
is to maximize the diversity among selected items while minimizing the size
of the selection that can cover all predefined labels (or the maximum possible
coverage when the subset size is fixed). Notice also the underlying constraint
satisfaction problem to ensure label coverage.

The solution methodology for ISP, as introduced in our previous work [8],
is closely related to the classical Set Covering Problem (SCP) [15] which is
embedded in a multi-level optimization framework. The solution consists of
three levels addressing different objectives; finding the minimum subset size
(§3.1), maximizing diversity (§3.2) and maximizing coverage within a fixed
bound (§3.3). For brevity, we only include the most relevant components for
solving the ISP below and refer to [8] for details.
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3.1 Minimizing The Subset Size

Selecting a subset of items that cover all predefined labels is a standard cover-
ing formulation. Let Ml,i be the incident matrix where rows correspond to all
predefined labels, l ∈ Lc, for each category c ∈ C, and columns correspond to
item i ∈ I. We define Lc,i as the label in category c for item i and set Ml,i to 1
only if Ml,i = Lc,i. Let X be the set of decision variables where xi is a binary
variable denoting whether item i ∈ I is included in the selection. Assume each
selected item incurs a cost of 1 and let cost represent the unit cost vector. Then
formulating the unicost item selection problem, Punicost, is straightforward:

min

I∑

i

costixi

∑

i∈I

Ml,ixi ≥ 1 ∀l ∈ Lc, ∀c ∈ C

xi ∈ {0, 1}, costi = 1 ∀i ∈ I

(Punicost)

Assume unicost selection ⊆ I is the solution to Punicost where k =
|unicost selection| is the number of selected items.

3.2 Maximizing Diversity

Our simple mapping from ISP to SCP so far does not take diversity into
account. To that end, we turn to the latent representation of items. The variety
of the selected subset can be captured as the separation in the item embedding
space E(I). We turn to a clustering algorithm, such as k-means, to cluster the
embedding space of items into k clusters, leveraging the minimum subset size k
from the solution of Punicost. Using a clustering approach allows us to efficiently
partition items into k clusters that have similar items within each cluster and
larger variation between clusters. We reformulate Punicost by changing its cost
structure: the inclusion of item i incurs costi which is the minimum distance
to centroids to maximize the diversity among selected items.

costi = min distance(i, k) k ∈ K ∀i ∈ I (Pdiverse)

3.3 Bounded Subset Size

While solving Punicost and Pdiverse successively leads to the smallest and most
diverse set with coverage guarantees, it provides no control on the cardinality
of the selection. However, remember that, the time it takes to run randomized
experiments is directly proportional to the number of items. Therefore, it is
desirable to control the subset size and time window of randomization using a
predefined bound, t. To this end, our final formulation, Pmax cover@t maximizes
the number of unique labels covered while limiting the total number of selected
items with the given upper bound t.
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Algorithm 1 Multi-Level Optimization for the Item Selection Problem (ISP).

Multi-Level Optimization for ISP(I, M, E, t)
In: Items: I
In: Incident Matrix: M [label][item]
In: Embedding Space: E(I)
In: Maximum Subset Size: t
Out: Selected Items: S ⊆ I

// First Level: Minimize the subset size
// Find the minimum set of items with full coverage
Formulate Punicost(I,M)
unicost selection ← solve(Punicost)

// Second Level: Maximize diversity
// Find the minimum set of items with full coverage that maximizes diversity
k ← |unicost selection| ▷ Use the first level to decide number of clusters
K ← cluster(E(I), num clusters = k) ▷ Find clusters in embedding space
Initialize cost ← zeros(|I|) ▷ Set closest centroid distance as diversity cost
for all item ∈ I do

costitem ← min(distance(item, centroids ∈ K))
end for
Formulate Pdiverse(I,M, cost, unicost selection)
diverse selection ← solve(Pdiverse) ▷ Solve for coverage and diversity

// Third Level: Maximize bounded coverage
// Find the maximum coverage within the diverse set subject to the bound
t ← |diversity selection|
Formulate Pmax cover@t(diverse selection,M, t)
S = max coverage ← solve(Pmax cover@t)

return S

3.4 Multi-Level Optimization

Bringing these components together, Algorithm 1, as shown in our previous
work [8], depicts the multi-level optimization framework that consist of solving
Punicost, Pdiversity and Pmax cover@t successively.

4 Warm-Start Procedure

Given the solution of ISP we start with randomized experimentation. As illus-
trated in Figure 1, this yields the training data DS which is used to build
personalization model MS . As shown in [8], we propose a warm-start proce-
dure that uses transfer learning [16, 17] to leverage MS such that, when the
personalization phase starts, it is not restricted to the initial subset of items
but can expand beyond the trained model MS . We explain this in detail next.
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In general, machine learning models, by definition, are designed to gen-
eralize to unseen instances, and can be applied on unseen instances. In that
sense, we can apply MS to new/unseen items to get a prediction without a
warm-start procedure. However, in the recommendation setting, new items
(and users) lead to the notorious cold start problem, and not all recommen-
dation algorithms have the capability to address the cold-start problem. For
example, the traditional collaborative filtering algorithm lack explicit ratings
for new items added to the system, hence cannot deal with the cold-start prob-
lem. A common approach to deal with this cold-start scenario is to consider
latent item embeddings, denoted as E(I) in our notation, to find similarities
and enable the knowledge transfer between items.

4.1 Trained vs. untrained items

To be more precise about trained, S, and untrained items, S′, we need a
criteria, G, to enable us differentiate between the two. We define it as follows.

The easy case is on Day-0 for items that are not included in the ISP selec-
tion, hence was not part of the randomized experimentation, have no training
data, and consequently not part of the trained model. These unselected items
are clearly part of the untrained set S′. The other easy case are the new items
added to the system in subsequent days.

The next natural question is, of the items that are included in the ISP
solution, S ⊆ I, whether all can declared as sufficiently trained. The answer
to that question relies on application specific design decisions. Depending on
the duration of the randomized experimentation (short vs. long), the number
of selected items (small vs. large), the volume of traffic the newly launched
application generates (slow vs. fast) and the expected rate of engagement (pas-
sive vs. active), some items, even though they are part of the randomized
experimentation, might still not collect enough interaction labels necessary for
training. This happens when an item in S is under-sampled, in which case the
recommendations would be highly uncertain and persist large prediction errors.
Transfer knowledge from such items is not necessarily beneficial to warm-start
the items in S′. It is therefore reasonable to treat such items as untrained and
prevent knowledge transfer from them. Analogously, these so-far-inadequately
trained items can still benefit from warm-starts by other models until enough
training data has been accumulated and their learning becomes stable.

To avoid this situation, a simple measure to define a criteria G is to use
volume, i.e., the number of interactions an item has obtained in the training
data Ds. While this is a simple criterion, it serves as a quick filtering condi-
tion to treat items with relatively low labels (in our experiments below 100
interactions) to be considered untrained as part of S′.

Beyond these easy cases and simple count-based measurement, we need
a systematic approach to quantify how confident the model is when making
predictions, which we study next.
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Algorithm 2 Identifying items that have large uncertainty inMS and marking
these items in S as untrained.
Refined Definition for Trained and Untrained (S, MS, DS)
In: Selected Items: S
In: Trained data for S: DS

In: Trained Model(s) for S: MS

Out: Items that should remain untrained: S′

// Find model uncertainty of MS on each item p

for all p ∈ S do
Uncertainty(MSp

) ← UncertaintyEstimate(MS , DS , p)
end for

// Collect untrained items based on the criteria G(Uncertainty(MS))
derived from uncertainty estimates over all items in S

S′ ← ∅
for all p ∈ S do

if Uncertainty(MSp
) > G(Uncertainty(MS)) then

S′ ← S′ ∪ p

end if
end for

return S′

4.2 Model uncertainty for warm-starts

As the system proceeds, we expect a transition from untrained items to their
trained version, which we can monitor by evaluating the model uncertainty [18]
of MS for different items.

In the literature, several approaches have been studied to capture estimates
on the model uncertainty [19–21]. Primarily, the uncertainty is either measured
by the variance, entropy, or confidence interval of the model output [19, 21].
Alternatively, the uncertainty can be measured by the variance or the errors
of learned model parameters [20].

Algorithm 2 presents our method to further refine our definition of trained
and untrained items. We use the uncertainty estimate of MS across all items,
and on a particular item p, denoted by Uncertainty(MSp

) where p ∈ S. Let
G(Uncertainty(MS)) be a criteria found by considering several uncertainty
estimates such as variance, entropy and confidence intervals over all uncer-
tainty measures. When a particular item fails to satisfy the criteria G, more
precisely, when Uncertainty(MSp

) > G(Uncertainty(MS)), the item is treated
as still-untrained, and becomes unavailable for transfer learning in warm-start.

Based on the above, we now have access to a set of trained items, S, and
their counterpart, untrained items, S′. Next, let’s revisit our overall warm-
start procedure and present an example using a concrete recommendation
algorithm; namely, multi-armed bandits.
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4.3 The overall procedure

Given the set of trained items, S, and untrained items, S′, we warm-start items
s′ ∈ S′ : I\S to build MS′ sharing information from MS . We take advantage of
the item embedding E(I) to calculate item-to-item similarity. Given pairwise
distances, we find the closest item s ∈ S for each item s′. To use s for warm-
starting s′, we enforce distance(s, s′) ≤ w for w > 0 to ensure that the items
are sufficiently similar. This can be considered as the 1-nearest neighbour 1. A
neat practical trick to obtain the distance threshold w in a data-driven fashion
is to tie it to the distribution of all pairwise distances within a certain quantile,
e.g., the top decile q = 10%.

The next natural question is what does transfer learning between s and s′

mean. Multiple options exist. We can transfer all or a subset of the interaction
labels Ds to the untrained item. Similarly, we can directly use the trained
parameters of model Ms to replicate it for Ms′ . The important observation
is, after the initial warm-start, the training data for s and s′ grows separately
on their specific user interactions. This allows models to continue learning
independently from each other after the warm-start.

4.3.1 Example: Contextual Multi-armed bandits

Let us finish our treatment of the warm-start procedure with a concrete exam-
ple using a specific recommendation model. The contextual multi-armed ban-
dits (CMAB) are commonly used in recommendation settings thanks to their
principled approach to balance exploration and exploitation trade-off [22, 23]
with regret guarantees.

In CMAB, each arm corresponds to an item to be recommended. In our
setting, the ISP decides the universe of arms to include in CMAB. By selecting
a subset of arms in Day-0, we train our bandit learning policy faster, which
yields the trained arms (items). In this scenario, MS is not a single model but
a collection of models corresponding to each arm. The initially excluded or
newly added items (arms) are now untrained. Our warm-start procedure finds
the closest arms, based on E(I), to share the bandit models among trained vs.
untrained arms. Solving ISP beyond Day–0, helps decide the next batch of new
items (arms) to include in the system, which further boosts the subsequent
warm-starts, and the system iterates. Notice that the recommender system
can continue to exploit vs. explore in its choices among the arms, once the set
of arms (items) are defined by our optimized selection.

5 ISP with Active Learning in Exploration

In the previous sections, our focus was on the inception of a new recommender
system to speed up experimentation using our multi-level optimization frame-
work to solve the item selection problem. We also considered a soft assignment
based on model uncertainty to distinguish between trained vs. untrained items.

1Thanks to our anonymous reviewer for making this connection
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In general, for a recommender system to operate effectively in a dynamic
environment, we need to address two main problems. Initially, on Day–0, a
large number of items have no or inadequate feedback data. Subsequently, on
Day–1+, new items are periodically added to the system with no historical
training data to learn from. Solving the ISP, addresses the first problem on
Day–0. It provides an offline selection that helps minimize the cardinality of
the item universe while maximizing the diversity of items for experimentation.

Taking this a step further to address the second problem, there is an
ongoing need for experimentation in a recommender system to explore users’
behaviors and interests. The continued exploration is a more challenging task
than solving the one-shot ISP. In the beginning, all items are candidates for
the initial ISP selection. As time progresses, the system needs to distinguish
between items that are trained effectively vs. items for which further inter-
action data is still necessary, hence our further refinement in Algorithm 2 in
the previous section. The two types of items require different levels of explo-
ration for effective training. When that is the case, item selection need to be
re-purposed to facilitate the ongoing exploration and exploitation trade-off.

Our ISP formalism and the solution algorithm continue to be relevant
beyond Day–0. As new items are added to the system, there is a continued
need to experiment with items that cover all predefined labels and that are as
varied as possible. In our earlier bandit example, this corresponds to deciding
the new set of extended arms to recommend from, which should still be most
diverse in the embedding space and cover all predefined labels.

Furthermore, using the same ISP formalism ensures consistency between
the selection on Day–0 and Day–1+. Solving the ISP in an ongoing fashion
and incorporating optimized item selection dynamically provides further value
to an operational system. This leads to the idea of merging the ISP into an
Active Learning (AL) framework to select items continuously and guide the
exploration strategy in a principled manner.

5.1 Active Learning in Recommender Systems

The main idea behind Active Learning [24] is that a machine learning algo-
rithm can achieve greater accuracy with fewer labeled training instances if it is
allowed to choose the training data from which it learns. In the context of rec-
ommender systems, this is accomplished by letting the system influence which
items a user is exposed to learn users’ preferences [21] more efficiently.

Two common cold-start problems addressed by active learning in the con-
text of recommender systems are the new user [25] and new item [26]. Although
a recommender system can extrapolate the preferences of new users, new users
expect to see relevant results almost immediately. It is therefore essential to
suggest items to a user that will speed up understanding their preferences.
Similarly, for the new item problem, as new content is introduced to the sys-
tem, it is important to gather relevant information, so that item exposure is
optimized quickly.
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Our ISP formalism provides a principled approach to alleviate the new

item problem by steering the experimentation toward the latest content and
balancing the exploration between the existing, hence trained to a certain
degree, and the new content, which requires further user interaction data.

Active learning methods used in recommender systems can broadly be cat-
egorized as either instance-based or model-based methods [21]. Instance-based
methods select points based on their properties in an attempt to predict a
user’s (or item’s) rating by finding the closest match to other users (or items) in
the system without explicit knowledge of the underlying model. Model-based
methods select points to construct a model that best explains data supplied
by the user to predict user ratings and maximize the model’s expected error.

Our framework makes no assumptions about the underlying recommen-
dation model, and we, therefore, focus on instance-based methods. Although
model-based methods can achieve better performance than instance-based
methods, strategies designed for one model are often incompatible with
different systems since they rely on model-specific parameters.

In the next section, we show how to integrate ISP into an active learning
framework and utilize the optimized item selection strategy.

5.2 Integrating ISP and Active Learning

Figure 2 shows how we can integrate the ISP into an active learning frame-
work. The high-level idea is to solve the initial ISP on Day–0, and then again
recursively on Day–1+ and onward as new items are added to the system.

On Day–0, the ISP yields a subset of items S ⊆ I. Active learning asso-
ciates items with weights WS to influence randomized experimentation. The
randomization policy selects items proportionally to their assigned weights.

This yields training data DS that is used to train our model MS . By using
the warm-start procedure described, we find a subset of remaining untrained
items in I \ S that can be warm-started. Next, we generate personalized rec-
ommendations for the trained and warm-started items, T = S∪S′. Here, items
in S are those with training data collected from the initial experimentation
and are trained items, while items in S′ are warm-started based on similarity
in item embeddings. The personalized recommendations on T yields further
training data DT that is later used to update the model MS .

On Day–1+, new items I ′ are added to the system, and we update I to
be the set of existing and new items. To integrate ISP and Active Learning
in the ongoing system, the continuous randomized experimentation is carried
out in a subgroup of users. The remaining users are receiving personalized rec-
ommendation (which might have its inherent exploration policy, e.g., if bandit
policies are used as in our earlier example). We perform item selection recur-
sively to find a subset of items to be included in randomized experimentation,
in order to boost the exploration as well as optimizing the cardinality and
diversity of explored items. Unlike the selected items in ISP on Day–0, now
the selected items contain new items plus any untrained or not warm-started
ones previously. This yields the set of items S ⊆ I \ T and item weights WS
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Fig. 2 Integrating Item Selection Problem with Active Learning to guide exploration.

to be used for continuous experimentation. Using the collected training data
from the randomized experiment, model MS is updated and used to warm-
start remaining untrained items. The new personalized recommendations are
generated as the system proceeds and learning continues.

Let us note that the proposed framework depicted in Figure 2 is flexible and
can incorporate different selection methods with active learning. We consider
the following two baselines for experimentation with active learning while still
respecting the selection size t obtained by ISP:

• AL-Random: Simple baseline method that selects t untrained items using
uniform random selection and uses uniform exploration weights.

• AL-KMeans: This method clusters the latent space into k = |Punicost| clus-
ters and selects t items that are closest to the cluster centroids. Exploration
weights WS are set equal to the closest centroid distance for each item.

For ISP-based selection methods, we propose two different ISP methods
within the active learning framework: one that is oblivious to the solution of
the optimized item selection in the previous iteration and one that exchanges
information in the cover formulation between subsequent solves.

• AL-ISP: Selects untrained items S ⊆ I \ T with subset bound t using
ISP as in Algorithm 1. The exploration weights WS for each item is set to
the closest centroid distance, which corresponds to the diversity cost in the
multi-level optimization.

• AL-ISP+: Same as AL-ISP, except that the ISP formulation uses pre-fixed
decision variables xi = 1 for i ∈ T .

Both methods increase the diversity of the selected items and ensure that
exploration collects more training data on items different from other items in
the latent space.

On Day–0 with no trained items, the two methods are identical. From
Day–1+, AL-ISP+ favors exploring untrained items with uncovered labels
aside from those covered by T in the previous step.
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6 Experiments

We experiment with well-known datasets from book and movie recommenda-
tions. The main goal of our experiments is to demonstrate the speed-up in
the random experimentation phase enabled by our multi-level optimization
framework while ensuring diversity and transfer learning capacity, both on
Day–0 when there exists no historical data and on Day–1+ as new items are
periodically added to the system.

6.1 Evaluation Metrics & Questions

The exact time window, in the number of days/weeks required for experimen-
tation, depends on several factors such as the expected interaction volume,
the engagement level of users (e.g., average click-through rates) and the com-
plexity of the learning algorithm to train (e.g., linear regression vs. wide&deep
networks [27]). While these remain application-specific, to assess the effective-
ness of our approach, we focus on the following evaluation metrics measured
before and after warm-start:

• Before warm-start: The number of items, which serves as a proxy of
exploration time (the lower, the better) and the number of labels covered,
which measures the scope of exploration (the higher, the better).

• After warm-start: The number of items, which measures the capacity of
transfer learning (the higher, the better) and number of labels covered, which
is a proxy for the diversity of items that can be recommended (the higher,
the better).

To demonstrate the potential speed-up in random experimentation and
effectiveness of the warm-start procedure at Day–0 we consider the following
specific questions:

Q1: What is the minimum number of items required to cover all labels in
comparison with the original number of items?

Q2: How much speed-up is enabled in exploration phase when using optimized
item selection to collect response data for training?

Q3: How effective is the warm-start procedure in increasing the number of
trained items and the resulting coverage?

Q4: How sensitive is the ISP formalism to the choice of latent embedding space
of items?

Furthermore, to demonstrate the effectiveness of integrating ISP with
active learning within the exploration component of a recommender system
from Day–1+, we consider the following specific questions:

Q5: How effective is the active learning procedure in increasing trained items
and the resulting coverage over time?

Q6: How diverse is the randomized experimentation data obtained by the active
learning procedure?
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Table 1 Summary statistics for Book and Movie Recommendation datasets.

Dataset # Items Categories # Labels

GoodReads
1,000

{Genre, Publisher, Genre × Publisher }
574

10,000 1,322

MovieLens
1,000

{Genre, Producer, Language, Genre × Language }
473

10,000 1,011

6.2 Datasets: Book & Movie Recommendations

We use two well-known datasets from the recommender systems literature:
the GoodReads Book Reviews [28, 29] with 11,123 books (items) and the
MovieLens (ml-25m) Movie Recommendations [30] with 62,423 movies (items).
We consider two randomly selected subsets, small and large versions with 1,000
and 10,000 items, respectively. We note that the selected sizes of the datasets
are arbitrary and were selected to make the two datasets more comparable.
The full datasets or alternative datasets with more instances could have been
used. These datasets provide category and label metadata used in our ISP
formulations. Table 1 summarizes our datasets.

For book recommendations, there are 11 different genres (e.g., fiction,
non-fiction, children), 231 different publishers (e.g., Vintage, Penguin Books,
Mariner Books), and genre-publisher pairs. This leads to 574 and 1,322 unique
book labels for the small and large datasets, respectively.

For movie recommendations, there are 19 different genres (e.g., action,
comedy, drama, romance), 587 different producers, 34 different languages (e.g.,
English, French, Mandarin), and genre-language pairs. This leads to 473 and
1,011 unique movie labels for the small and large datasets, respectively.

In the ISP, we are interested in selecting movies (books) for exploration
that cover all (or maximum) genres, producers (publishers), languages, and
genre-language (genre-publisher) combinations.

6.3 Setup and Parameters

All our experiments were run on a machine with Linux RHEL7 OS, 16-core
2.2GHz CPU, and 64 GB of RAM. For optimization, we use the Python-

MIP [31] with the COIN-OR CBC Solver[32]. For clustering, we employ the
default k-means from sklearn [33]. To generate text embeddings, we utilize
TextWiser [34]2. For the warm-start procedure we use a distance quantile
of q = 0.1. For relevant experiments, results are averaged over n = 50 seeds.

6.4 Embedding Space

The embedding space is based on textual descriptions of movies and books. For
vector representation, we use Term Frequency Inverse Document Frequency
(TFIDF) [9], ignoring terms with a document frequency lower than the cut-off
threshold ofmin df = 20. To reduce dimensionality, we transform these vectors

2http://github.com/fidelity/textwiser

http://github.com/fidelity/textwiser
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using non-negative matrix factorization [13] and generate 30-dimensional fea-
ture vectors for each item. In Section 6.9, we experiment with other strategies
to understand the sensitivity of ISP as a function of the embedding space.

6.5 Comparisons

We compare Punicost, Pdiverse, Pmax cover@t on each dataset against the
following challenger algorithms:

1. Random: Uniform random selection as a simple baseline. The Random

method uses the subset size k from the solution for Punicost.
2. Greedy: The classical greedy heuristic for set covering that adds items itera-

tively, whereby at each step, the item with the best cost
coverage

ratio is selected.
This is a competitive baseline with a polynomial-time approximation
scheme with worst-case guarantees [35].

3. KMeans: Unsupervised clustering approach that operates on the same
embedding space. As in Random, it uses the subset size k from the solution
of Punicost as the number of clusters. This method first clusters the latent
space into k centers and then selects items closest to the centroids.

Notice these challenger algorithms are better informed than their pure
random, greedy, clustering counterparts since they inherent the size of the
selection k from ISP. While Greedy maximizes coverage, it does not take
diversity into account. This helps us assess the effectiveness of Pdiverse. Anal-
ogously, while KMeans maximizes diversity, it omits label coverage. This in
turn helps us determine the effectiveness of coverage constraints. Both Random

and KMeans select k items for which we have an optimality certificate from
Punicost that covers all labels.

6.6 Analysis of Coverage [Q1]

To answer Q1 and find the minimum set of items covering all labels, we solve
Punicost and compare the number of selected items, the resulting label coverage
before and after the warm-start procedure.

6.6.1 Book Recommendations:

Table 2 summarizes our results for the GoodReads dataset. Solving Punicost

before warm-start returns 374 items covering all 574 labels in the small dataset
and 1,080 items that cover all 1,322 labels in the large dataset. This repre-
sents reductions of 63% and 89% compared to selecting all items. We then use
|Punicost| for Random and Greedy. The Greedy algorithm is also competitive
on both datasets in terms of label coverage. As expected, the number of labels
covered by Random and KMeans is markedly lower. The solution for Pdiverse

only requires 72 and 85 more items than |Punicost| demonstrating the slight
pay-off to maximize the diversity of the selected content. After warm-start,
KMeans yields the highest number of warm-started items. This is expected
since clustering purely targets the diversity of the space, but unfortunately, its
label coverage is no different than Random.
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Table 2 [Q1] Comparison of our solution to ISP and challenger approaches on the
GoodReads dataset before and after warm-start in terms of the number of items selected
and label coverage.

Before Warm-Start After Warm-Start

Dataset Method Items Labels Coverage Items Labels Coverage

GoodReads
1K Items
574 Labels

Random 374 325 57% 463 367 64%
Greedy 374 574 100% 460 574 100%
Punicost 374 574 100% 470 574 100%
KMeans 374 333 58% 741 431 75%
Pdiverse 446 574 100% 523 574 100%

GoodReads
10K Items
1,322 Labels

Random 1,080 606 46% 2,226 771 58%
Greedy 1,080 1,322 100% 2,227 1,322 100%
Punicost 1,080 1,322 100% 2,433 1,322 100%
KMeans 1,080 589 45% 2,834 838 64%
Pdiverse 1,165 1,322 100% 1,602 1,322 100%

Table 3 [Q1] Comparison of our solution to ISP and challenger approaches on the
MovieLens dataset before and after warm-start in terms of the number of items selected
and label coverage.

Before Warm-Start After Warm-Start

Dataset Method Items Labels Coverage Items Labels Coverage

MovieLens
1K Items
473 Labels

Random 243 220 46% 624 274 58%
Greedy 249 473 100% 648 473 100%
Punicost 243 473 100% 647 473 100%
KMeans 243 206 43% 659 276 58%
Pdiverse 248 473 100% 652 473 100%

MovieLens
10K Items
1,011 Labels

Random 523 298 29% 2,479 561 55%
Greedy 703 1,011 100% 3,031 1,011 100%
Punicost 523 1,011 100% 2,659 1,011 100%
KMeans 523 317 31% 1,801 542 54%
Pdiverse 558 1,011 100% 1,971 1,011 100%

6.6.2 Movie Recommendations:

Table 3 summarizes our results on the MovieLens datasets. Punicost achieves
complete coverage with almost a 90% reduction compared to selecting all items.
In this dataset, Greedy cannot achieve the quality of the optimum solution.
Its optimality gap (249 vs. 243) for the small dataset is 2% and is signifi-
cantly worse (703 vs. 523) at 34% for the large dataset. Random and KMeans

continue performing poorly in terms of coverage before and after warm-start.
Lastly, in terms of runtime, solving the multi-level optimization with

Punicost, Pdiversity and Pmax cover@t takes 20 minutes at most. This shows
the efficiency of optimization technology when faced with recommendation
benchmarks.
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(a) GoodReads 1K (b) GoodReads 10K

(c) MovieLens 1K (d) MovieLens 10K

Fig. 3 [Q2] Bounded coverage of labels with varying number of selected items t.

6.7 Analysis of Bounded Coverage [Q2]

To answer Q2 and demonstrate potential speed-up in random experimentation,
we vary the subset bound t and analyze the label coverage before and after
warm-starts for Pmax cover@t, KMeans and Random. We keep the range of t
the same between datasets, with the exception of MovieLens 1K due to the
smaller number of required items to cover all labels. In practice, the bound t is
application-driven governed by time constraints, expected volumes, and user
engagement. Figure 3 presents our results.

Before the warm-start, we see that, for each method, coverage increases
consistently as t increases. Critically, for a given coverage level, the required
number of items t is always lower for Pmax cover@t compared to other methods,
indicating potential speed-up. For example, on the small GoodReads dataset,
a coverage of 50% can be achieved at t = 140, while t = 320 is required to
obtain the same coverage using the KMeans and Random methods. There is
a 2X reduction in the number of items, again demonstrating time savings in
exploration.

After the warm-start, coverage increases for each method at each t, and
notably, the coverage for Pmax cover@t continues to rank highest in both
datasets. KMeans and Random results in similar coverage, but neither is
capable of passing 50% (60%) with 200 (400) items on small and large sets
whereas Pmax cover@t reaches 80% (85%) within the same bound.

It is worth noting that the number of items warm-started is not the same
for different methods. In the next section, we analyze the efficiency of the
warm-start procedure in terms of the number of labels covered per item.
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(a) GoodReads 1K (b) GoodReads 10K

(c) MovieLens 1K (d) MovieLens 10K

Fig. 4 [Q3] Warm-Start analysis of unit coverage with varying distance quantile q from the
top semi-decile, q = 0.05, to q = 0.5.

6.8 Analysis of Warm-Start [Q3]

To answer Q3 and assess the effectiveness of the warm-start procedure we
perform sensitivity analysis with varying thresholds of the distance quantile q

and evaluate the average number of labels covered per item after warm-start.
We keep the number of selected items fixed at t = 100 for small dataset

and t = 400 for large dataset and find the selected items using Pmax cover@t,
KMeans and Random. Using the selected items, we run the warm-start pro-
cedure at different values of q from the top semi-decile, q = 0.05 to q = 0.5. As
q increases, the distance constraint to warm-start an item is relaxed, thereby
increasing the number of items that can be feasibly warm-started. In parallel,
this possibly reduces the relevance of these items given the already collected
training data.

Figure 4 presents the results for GoodReads and MovieLens datasets.
For each method, the charts show the unit coverage (the number of covered
labels divided by the number of items) after the warm-start. Notice that,
as q increases, unit coverage decreases across the board for all methods and
datasets. This clearly demonstrates the diminishing returns in label coverage
as more items are included. Consistent with the coverage analysis, Pmax cover@t

is the most effective approach in terms of the number of labels covered per
item, significantly better than Random and KMeans especially for the top
(semi-) decile, i.e., q ≤ 0.1.
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Table 4 [Q4] Comparison of different item embeddings in terms of coverage and capacity
to warm-start unseen items on the GoodReads datasets.

Dataset Embedding Items Labels Coverage Unit Coverage

GoodReads

1K Items

574 Labels

TFIDF 254 313 54% 1.2

Word2Vec 233 318 55% 1.4

GloVe 208 299 52% 1.4

Byte-Pair 235 300 52% 1.3

GoodReads

10K Items

1,322 Labels

TFIDF 1,743 723 55% 0.4

Word2Vec 900 608 46% 0.7

GloVe 1,098 641 48% 0.6

Byte-Pair 940 553 42% 0.6

6.9 Analysis of Embedding Space [Q4]

To answer Q4 and evaluate the sensitivity of ISP with respect to the underlying
item embeddings, we solve Pmax cover@t on the books dataset with a fixed
t = 100 and q = 0.1. We experiment with several complementary embeddings
using TextWiser [34]. Besides our baseline TFIDF, we employ FastText
Word2Vec to learn word vectors [10, 36], GloVe [37] embedding to learn global
word representations, and Byte-Pair [38] embedding to learn character level
information. In all cases, we apply Singular Value Decomposition (SVD) [14]
to generate a fixed size 30-dimensional latent representation.

Table 4 reports the total number of items and percentage of label coverage
after warm-start. The coverage is similar for the different embeddings hinting
at the robustness of our multi-level framework. Nevertheless, more complex
embeddings provide better unit coverage compared to TFIDF. In particular,
the Word2Vec embedding achieves the best unit coverage in both datasets,
closely followed by the GloVe embedding. This is thanks to the recent advances
in NLP and the efficiency of pretrained models in capturing text semantics.

6.10 Analysis of Active Learning Coverage [Q5]

To answer Q5 and assess the effectiveness of the active learning procedures
described in Section 5.2, we perform an ablation study on the GoodReads
dataset. First, we randomly split each dataset into 5 batches representing
periods. Then, at each time step, we select t = 50 items from the small dataset
and t = 80 from the large dataset to simulate the arrival of new items, and
subsequently warm-start a subset of the remaining untrained items. Then, at
the end of each time step, we measure the label coverage of the trained items
T based on the total items I active in the system at that time.

Figure 5 presents the results that show the effectiveness of combining ISP
and AL together. For each method, the chart shows coverage after warm-start
at each time period. Notice that coverage for AL-ISP and AL-ISP+ are
the same at time period zero and that this also corresponds to the coverage
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(a) GoodReads 1K (b) GoodReads 10K

Fig. 5 [Q5] Coverage percentage and unit coverage for ISP + Active Learning.

that ISP without AL would have generated. Beyond time period zero, AL-
ISP methods consistently provide better coverage than AL-KMeans and AL-
Random. Moreover, through simple information sharing, AL-ISP+ provides
better coverage compared to AL-ISP . Coverage for ISP without AL remains
the same as at time period zero, or can even deteriorate as more items are
added, demonstrating the effectiveness of integrating ISP with AL.

6.11 Analysis of Active Learning Diversity [Q6]

To answer Q6 and assess how diverse the randomized experimentation obtained
from different methods, we follow the same evaluation setup in Q5. Performing
item selection at each period yields a list of selected items and item weights
representing the amount of randomized experimentation, which we visualize.

Figure 6 presents the results for the GoodReads datasets, and we omit
other experiments with similar findings. Using a 2-dimensional t-SNE embed-
ding [39] of the latent item representations E(I), we visualize the distribution
of experimentation data collected for each method. We see that the data distri-
bution is more dispersed for AL-KMeans and AL-ISP+, as shown in larger
highlighted areas and multiple centroids, compared to AL-Random showing a
single centroid where most of the training data is located. The result suggests
that AL-KMeans and AL-ISP+ yield a more diverse training dataset, again,
showing the added value of integrating item selection into active learning. Note
that KMeans approach neglects the label coverage completely. Overall, AL-
ISP+ stands out as the best mechanism in terms of diversity, label coverage,
and handling incoming items in an ongoing fashion for exploration.

7 Related Work

Our hybrid work, at the intersection of Operations Research (OR), Natural
Language Processing (NLP), Active Learning, and Recommender Systems,
relates to several approaches.

From the OR perspective, while cover formulations are standard in the
literature, we show that optimization solvers can tackle problems derived from
widely used recommendation datasets. Our multi-level optimization framework
can be seen as an example of Hybrid Optimization [40] as it combines strengths
of the cover formulation with unsupervised clustering on the embedding space.
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(a) GoodReads 1K

(b) GoodReads 10K

Fig. 6 [Q6] Diversity of trained items using active learning visualized using t-SNE
embedding of item latent representations.

From NLP and Transfer Learning perspective, we take advantage of
the recent advances in pre-trained word embeddings such as FastText [36],
GloVe [37], and Byte-Pair [38] and use them in a downstream task.

From the Recommenders perspective, our framework leaves the choice of
personalization algorithm open to a wide range of options, such as matrix
factorization, collaborative filtering [41, 42], nearest-neighbors [43], factor-
ization machines [44], and deep learning models including Wide&Deep[27],
DeepFM [45], and DCN [46] (see [47, 48] for a survey).

From the Active Learning perspective, our active learning procedure that
integrates ISP is an instance-based [21] method with the goal of increasing
label coverage and a decreasing output uncertainty [49] by increasing the
diversity of recommended items. It shares similarities with diversity-based [50]
active learning methods, but these do not simultaneously optimize for exter-
nal constraints (e.g., label coverage). Once the reward feedback is collected,
error-based [51, 52] active learning methods could also be considered.

While we considered an approach that starts with exploration followed
by exploitation, these steps can be blended together [7]. For instance, multi-
armed bandit learning policies [22] such as ϵ-Greedy, Thompson Sampling [53],
and Upper Confidence Bounds [54] mixes exploration and exploitation. These
methods neglect the item metadata and the label coverage problem.

Traditionally, statistical power analysis [55] and experimental design [56]
methods offer a formal treatment to identify significant effects for a given
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statistical power. However, given the combinatorial nature of the problem and
limited data context for new applications, these methods are rarely suited for
item selection.

Our warm-start procedure shares similarities with [16, 17] which builds
ensembles based on item similarity. A more involved approach would be to
transfer models between different applications as in cross-system recommen-
dations [57, 58], e.g., cross-referencing between different systems such as book
and movie recommendations.

Finally, let us mention that item selection is not purely an algorithmic
problem. As we advocated in [8], experimentation design and item selection
is a human-in-the-loop optimization problem, where we interface with non-
technical partners. To that end, offering interactive decision-support tools [8]
to motivate and explain the rationale behind the addition and removal of items
plays a critical role in customer facing real-world applications.

8 Discussions

In this paper, we focus our evaluations on the maximized coverage of selected
items’ category labels and diversity. In practice, the performance of a “good”
recommender system is more complicated to quantify, which depends on not
only algorithmic factors but also the user experience design and the quality
of items to be recommended. These aspects cannot be recovered by better
recommendation algorithms or optimized item selection.

Recommenders systems need to be continuously trained with online feed-
back to capture the dynamic nature, and often changing behavior of users. Our
framework leaves the choice of recommendation algorithm open. As systems
evolve with continuous training, a recommender that uses standard explo-
ration vs. using our ISP+Active Learning to boost exploration, given the
same choice of underlying algorithm to build machine learning models, would
eventually converge to similar performance as sufficiently large training data
becomes available. The question is “how quickly” each variant starts deliver-
ing a better personalized experience for users, hence bring business value. In
our experiments, we measure the quality of exploration using the cardinality
and diversity of the item set selected on Day-0 and Day-1+. The results have
shown that the time-to-personalization is shortened and we ensure a better
diversity in the selected items for exploration.

9 Conclusion

We extended our previous work on optimized item selection [8] with active
learning. This is especially relevant for new and data-sparse recommenda-
tion applications. Our interdisciplinary work combines techniques from OR,
NLP, Unsupervised and Active Learning. With significant speed-ups in explo-
ration, we alleviate alleviate the negative impact of randomization in customer
experience and business outcomes. We hope that our ISP+AL formalism facili-
tates further integration between complementary fields and helps practitioners
design new recommendation system experiences.
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