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Abstract:  

The proliferation of grid-connected photovoltaic (PV) systems has generated considerable apprehension among 

power system operators due to worries about electricity quality, leading to the implementation of increasingly 

strict standards and regulations. Inter-harmonics and DC offset have emerged as prominent power quality issues 

in grid-connected photovoltaic (PV) systems, constituting significant obstacles. This article provides a thorough 

examination of the methods used to improve the performance of a three-phase grid-connected photovoltaic (PV) 

system, with a specific focus on mitigating inter-harmonics and DC offset. The presence of inter-harmonics and 

DC offset may have a substantial negative impact on the overall performance of a system, resulting in 

compromised power quality and diminished energy extraction capabilities. In order to address these challenges, a 

method known as ensembled Deep Reinforcement learning (EDRL) Maximum electricity Point Tracking (MPPT) 

is used to optimize the extraction of electricity from the photovoltaic (PV) array. Furthermore, the integration of 

a Coati Optimization Algorithm (COA) with a fuzzified Phase-Locked Loop (PLL) synchronization mechanism 

is used to ensure precise synchronization with the grid. The EDRL MPPT approach demonstrates a proficient 

ability to accurately monitor and follow the maximum power point of the photovoltaic (PV) array. This is achieved 

by using a reward system that is based on the lowest overall harmonic distortion in the grid current. The COA 

(Centralized Optimization Algorithm) is used to effectively tune the hyperparameters of the fuzzy system. The 

primary objective of this optimization process is to reduce the DC offset, hence ensuring a steady and precise 

synchronization between the fuzzy system and the grid. The efficacy of the proposed system is assessed by means 

of comprehensive simulations and experimental validation. The findings of this study provide evidence supporting 

the efficacy of the Enhanced Distributed Reactive Load Maximum Power Point Tracking (EDRL MPPT) approach 

in optimizing power extraction and reducing the impact of inter-harmonics. The COA-fuzzified-PLL 

synchronization system is designed to provide precise grid synchronization while mitigating the adverse effects 

of a 2.89% total harmonic distortion (THD) in grid current, particularly the influence of direct current (DC) offset. 

The integration of many approaches presents notable improvements in terms of power quality, energy extraction 

efficiency, and system stability. 
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Abbreviations 

MPPT Maximum Power Point Tracking 

EDRL ensembled Deep Reinforcement learning 

COA Coati Optimization Algorithm 

PV photovoltaic 

PLL Phase-Locked Loop 

DC Direct Current 

SRF synchronous reference frame 

SOGI second-order generalized integrator 

ROGI Reduced-Order Generalized Integrator 

TOGI Third Order Generalised Integrator 

P & O perturb and observe 

THD Total Harmonic Distortion 

PWM Pulse width modulation  

DQN Distinct neural network 

DDPG Deep Deterministic Policy Gradient 



rlTD3 twin-delayed deep deterministic policy 

gradient 

PPO Proximal Policy Optimization  

LCL Inductor–Capacitor–Inductor filter 

 

Introduction 

The escalating global demand for sustainable and clean energy sources has led to the emergence of solar 

photovoltaic (PV) systems as a viable solution to address the challenges of environmental pollution and the 

depletion of fossil fuel reserves. The deployment of solar photovoltaic (PV) systems that are connected to the grid 

has attracted significant attention due to their ability to efficiently harness abundant solar energy and seamlessly 

incorporate it into the power grid. The grid-connected solar PV system is a promising form of a nonconventional 

energy resource that generates electricity without emitting carbon, thereby contributing to a cleaner environment. 

Nevertheless, the intermittent nature of the solar PV system precludes its direct connection to the utility grid, 

necessitating asynchronous coupling through the utilization of converter devices. 

The utilization of a grid-tied AC/DC converter, coupled with an appropriate control methodology, facilitates the 

fulfilment of grid connection prerequisites for solar photovoltaic systems. These prerequisites encompass 

electrical power flow management, harmonic mitigation, enhanced quality of power, stability, and grid 

harmonization [1]. The employment of photovoltaic (PV) arrays in the design of grid systems is widely adopted 

and acknowledged as the predominant method. The control problem of transmitting maximal electrical energy 

accessible to the load regardless of the situation is commonly referred to as MPPT. The primary objective of 

Maximum Power Point Tracking (MPPT) is to effectively regulate the fluctuations in output voltage that arise due 

to variations in PV power. Furthermore, photovoltaic systems demonstrate a non-linear correlation between output 

current along with voltage, resulting in substantial efficiency reductions. [2] 

Typically, the interface circuit for the grid is expected to carry out three primary functions, namely voltage 

sensing, filtering, and A/D conversion. The occurrence of direct current (DC) offset in the measured grid voltage 

can be ascribed to the non-linear characteristics of voltage sensors, the analog-to-digital (A/D) conversion 

procedure, and the thermal drift exhibited by analog components. This phenomenon may occur despite the 

implementation of a well-designed grid interface circuit. [3] The input sine signal’s undesirable component on the 
resultant waveform of the PLL structure is the addressed DC offset. The reference sine signal is commonly 

employed in the creation of reference currents for photovoltaic or grid-tied converters. Several established 

standards, including IEEE 1547-200, EN61000-3-2, and IEC 61727, delineate the permissible limit of direct 

current injection into the grid that may be attributed to photovoltaic systems or other converters that are connected 

to the grid. Various techniques can be employed to eliminate the induced DC offset in the measured grid voltage. 

The existence of inter-harmonics within the power system has a detrimental impact on its overall performance. 

The connection of a significant quantity of non-linear loads to the power system results in a range of 

complications, including inadequate power factor, excessive heating of transformers and power cables, impaired 

functioning of protection devices, heightened transmission losses, and substandard voltage regulation [3]. Inter-

harmonic components result in significant energy wastage. The escalation of inter-harmonics within the power 

system can be closely associated with non-linear power electronic loads, such as variable frequency drives, 

converters, and inverters. Environmental conditions, such as temperature variations and irradiance fluctuations, 

can affect the performance of PV modules and inverters. These variations can introduce oscillation in the output 

power and current harmonics, including inter-harmonics. 

As a result of the previously stated DC offset in voltage and current, the waveforms exhibit asymmetry along the 

x-axis. Consequently, the process of interrupting asymmetrical current is considerably more challenging than 

interrupting symmetrical current, as per reference [3]. Moreover, as a result of the direct current offset, there is a 

possibility of imbalanced grid voltages. This phenomenon has the potential to result in the degradation of power 

quality issues. Therefore, it can be concluded that harmonics and DC offset are unnecessary in a functional power 

system. 

1.1 Problem Statement and Contributions 

The efficiency of solar PV systems that are associated with the grid is subject to the impact of multiple factors, 

including fluctuations in solar irradiance, environmental circumstances, and distortions in grid voltage due to non-

linear loads and conversion processes. These distortions include inter-harmonics and DC offset [2]. Several causes 

can account for the fact that some observed systems’ output currents have unwelcome direct current components. 
Non-linearities in switching devices, small errors and offset drifts in voltage and current measurement sensors 



used to provide feedback signals for control systems are all examples of sources of imprecision and error in PWM 

signals [14]. 

 In the context of PV inverters, it is possible that inter-harmonics are attributable to the MPPT control mechanism. 

Partly shedding conditions lead to irradiance fluctuations that can affect the performance of PV modules and 

inverters. These variations can introduce fluctuations in the output power and current harmonics, including inter-

harmonics. The conventional techniques employed for achieving maximum power point tracking (MPPT) and 

grid synchronization are constrained by issues related to inter-harmonics. Additionally, traditional 

synchronization methods, such as Phase Locked Loop (PLL), may struggle to maintain accurate synchronization 

with the grid in the presence of voltage distortions or frequency variations, results DC offset problems. 

These challenges are addressed in this work, and contributions are: 

• To address these challenges, this research aims to improve the power quality of grid-tied solar PV 

systems by proposing the utilization of a novel ensembled Deep Reinforcement Learning (EDRL) MPPT 

controller, and a Coati Optimization Algorithm tuned Fuzzified-Phase Locked Loop (COA Fuzzified-

PLL) based synchronizing system. 

• The ensembled DRL MPPT controller leverages the power of deep learning and reinforcement learning 

techniques to optimize the MPPT process, enabling the mitigation of inter-harmonics and efficient power 

extraction with a constant reference DC voltage at the DC link. 

• The objective of the synchronizing system based on COA Fuzzified-PLL is to achieve reliable 

synchronization with the electrical grid, even under voltage distortions and frequency variations, while 

also being able to reject DC-offset. 

1.2. Article Structure 

The article begins with an introduction that highlights the significance of power quality enhancement in grid-tied 

PV systems and outlines the existing challenges. A comprehensive literature review is provided, examining the 

limitations of current control strategies and exploring previous research on adaptive control techniques. The 

system configuration and proposed controller of the grid-tied PV system with Ensembled DRL are presented in 

section ΙΙΙ. The proposed COA-Fuzzified-PLL control strategy, including the Fuzzy membership function, is then 

described. The article proceeds to present experimental results to validate the effectiveness of the proposed 

strategy. A discussion section provides an in-depth evaluation of the approach, its advantages, limitations, and 

implications for power quality enhancement. Finally, the paper concludes with a summary of the key findings, 

contributions, and potential impact of the research, along with directions for future work. 

 

Related Work 

In current years, considerable research and development has focused on the power quality improvement of grid-

connected photovoltaic scheme regarding harmonics and DC offset. Several research studies have examined the 

creation and impact of inter-harmonics, underscoring the necessity for efficient reduction methods. Moreover, 

direct current offset in photovoltaic systems results in transformer saturation and elevated losses. The scholarly 

community has shown interest in identifying and eliminating DC offset. Various methods for mitigating these 

issues have been suggested to alleviate the issues of harmonics and DC offset, such as grid synchronization, phase-

locked loop (PLL) [3], synchronous reference frame (SRF-PLL) [4], and non-PLL techniques such as SOGI [9], 

Cascaded SOGI [10] within the context of this document. Thus, the attainment of accurate estimation and the 

elimination of unwanted periodic ripple in SRF-PLL [4] can be accomplished in the presence of a DC offset in 

the input signal. The paper [4] presents a novel phase-locked loop (PLL) that utilizes the Extended Second-Order 

Generalized Integrator (ESOGI) and is reconfigured by the Second-Order Generalized Integrator (SOGI) with 

Active Power Filter (APF). The study also suggests that the ESOGI-PLL exhibits satisfactory performance, even 

under conditions of elevated dc offset values and a high frequency of low-order harmonics. Furthermore, due to 

its uncomplicated architecture, the ESOGI-PLL suggested in this study can be readily executed on an inexpensive 

microcontroller. According to source [5], the second-order generalized integrator, which corresponds to the SOGI-

PLL, exhibits a relatively rapid transient response, a high capacity for rejecting disturbances, and a robust 

performance. One of the previously published works has suggested the utilization of SOGI-FLL [6] to improve 

the efficacy of SOGI-PLL in the context of frequency fluctuations. This is because the performance of SOGI-PLL 

is deemed inadequate in scenarios with variations in frequency and DC offset in the grid voltage. The article [1] 

presents a proposal for a comb filter utilizing a modified sliding Goertzel discrete Fourier transform (SGDFT)-

based phase-locked loop (PLL). The design incorporates the three degrees of freedom (DOFs) of second-order 



fraction delay, to mitigate the effects of non-integer frequency components. The SGDFT-based PLL [1] operates 

at a constant sampling frequency and aims to calculate the fundamental frequency, amplitude, and phase angle in 

order to achieve optimal synchronization. The paper [7], utilizes the Advanced Third Order Generalised Integrator 

(ATOGI) for controlling a two-stage three-phase photovoltaic system power quality. The ATOGI [7] is utilized 

for the purpose of extracting essential components from distorted grid voltages and non-linear load current. The 

proposed method effectively addresses the integrator delay and inter-harmonic challenges inherent in conventional 

SOGI techniques. Additionally, the DC-Offset Estimator component exhibits robust dc-offset rejection 

capabilities. The study [8] showcases a noteworthy implementation of two distinct generalized integrators: SOGI 

and the Reduced-Order Generalized Integrator (ROGI) controller, which are interconnected in a cascade 

configuration. The outcome of SOGI-ROGI yields several desirable characteristics, including the absence of phase 

shift, optimal filtering, minimal harmonic distortion, and favourable dynamic response. Furthermore, filtering 

techniques, such as passive filters and active power filters, have been explored to suppress these issues. Despite 

progress, challenges remain, including the need for improved detection methods and the integration of emerging 

technologies. 

As discussed in the introduction section, the voltage disturbance of photovoltaic arrays results in power 

oscillations, particularly during partial shedding operation. These power oscillations contain inter harmonics. 

Maximum Power Point Tracking (MPPT) control techniques have been suggested to harness maximum output 

and increase power quality over the years. Several approaches have been proposed in the literature for maximum 

power point tracking (MPPT) in photovoltaic (PV) power systems. These include a modified incremental 

conduction MPPT algorithm with a fuzzy controller [11], a hill-climbing (HC) modified fuzzy-logic (FL) MPPT 

control scheme implemented in both software and hardware [12], and a hybrid MPPT control strategy that 

integrates a modified perturb and observe (P&O) algorithm with an enhanced particle swarm optimization (PSO) 

algorithm [13]. Numerous heuristic techniques have been employed in the field, including the innovative 

Maximum Power Point Tracking (MPPT) method, which is adaptable to applications with rapid fluctuations 

through the utilization of Artificial Neural Network (ANN) [14]. Most of these techniques are based on models 

and aim to regulate various photovoltaic (PV) systems but not predict the inter-harmonics characteristics. The 

acquisition of an accurate model for photovoltaic (PV) systems and their associated parameters can remedy these 

harmonic challenges that are associated with PV panels in various configurations. The author is compelled to seek 

a methodology that is independent of any specific model. 

While several research studies have examined specific elements of inter-harmonics and DC offset in grid-

connected solar PV systems, there is a limited availability of sophisticated approaches and comprehensive 

methodologies that effectively tackle both of these concerns concurrently. The research gap pertains to the lack 

of comprehensive solutions that can adequately address the suppression and mitigation of inter-harmonics and 

DC offset, taking into account their potential interactions and cumulative impact on power quality. The 

simultaneous management of these phenomena will greatly improve the efficiency, reliability, and performance 

of grid-connected solar photovoltaic (PV) systems. 

 

System topology and control architecture 
 

3.1 System Topology 

The system is comprised of three primary components, namely photovoltaic (PV) panels or arrays, PV inverters, 

and the alternating current (ac) grid. PV inverters, such as the full-bridge inverter (IGBT), are integral in regulating 

the transmission of power from PV arrays to the AC grid. The Ensembled DRL maximum power point (MPP) 

based on total harmonic distortion (THD) Reward technique is employed for the purpose of producing a PWM 

signal that is utilized in a boost converter, with the aim of enhancing the voltage profile of the photovoltaic (PV) 

system and mitigating the inter-harmonic component. Figure 1 illustrates the conventional control configuration 

of 3-phase grid-connected photovoltaic (PV) inverters, A photovoltaic array with a power output of 250 kilowatts 

is linked to a 25 kV electrical grid through a three-phase converter. The photovoltaic (PV) array is composed of 

88 parallel strings. A series connection of 7 SunPower SPR-415E modules is present in each string. Table 1 

provides the relevant system parameters. To achieve optimal power extraction from photovoltaic arrays, the 

implementation of a maximum power point tracking (MPPT) algorithm is necessary.  

Table 1 The parameter setting of PV 



Parameters Values Standard Units 

PV arrays (series connected) 7 - 

PV arrays (parallel connected) 88 - 

Current of single PV array 6.09 A 

Voltage of single PV array 85.3 V 

Maximum power output 250 K watts 

Temperature  0-500   

Irradiation  680-1000   

 

 

Figure 1. Proposed methodology for performance quality enhancement of three Phase grid-connected solar PV 

system 

3.2 Proposed Methodology 

The methodology employs two key techniques: Ensembled Deep Reinforcement Learning (EDRL) based 

Maximum Power Point Tracking (MPPT) for inter-harmonics removal and a Novel Coati Optimization Algorithm 

(COA)-fuzzified Phase-Locked Loop (PLL) for DC offset removal is shown in figure 1. The methodology begins 

by utilizing Ensembled DRL, a combination of reinforcement learning and ensembled policy gradients, to 

optimize the MPPT process. Multiple neural network agents are trained independently, each responsible for 

tracking the maximum power point of the solar PV system. These agents collaborate and share their experiences 

through weighted averaging, ensuring diverse exploration and improving the accuracy of the MPPT process. This 

ensemble approach enhances the system’s performance by mitigating the effects of inter-harmonics, unwanted 

harmonics that can degrade power quality.  

The EDRL MPPT technique is utilized to ascertain the reference dc-link voltage during operation and to aid in 

mitigating inter-harmonic oscillation. Following this, the EDRL controller efficiently regulates the DC-link 

voltage, denoted as 𝑉𝑑𝑐, by utilizing a reward or penalty system based on the grid currents’ total harmonic 
distortion (THD). Inter-harmonics are a type of electrical disturbance that can occur in power systems. They are 

non-integer harmonic frequencies that fall between the standard integer harmonic frequencies. Inter-harmonics 

can result from various sources, including partial shedding conditions, non-linear loads, voltage fluctuations, and 

disturbances in the power system. However, the presence of inter-harmonics in the output current can be attributed 

to the utilization of power semiconductor devices and the variable power flow of the photovoltaic (PV) panels. 

Moreover, it is worth noting that the grid typically provides numerous non-linear loads that have the capability to 

absorb distorted currents. The fluctuating currents that pass through the impedances of the power distribution 

system, which vary in accordance with frequency, lead to a distortion of the voltage at the system bus. 

The subsequent approach incorporates a COA-fuzzified phase-locked loop (PLL) to alleviate the issue of direct 

current (DC) offset. The optimal performance of a fuzzy logic controller is achieved when the membership 



function parameters are efficiently and accurately tuned using COA optimization. COA-fuzzified PLL is an 

efficient approach to identifying and eliminating DC offset in the solar PV system connected to the grid. This 

technique guarantees precise synchronization with the utility grid and reduces the likelihood of power quality 

problems. The proposed methodology integrates the ensembled DRL-based MPPT and COA-fuzzified PLL 

techniques to enhance the overall performance of the 3-phase grid-connected solar PV system. The ensembled 

DRL optimizes the MPPT process, while the COA-fuzzified PLL eliminates DC offset and ensures precise 

synchronization with the utility grid. By effectively addressing inter-harmonics and DC offset, the methodology 

aims to improve power quality, maximize energy extraction, and enhance the overall performance of grid-

connected solar PV systems. 

3.3 Ensembled DRL-MPPT Approach for Inter-harmonic Mitigation 

The present study introduces a novel approach that involves incorporating a THD reward within the framework 

of ensembled deep reinforcement learning (EDRL) to address the issue of maximum power point tracking (MPPT) 

in photovoltaic (PV) arrays. Ensembled Deep Reinforcement learning (EDRL) provides an effective solution to 

this problem without requiring any parametric information regarding the dynamic parameters of the model. The 

objective of the algorithm is to illustrate the system analogy utilizing the DQN (discrete), DDPG (continuous), 

rlTD3 (continuous), and PPO (discrete) network framework. The ensembled DRL approach can be shown in 

Figure 2. 

The DRL consists of four primary components. The three fundamental components of DRL are commonly 

referred to as the state space 𝑋, reward function 𝑟, and action space 𝑈. The primary principle of Maximum Power 

Point Tracking (MPPT) is to optimize the power extraction from photovoltaic (PV) modules by ensuring their 

operation at the voltage corresponding to the maximum power point, thereby maximizing the available power 

output. The acquisition of knowledge by the agent is facilitated by any form of engagement with the environment. 

This process involves the execution of an action 𝑢𝑡 ∈ 𝑈, which triggers the evolution of the system from its current 

state 𝑥𝑡  ∈ 𝑋 to the subsequent state 𝑥𝑡+1. The agent obtains feedback in the form of a THD reward, which serves 

as a quantitative measure of the efficacy of the action or decision made by the agent. Consequently, the incentive 

serves as an indication to pinpoint the attainable objective or ideal resolution. The RL approach aims to identify 

an optimal policy 𝜋 that meets a given set of criteria. 𝐽∗ = max𝜋 𝐽𝜋 =  max𝜋 𝐸𝜋  {𝑟𝑡  |𝑥𝑡 = 𝑥}                                                           (1) 

The symbol 𝐽𝜋 denotes the cumulative expected reward under a given policy 𝜋. Assuming a policy π that absolves, 
the value function for a given time interval, denoted as 𝑉𝜋(𝑥), or the expected cumulative reward, is a function 

of 𝑥𝜋and is defined as 𝑥𝜋 = {𝑥𝑡}𝑡=1𝑡=𝑛, where the state values are represented by 𝑘𝜋 = {𝑘𝑡}𝑡=1𝑡=𝑛, which are sequences 

of actions taken by the agent. 

State Space 

The state-space design in Maximum Power Point Tracking (MPPT) problems involves analysing the movement 

of the Maximum Power Point (MPP) on the Photovoltaic (PV) curve across varying environmental conditions. 

The methodology employed in reinforcement learning is regulated by the photovoltaic current, power, and the 

direct current voltage of the coupling. The state-space comprises 𝑋, which is a vector containing the variables 𝑋 ∈[ 𝑉𝑃𝑉 , 𝐼𝑃𝑉 , 𝑃𝑃𝑉 ,∆𝑃𝑃𝑉 , ∫ ∆𝑃𝑃𝑉 , ∆ 𝑉𝐷𝐶]. The selection of duty cycle within the range of [0,1] is governed by the 

variable X. The divergence of PV power from the intended generation capacity is denoted by ∆𝑃𝑃𝑉  , while the 

discrepancy between the reference coupling voltage and the measured  𝑉𝐷𝐶  is represented by ∆ 𝑉𝐷𝐶. 

Action Space 

The MPPT problem is typically associated with a discrete action space. The aforementioned approach ensures a 

notable degree of accuracy and serves as a potent pedagogical strategy, rendering it a computationally expedient 

methodology. The EDRL-MPPT agent’s action involves a predetermined duty cycle. The duty cycle 𝐷𝑐  is 

determined within the range of 𝐷𝑐 = (0,1] through a sequence of actions, with an incremental interval of 0.01 in 

case of discrete action space. Consequently, a matrix comprising of one hundred potential actions is generated. 



 

 

Figure 2. Ensembled DRL for MPPT control in a three-phase grid connected PV system 

Reward  

The agent receives a reward contingent upon the action executed. The reward signals have been designed to 

achieve the objective of minimizing the total harmonic distortion in grid current. Total harmonic distortion (THD) 

is a crucial metric for assessing power quality as it measures the level of harmonic distortion that exists in the 

waveform of the grid current. Through the incorporation of Total Harmonic Distortion (THD) as a form of 

incentive in ensembled Deep Reinforcement Learning (EDRL), the agents are capable of acquiring knowledge to 

enhance the efficiency of the system’s operations and control tactics. This enables the minimization of harmonic 

distortion and guarantees a seamless transfer of power to the grid. The utilization of the ensemble approach 

facilitates the agents to collaboratively explore diverse control parameters, strategies, and switching techniques 

with the aim of mitigating total harmonic distortion (THD). By means of iterative learning and collaborative 

efforts, the ensemble agents are capable of identifying optimal solutions that effectively reduce harmonic 

distortion and improve the overall power quality within the grid-connected photovoltaic system. 

The total harmonic distortion (THD) in grid current is a measure of the harmonic distortion present in the current 

waveform of a three-phase grid-connected PV system. When designing a reward function for Deep Reinforcement 

Learning (DRL) applied in such a system, the THD can be incorporated as a component to incentivize the 

reduction of harmonic distortions. 

The mathematical formula for calculating THD in the grid current can be expressed as follows: 

𝑇𝐻𝐷 = √(𝐼𝑟𝑚𝑠𝐼1 )2 × 100                                                                          (2) 

Where, THD is the total harmonic distortion of the grid current, 𝐼𝑟𝑚𝑠 represents the rms value of the individual 

harmonic current components, 𝐼1 represents the rms value of the fundamental current component. When 

incorporating THD in the reward function for DRL, the goal would be to minimize the THD value. This can be 

achieved by assigning a negative reward proportional to the THD value. For instance, the THD-based reward 

function can be defined as: 𝑅𝑒𝑤𝑎𝑟𝑑 = −𝐾 × 𝑇𝐻𝐷                                                                        (3) 

Where, Reward is the reward value assigned to the DRL agent, K is a scaling constant that determines the weight 

or importance of the THD in the overall reward calculation. By using this reward function, the DRL agent is 

encouraged to learn policies that result in lower THD values, thus promoting a reduction in harmonic distortions 

in the grid current of the three-phase grid-connected PV system. 



The proposed ensembled deep reinforcement learning (EDRL) involves the construction of a collective of DRL 

models that cooperate in order to enhance the overall efficacy and resilience of the learning system. The weighted 

ensembled DRL learning process involves training multiple DRL models independently, each with its own set of 

weights. During the decision-making phase, the models’ outputs are combined using weighted averaging or 
another aggregation method that considers the assigned weights. The weights can be adjusted dynamically based 

on the models’ performance, exploration-exploitation trade-offs, or other criteria. This approach aims to leverage 

the diversity and expertise of individual agents while assigning different degrees of importance to their 

contributions based on their performance or confidence levels. Algorithm-1 presents the proposed weighted 

average deep reinforcement learning (DRL) approach. Four distinct neural network agents (namely DQN, DDPG, 

rlTD3, and PPO) were utilized in this study. Each agent was trained independently, with unique sets of parameters, 

exploration strategies, and architectures, as outlined in the subsequent section. The aforementioned agents engage 

with their surroundings, obtain incentives, and revise their strategies through reinforcement learning 

methodologies. Upon completion of training the four Deep Reinforcement Learning (DRL) models, the resultant 

policy is utilized to obtain the duty cycle denoted as 𝐷𝑐 . Therefore, the overall probability denoted as 𝑇𝑝𝑏  can be 

expressed as a weighted average of the duty cycle obtained from individual DRLs, as shown in Equation (4).  𝑇𝑝𝑏 = 𝑤1 ∗ 𝐷𝑐1 + 𝑤2 ∗ 𝐷𝑐2 + 𝑤3 ∗ 𝐷𝑐3 + 𝑤4 ∗ 𝐷𝑐4                                       (4) 

The weights of DQN (discrete), DDPG (continuous), rlTD3 (continuous), and PPO (discrete) are denoted as 𝑤1, 𝑤2 , 𝑤3 , and 𝑤4, respectively. Additionally, the duty cycle for each of the DRL models are represented as 𝐷𝑐1, 𝐷𝑐2, 𝐷𝑐3, and 𝐷𝑐4. Based on the Algorithm of DQN (discrete), DDPG (continuous), rlTD3 (continuous), and 

PPO [23], the models are trained and saved. The approach employed to obtain output from a weighted average 

deep reinforcement learning (DRL) method is derived from the research paper referenced as [23]. The method is 

applied to each model, resulting in the acquisition of 𝐷𝑐1, 𝐷𝑐2 , 𝐷𝑐3, and 𝐷𝑐4. The final weighted average action is 

obtained using Equation (4). The model structure that has been suggested is depicted in Figure 2. The algorithm  

Algorithm 1: EDRL THD Reward MPPT PV Control 

1. Establish a connection to the solar PV array SunPower SPR-415E. 

2. Determine the magnitude of the current and voltage that results from a short circuit and open circuit  

3. Calculate the maximum power for 𝑁𝑆 = 7 (PV’s in series) and 𝑁𝑝 = 88 (PV’s in parallel) using 𝑃𝑛𝑝𝑝 =(𝑁𝑆  × 𝑉𝑚𝑝𝑝) × (𝑁𝑃 × 𝐼𝑚𝑝𝑝) 

4. Choose the DC-link voltage. 

5. Set the EDRL agent’s initial state, action, and reward. 
6. State-space X=[ 𝑉𝑃𝑉 , 𝐼𝑃𝑉 , 𝑃𝑃𝑉 ,∆𝑃𝑃𝑉 , ∫ ∆𝑃𝑃𝑉  ] 
7. Action space U= (0,1] 
8. Update duty cycle 𝐷𝑐  

9. calculate: 𝑒(𝑡) and ∆𝑒(𝑡)  

10. Pass the error and ∆𝑒(𝑡)  through  

11. Provides these values to the network DQN, PPO, TD3, and DDPG 
12. Initialize / Load 𝑄, 𝛼 learning rate, and 𝛾 discount factor. 

13. for 𝑗 = 1 𝑡𝑜 𝑀 do 

14.               Get initial state 𝑥0 

15.               for 𝑡 = 1 𝑡𝑜 𝑇 do 

16.                      Select action 𝑢𝑡 from the set defined 

17.                      Execute the action 𝑢𝑡 

18.                      Get a new state 𝑥𝑡+1 and reward 𝑟 

19.                      Store the transition (𝑥𝑡 , 𝑢𝑡,𝑢𝑡+1,𝑢𝑡+1)  

20.                      IF |𝑅| > 𝑁 
21.                           Update the network using weighted average EDRL: 

22.                      end if  

23.                Set 𝑥𝑡 = 𝑥𝑡+1  

24.           end for 

25. end for 

The present study employs an EDRL methodology that involves assessing a weighted average of the behaviors 

exhibited by four distinct models. These models, which will be elaborated upon in the subsequent section, consist 

of two models operating within a continuous action space and two operating within a discrete action space. The 

average reward per episode during training of EDRL can be shown in figure 3. 



 

Figure 3. The average reward per episode during training of EDRL 

 

3.3.1 DQN (Discrete) 

DQN and its associated variant, double Q, are commonly employed to manage a discrete action space [16-19]. As 

per reference, the selection of a policy to implement in DQN is contingent upon identifying the action that will 

result in the highest attainable reward for the present state. The primary concern raised in DQN pertains to an 

overestimation of the Q-value in action, which poses a hindrance to the development of an optimal strategy. The 

utilization of a policy-based paradigm is advantageous in addressing the intricacy of DQN. The DDPG and PPO 

models exhibit versatility in their ability to operate effectively in both continuous and discontinuous action spaces. 

The present study employs a sole DQN in the context of DDPG and a discrete action space, as opposed to a 

continuous one. Consequently, the model computes the ensembled average of the behaviour with appropriate 

weighting.  

DQN stores state-action pairings as < 𝑆𝑡 , 𝐴𝑡 , 𝑆𝑡+1, 𝐴𝑡+1 >.. 𝑆𝑡+1, 𝐴𝑡+1 are the states and actions at 𝑡 + 1. DQN 

provides extremely uncorrelated data from random prior events.  

Weight loss function (𝜃): 𝐿𝑖(𝜃𝑖) =  𝔼𝑆,𝐴~𝜌(.)[(𝑦𝑆𝑖 − 𝑄(𝑆, 𝐴; 𝜃𝑖))2]                                         (5) 

Equation (5) gives the target as 𝑦𝑖  and prediction as 𝑄(𝑆, 𝐴; 𝜃𝑖). In the previous iteration, the weights were 𝜃𝑖−1, 

and the desired output from Equation (5) was 𝑦𝑖 =  𝔼𝑆′,~𝜀[𝑟 + 𝛾 max𝐴′  𝑄(𝑆′, 𝐴′; 𝜃𝑖−1)]                                      (6) 

The stochastic gradient of equation 5 with the replacement of the target 𝑦𝑖using equation 6 is ∇𝜃𝑖𝐿𝑖(𝜃𝑖) =  𝔼𝑆,𝐴~𝜌(.)[(𝑟 + 𝛾 max𝐴′  𝑄(𝑆′, 𝐴′; 𝜃𝑖−1) − 𝑄(𝑆, 𝐴; 𝜃𝑖))∇𝜃𝑖𝑄(𝑆, 𝐴; 𝜃𝑖)]          (7) 

The variable 𝛾 denotes the discount factor, while 𝑟 represents the reward. The computational procedure executes 

for a total of 𝑀 iterations. The agent selects a set of tuples from the existing data based on the chosen action. The 

execution of the task is obtained by the agent via the values indicated in Equation (7). The incentive is contingent 

upon behaviour and can manifest as either a favourable or unfavourable outcome. 



3.3.2 DDPG (Continuous) 

The DDPG model is categorized as a policy-based approach that is applicable to action spaces that are either 

continuous or discrete. The present approach is proposed as a solution to address the challenges encountered in 

the Deep Q-Network (DQN) and to mitigate the impact of densely connected neural networks. The approach 

described in reference [21] has demonstrated efficacy in managing environments characterized by continuous 

action spaces. Therefore, it is highly appropriate for the current academic research setting. 

The DDPG architecture comprises two distinct components, namely the actor and critic. The representation of the 

actor is denoted as  𝜇(𝑆|𝜃𝜇)). The representation of the critic can be denoted as (𝑆, 𝐴|𝜃𝑄)). 

The gradient update incorporates the deterministic policy function denoted by 𝜃𝜇  and the Q network denoted by 𝜃𝑄. During each iteration of the training process, the actors and critic engage in the exchange of information. In 

the context of soft update networks in Deep Deterministic Policy Gradient (DDPG), the actor and critic networks 

are denoted as 𝜇(𝑆|𝜃𝜇′))  and  (𝑆, 𝐴|𝜃𝑄′)) respectively. 

The notation used in the text denotes that 𝜃𝜇′
 refers to the Target policy network, while 𝜃𝑄′

 refers to the Target 

Q network. The policy function with direction, denoted as 𝜃𝜇, is commonly represented as 𝐽(𝜃𝜇), while its 

gradient is typically denoted as follows: 𝜕𝐽(𝜃𝜇) 𝜕𝜃𝜇 = 𝐸[∇μ(S)𝑄(𝑆, 𝜇(𝑆|𝜃𝜇)|𝜃𝑄)∇θμ𝜇(𝑆|𝜃𝜇)]                                              (8) 

The critic network in the Deep Deterministic Policy Gradient (DDPG) algorithm minimizes the loss function, 

which is the Mean Square Error (MSE), with respect to the action (A). The resulting expression for the loss 

function is obtained as a result. (𝜃𝑄) = 𝐸[(𝑄𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑄𝑝𝑟𝑒𝑑𝑖𝑐𝑡)2]                                                        (9) 

Where, 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑟 + 𝛾𝑄(𝑆𝑡+1𝜇(𝑆𝑡+1|𝜃𝜇′)|𝜃𝑄′  ) and  𝑄𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝑄(𝑆, 𝐴|𝜃𝑄) 

In contrast to the DQN approach, the target networks undergo updates at each time and step through the utilization 

of soft updates. 

3.3.3 PPO (Discrete) 

The computation of PPO is an integral component of the weighted ensembled strategy employed in this context. 

The model in question is a policy-based approach that regulates the gradient of the policy update, as described in 

reference [21]. This is carried out to ensure alignment between the policies. The utilization of this can be applied 

to either a discrete or continuous action space. The implication of this statement is that the on-policy model in a 

discrete action space exhibits a limited capacity for policy modifications during implementation. The evaluation 

of the performance of a chosen action is conducted through the utilization of the critic network, as per the 

advantage function. Equation (7) provides the advantage function. �̂�𝑡 =  𝛿𝑡 +  (𝜆𝛾)𝛿𝑡+1 + · · ·  + (𝜆𝛾𝑇 −𝑡+1) 𝛿𝑇−1                                          (10) 𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉𝜋(𝑆𝑡+1) − 𝑉𝜋(𝑆𝑡)                                                         (11) 

In Equation (8), the state-value function is denoted as 𝑉𝜋(𝑆) and serves as a representation. 𝑉𝜋(𝑆) = 𝔼𝜋[∑ 𝛾𝑘∞𝑘=0 𝑟𝑡+𝑘+1|𝑆𝑡 = 𝑆]                                                   (12) 

The policy utilized for environmental sampling is denoted as 𝜋𝜃𝑜𝑙𝑑 , while the policy subject 

t to optimization is represented as π_θ. PPO utilizes the clipped surrogate objective to establish the bounding 
constraints on the policy updates, thereby ensuring the stability of the training process. The target function utilized 

in PPO undergoes a transformation, as depicted in Equation (13). 𝐽𝜃 ≈ ∑ min (𝜋𝜃(𝐴𝑡 𝑆𝑡)⁄𝜋𝜃𝑜𝑙𝑑 �̂�𝑡 , 𝑐𝑙𝑖𝑝((𝑆𝑡,𝐴𝑡) 𝜋𝜃(𝐴𝑡 𝑆𝑡)⁄𝜋𝜃𝑜𝑙𝑑 , 1 − 𝜖, 1 + 𝜖)�̂�𝑡                        (13) 

3.3.4 rlTD3 twin-delayed deep deterministic policy gradient (Continuous) 

TD3, an actor-critic structure, combines action as a policy function and value function on the present policy. TD3 

needs continuous action space [22]. TD3, the upgraded DDPG, eliminates value function overestimation. 

Reducing value function overestimation improves accuracy and reduces variance. The TD3 network forms the 



target network using the smallest of two critic networks. TD3’s delayed actor network updates every two-time 

step for stability and efficiency throughout training. Clipped noise calculates targets when the action is selected. 

High action value makes the model robust in all scenarios (continuous action-space). DDPG overestimates the Q-

function, but TD3 employs dual Q-functions, delayed policy updates to ensure stability, and smoothens the target 

policy. Twin delay DDPG. For continuous action-space environments. 

Equation (14) represents the target action of the policy 𝜇𝜃𝑡𝑎𝑟𝑔, which has been modified by the addition of clipped 

noise.  𝐴′(𝑆′) = 𝑐𝑙𝑖𝑝(𝜇𝜃𝑡𝑎𝑟𝑔(𝑆′) + 𝑐𝑙𝑖𝑝(∈, −𝑐, 𝑐), 𝐴𝐿𝑜𝑤 , 𝐴𝐻𝑖𝑔ℎ), ∈ ~ 𝒩(0, 𝜎)                            (14) 

All instances of the target action A are found to be satisfactory, 𝐴𝐿𝑜𝑤 ≤ 𝐴 ≤ 𝐴𝐻𝑖𝑔ℎ 

Equation (15) presents the clipped double Q-learning function.,  𝑦(𝑟, 𝑆′, 𝑑) = 𝑟 + 𝛾(1 − 𝑑) min𝑖=1,2 𝑄𝜙𝑖,𝑡𝑎𝑟𝑔(𝑆′, 𝐴′(𝑆′))                                         (15) 

The policy is acquired through the process of maximizing the 𝑄𝜙1: max𝜃 Ε[𝑄𝜙1(𝑆, 𝜇𝜃(𝑆))]                                                                           (16) 

Equation (17) provides the expression for the Q-function through one-step gradient descent. ∇𝜙𝑖 1|𝐵| ∑ (𝑄𝜙1(𝑆, 𝐴) − 𝑦(𝑟, 𝑆′, 𝑑))2(𝑆,𝐴,𝑟,𝑆′,𝑑)                                                      (17) 

for 𝑖 = 1,2 

Equation (18) depicts the policy update utilizing one step gradient ascent, ∇𝜙𝑖 1|𝐵| ∑ 𝑄𝜙1(𝑆, 𝜇𝜃(𝑆))𝑆𝜖𝐵                                                                   (18) 

 

3.4 COA Fuzzified-PLL based Controller for DC offset Removal 

The output of a PV inverter typically exhibits a direct current (DC) offset voltage component. This phenomenon 

arises due to various factors, such as discrepancies among power modules, asymmetry in driving pulses, and errors 

in current detection. According to reference [3], the presence of induced DC offset in the measured grid voltage 

can result in undesirable fluctuations in the estimated values of both the amplitude and frequency of the grid 

voltage. The amplitude of the induced ripple is contingent upon both the percentage of the DC offset value and 

the fundamental frequency of the power grid. Thus, the presence of DC offset in the measured grid voltage renders 

the estimation procedure of the grid parameters virtually infeasible. This paper presents a novel approach for 

mitigating induced DC offset. The proposed method employs COA Fuzzified-PLL-based controller, can be shown 

in Figure 3. The Fuzzified-Phase-Locked Loop (PLL) was developed through the replacement of the Proportional-

Integral (PI) controller with a Fuzzy Logic Controller (FLC) within the context of the PLL. The Coati 

Optimization algorithms are employed to optimize the parameters of the fuzzy, including membership functions, 

rule base, and scaling factors. Fuzzification is applied to handle the uncertainty and imprecision associated with 

DC offset, transforming the input signals into fuzzy sets. 

The phase-locked loop (PLL) operates by minimizing the phase discrepancy between a reference signal and a 

feedback signal within the control loop. The process involves modifying the phase of a voltage-controlled 

oscillator (VCO) until the two signals achieve phase alignment. Phase-locked loops (PLLs) are vulnerable to 

various factors such as noise, non-linearities, and abrupt disturbances, which can adversely impact their 

operational efficiency. The introduction of fuzzy logic to the PLL architecture helps overcome these limitations. 

Changes in angular phase angle (𝛥𝜃) can be observed subsequent to each phase angle jump. The application of 

phase angle change is intended to address subtle and abrupt changes. The proposed model inserts the fuzzy 

controller between the phase detector and the low-pass filter in a conventional PLL device.  

 In the conventional phase-locked loop (PLL), the three-phase voltage vector is converted from the 𝑎𝑏𝑐 natural 

reference frame to the 𝛼𝛽 stationary reference frame through the utilization of Clarke’s transformation. 
Subsequently, it is further converted to the 𝑑𝑞 rotating frame using Park’s transformation, as depicted in Figure 
1. The proposed modification being suggested for the PLL framework pertains to its existing control mechanism. 

The difference between the reference currents 𝐼𝑑  and 𝐼𝑞  and the measured currents 𝐼𝑑  and 𝐼𝑞  is utilized as the input 



signal for the fuzzy logic controller. The equation depicts the modelling design of Fuzzified-PLL. The variables 𝑉𝑎 , 𝑉𝑏, and 𝑉𝑐 represent the magnitudes of the three-phase voltage. 

[𝑉𝑎𝑉𝑏𝑉𝑐 ]  = [ 𝑉𝑚 cos 𝜃𝑉𝑚 cos(𝜃 − 2𝜋 3⁄ )𝑉𝑚 cos(𝜃 + 2𝜋 3⁄ )]                                                            (19) 

The conversion of these signals into the stationary reference frame signals 𝑉𝛼  and 𝑉𝛽 is achieved through the 

application of the Clarke transformation, while the Park transformation is utilized for the conversion to the dq 

frame. 

[𝑉𝛼𝑉𝛽]  = 2 3⁄ [1 −1 2⁄ −1 2⁄0 −√3 2⁄ √3 2⁄ ] 

𝑉𝑎𝑉𝑏𝑉𝑐                                                      (20) 

[𝑉𝑑𝑉𝑞 ] = [cos 𝜃∗ − sin 𝜃∗sin 𝜃∗ cos 𝜃∗ ] [𝑉𝛼𝑉𝛽]                                                        (21) 𝑉𝑑  = 𝑉𝛼 𝑐𝑜𝑠 𝜃∗  −  𝑉𝛽  𝑠𝑖𝑛 𝜃∗  ≈  𝑉𝑑,𝑂𝑓𝑓𝑠𝑒𝑡  +  𝑉𝑚                                           (22) 𝑉𝑞  =  𝑉𝛼  𝑠𝑖𝑛𝜃∗  +  𝑉𝛽 𝑐𝑜𝑠 𝜃∗  ≈  𝑉𝑞,𝑜𝑓𝑓𝑠𝑒𝑡 − 𝑉𝑚𝑒                                           (23) 

The symbols 𝑉, 𝜃, and 𝜃∗ represent the, magnitude of voltage, input angle, and estimated angle, respectively. 𝑒 is 

the error in phase angle. The main objective of the proposed controller is to eliminate the direct current (DC) 

offset component that exists in the synchronous q-axis and d-axis components, denoted as 𝑉𝑑,𝑜𝑓𝑓𝑠𝑒𝑡  and 𝑉𝑞,𝑜𝑓𝑓𝑠𝑒𝑡  

respectively which is shown equation (23). 

The fuzzy controller employs optimized parameters and a rule base to make decisions based on the fuzzy sets of 

the input signals. The controller generates control signals that adjust the PLL’s parameters dynamically to cancel 
out the DC offset component effectively. The fundamental stages of fuzzy logic control consist of three distinct 

phases, which are fuzzification, decision-making, and defuzzification. The procedure of fuzzification pertains to 

the transformation of quantitative measurements of input variables into a precisely defined linguistic variable 

boundary, which is denoted by a fuzzy set. The performance of the optimized fuzzy-PLL is evaluated by assessing 

the accuracy of DC offset removal and the overall improvement in power quality.   

 

Figure 4. COA Fuzzified-PLL based Controller 



The Novel Coati Optimization algorithm is used to optimize the parameter of fuzzified-PLL. Figure 4 illustrates 

a comprehensive model of a fuzzy phase-locked loop (PLL). The global optimization COA approach offers 

numerous advantages, including the absence of control parameters, the ability to solve complex high-dimensional 

problems across various domains, superior research and search process balancing, and effective handling of 

optimization applications. Given the presence of two inputs and one output, 18 positions of membership functions 

must be optimized by utilizing the Coati Optimization (COA) algorithm. An objective function is selected to 

minimize the total harmonic distortion in the optimization process. The fuzzy controller being examined employs 

linguistic variables, specifically negative big (NB), negative medium (NM), small negative (NS), zero (ZE), small 

positive (PS), medium positive (PM), and positive big (PB), to establish the error and error rate. These variables 

are differentiated by their corresponding memberships. The concept of memberships pertains to mathematical 

curves that facilitate the process of mapping each point within the input space to a corresponding membership 

value that falls within the range of 0 to 1.  

The study involves the modification of eighteen membership function positions for each coati, followed by 

evaluating a fuzzified-PLL system based on the resulting error. The membership range of two inputs is defined as 

[-10 to 10] and [-1 to 1], and one output as [-10 to 10]. The above ranges remain constant throughout the simulation 

and do not undergo any modifications. The trapezoidal function has a fixed range that spans from negative infinity 

to positive infinity, both at the initial and final points. Additionally, it is worth noting that two points of intersection 

exist between each membership function and other membership functions. Table 3 provides clear evidence of this 

assertion.  

Table 2 The range values for the input/output of fuzzy controller. 

Membership 

functions 

Range parameters 

Trapezoidal [−∞, −0.032, 𝑥 (1), 𝑥 (2)] 
Triangular [𝑥 (1), 𝑥 (2), 𝑥 (3)] 
Triangular [𝑥 (2), 𝑥 (3), 0] 
Triangular [ 𝑥 (3), 0, 𝑥 (4)] 
Triangular [0, 𝑥 (4), 𝑥 (5)] 
Triangular [𝑥 (4), 𝑥 (5), 𝑥 (6)] 

Trapezoidal [𝑥 (5), 𝑥 (6), 0.032, ∞] 
 

The most common values can be readily anticipated based on the data presented in Table 2. In the case of a single 

variable, the tuning process involves adjusting four specific values. However, when dealing with three variables, 

the total number of values to be tuned increases to eighteen. There exist certain constraints that necessitate 

consideration when adjusting these values. 

The given problem is subject to certain constraints, which is given n table 3. require that every value must adhere 

to the specified inequality criteria: 

Table 3. Constraints for Fuzzy Controller 

Input Boundary Condition 

Order 𝑥(1) < 𝑥(2) < 𝑥(3) 

Error 𝐸 -0.032 to 0.032 

Change in Error ∆𝐸 -10 to 10 

Phase angle output 𝛥𝜃 -1 to 1 

 

The membership function values of the fuzzy controller are modified and the model is then executed using these 

new values. The total harmonic distortion (THD) will serve as the target to be minimized, representing the value 

of the objective function. 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑚𝑖𝑛 𝑇𝐻𝐷                                                 (24) 



Table 4 presents elaborate variations of the expressions mentioned above for alterations in phase angle. The q-

axis component of the grid voltage, along with its derivative, are regarded as inputs to the FLC. In order to 

incorporate variables with distinct ranges, it is necessary to multiply two variables by the outputs of Fuzzy Logic 

Controllers (FLCs). The parameters depicted in Figure 4 are denoted by k and g. Figure 4 illustrates a 

comprehensive model of a fuzzy phase-locked loop (PLL).  

 

Table 4 Fuzzy rule for output variable 𝛥𝜃 𝛥𝜃 NB      NM NS ZE PS PM PB 

NB NB NB NB NM NM NS ZE 

NM NB NB NM NM NS ZE PS 

NS NB NM NM NS ZE PS PM 

ZE NM NM NS ZE PS PM PM 

PS NM NS ZE PS PM PM PB 

PM NS ZE PS PM PM PB PB 

PB ZE PS PM PM PB PB PB 

 

 

 

The parameters of the fuzzy controller are tuned using coati Optimization. Following the tuning process, the values 

of the parameters are modified from their original values, resulting in a change in their overall shape. The figures 

presented in Figure 5. (a) - 5. (c) illustrate the updated fuzzy logic membership functions, which have been 

modified to encompass a new range. These modifications have been made to facilitate the identification of the 

minimum error through coati optimization algorithm. 

 

Figure 5. (a): Coati optimised membership function for input 𝐸 

 

Figure 5 (b): Coati optimised membership function for input ∆𝐸  



 

Figure 5 (c): Coati optimised membership function for output 𝛥𝜃 

 

Simulation Results 
 

The effectiveness of the proposed EDRL-MPPT technique for inter-harmonics elimination and COA-Fuzzified 

PLL synchronization approach, as illustrated in Figure 1, has been evaluated and simulated. The simulation has 

been conducted in three distinct cases as follows: 

• The photovoltaic (PV) inverter functions under a consistent level of solar irradiance, specifically known 

as steady-state maximum power point tracking (MPPT), which corresponds to its rated power, equivalent 

to 250 kW. It is worth noting that during this operating condition, the emission of inter-harmonics is 

particularly noticeable. In the first case, this study examines the effect of inter-harmonics during (P & 

O) Maximum Power Point Tracking (MPPT) technique and conventional Phase-Locked Loop (PLL) 

synchronization technique in a three-phase grid-connected solar photovoltaic (PV) system. 

• In second case, the implementation of the EDRL-MPPT technique and conventional PLL 

synchronization technique has been proposed for the purpose of inter-harmonics mitigation in a three-

phase grid connected solar PV system.  

• In the third scenario, it is suggested that the abrupt load variation results in the generation of a DC offset 

in the grid current. In order to address the disruption caused by this DC offset in the grid current, the 

EDRL-MPPT technique with COA-Fuzzified PLL synchronization approach have been proposed. 

As discussed, introduction section, due to partial shedding condition, the transient response of the dc-link voltage 

controller is identified as one of the sources of inter-harmonics in the grid current. To mitigate inter-harmonics in 

the PV inverter, it is imperative to prevent perturbations in the dc-link voltage during operation. The attainment 

of this objective is facilitated through the utilization of an (EDRL-MPPT). The present study utilizes an ensembled 

deep reinforcement learning approach that incorporates a reward system based on total harmonic distortion in grid 

current. The objective is to effectively train the agent to execute actions that based on the minimal harmonic 

distortion in grid current. Consequently, the inter-harmonics can be effectively circumvented. The figure 6 

illustrates a comparison between Perturb and Observe MPPT and EDRL-MPPT techniques in terms of their 

impact on DC coupling voltage output and inter-harmonic mitigation in waveform. 

In the conventional case, to achieve optimal power extraction from photovoltaic system, an MPPT algorithm such 

as Perturb and Observe (P&O) is utilized to ascertain the reference DC-link voltage (i.e., PV voltage) during 

operation. Subsequently, the dc-link voltage (𝑉𝑑𝑐) regulation is achieved by the dc-link voltage controller utilizing 

a PLL controller. This controller operates by controlling the grid current. The outcome denoted as Vdc, obtained 

through the employment of the normal MPPT technique with conventional phase-locked loop control, is depicted 

in Figure 6. The Perturb and Observe (P&O) technique was employed to evaluate the (MPPT) operation in the 

initial scenario. However, it is important to note that the injected grid current that is linked to this operation 

displays a considerably higher level of distortion, as illustrated in Figure 7. The disparity in waveform can also 

be observed in a magnified plot ranging from 0.1 to 0.2 seconds.   

The diagram in Figure 8 displays the frequency spectrum of the grid current with total harmonic distortion of 

8.90%. It is observed that the inter-harmonic level exhibits a higher absolute value when the PV inverter is 

functioning at its rated power. The inter-harmonic emission originating from the photovoltaic inverter holds 

considerable significance in this scenario. In order to mitigate the presence of harmonics, we have put forth the 



EDRL-MPPT technique, which incorporates a reward and penalty system based on the distortion observed in the 

grid current. The subsequent section of our discussion pertained to the MPPT-EDRL system, which incorporates 

PLL synchronization. 

The second scenario involves using EDRL-MPPT to attain maximum power output from the photovoltaic system, 

aiming to determine the reference DC-link voltage (i.e., PV voltage) during its operation. The direct current (DC) 

link voltage, denoted as Vdc, is regulated by utilizing a phase-locked loop (PLL) controller by the DC-link voltage 

controller. Figure 6 (a) illustrates the system’s response to a decrease in irradiance from 1000 to 0 W/m2 in the 
presence of a load. The EDRL-MPPT sustains a constant output of dc voltage with less waveform distortion 

compared to normal MPPT. At a time, interval of 0.55 seconds to 1 sec, there was a significant decrease in solar 

irradiance to a value of 0 W/m2.  

Figure 6 (b) illustrates the grid current for the proposed (EDRL-MPPT) system. Figure 6 (c) depicts the amplitude 

of the primary frequency constituent of grid current. After analyzing the frequency spectrum of the output current 

depicted in Figure 6 (c), it becomes apparent that the dominant inter-harmonics present in the output current 

exhibit a significant reduction in magnitude. The total harmonic distortion is 7.069%, measured in this case. 

Additionally, we clearly see less damping in the angular frequency compared to the conventional MPPT in Figure 

6 (d). The utilization of an EDRL MPPT in conjunction with the PLL method demonstrates reduced inter-

harmonic levels. A comparative analysis has been conducted to assess the phase error between the Perturb and 

Observe (P&O) MPPT algorithm and the EDRL MPPT algorithm with a conventional Phase-Locked Loop in 

typical operational circumstances. The EDRL MPPT with conventional PLL generates precise control signals to 

accurately track the phase angle of the grid and achieve less phase error between the output signal and that of a 

reference signal which can be seen in Figure 6 (e). 

 

 

Fig 6 (a), The output of DC coupling voltage of (P&O) and EDRL 

 



 

Fig 6 (b), The output of grid current during (P&O) and EDRL MPPT Technique 

 

Fig 6 (c), The magnitude of fundamental frequency component during (P&O) and EDRL MPPT Technique 

 

Fig 6 (d), The frequency variation during (P&O) and EDRL MPPT Technique with conventional PLL 



 

Fig 6 (e), The Phase angle error during (P&O) and EDRL MPPT Technique with conventional PLL 

  

The third case utilizes the EDRL-MPPT and CAO-Fuzzified PLL for grid synchronization. Implementing a 

control algorithm in a grid-tied photovoltaic system, which aims to eliminate harmonic distortion and compensate 

DC offset, necessitates the calculation of both the synchronizing signal and the amplitude of the grid current. At 

the start of operation, the grid functions at its maximum operational capacity. The distribution of load current is 

divided between the grid and photovoltaic (PV) system based on the amount of solar radiation present. In the 

event of a sudden reduction in load, the surplus power generated by the photovoltaic (PV) system will be 

transmitted to the electrical grid. At full load capacity, the grid voltage and grid current exhibit a phase alignment. 

When there is a sudden decrease in load, it results in a phase shift. This phase shift is mitigated using fuzzy-PLL, 

and the hyperparameters of fuzzy are tuned using COA results mitigation of DC offset and less harmonics 

distortion in the grid current as seen in Figure 7 (a).  

The mitigation of phase shift is achieved through the utilization of fuzzy-PLL, wherein the hyperparameters of 

the fuzzy system are adjusted using the COA technique. This approach effectively reduces the presence of DC 

offset and minimizes the distortion of harmonics in the grid current, as depicted in Figure 7 (a). The respective 

magnitude of the fundamental frequency component can be seen in Figure 7 (b), with less reduction in total 

harmonic distortion of 2.89%. The effectiveness of the proposed Fuzzified-PLL under the change in load is 

depicted in Figure 7 (b). The observation of Figure 7 (b) reveals that the introduction of an offset in the system 

within the time range of 0.28 to 0.33 seconds results in significant frequency distortion in the conventional phase-

locked loop (PLL).  

In contrast, the fuzzified-PLL exhibits superior performance during this period. The proposed method has superior 

performance in various aspects, including dc offset rejection, grid synchronization, inter-harmonic rejection, and 

stable 𝑉𝑑𝑐. A comparison of the two approaches was performed to evaluate the phase error between the Perturb 

and Observe (P&O) technique with conventional PLL and EDRL MPPT algorithm with a COA-Fuzzified PLL 

under offset conditions introducing from 0.1 to 0.3 seconds. The EDRL MPPT with COA-Fuzzified PLL is 

capable of producing highly accurate control signals for effectively monitoring the phase angle of the grid. This 

results in minimal phase error between the output signal and a reference signal, as depicted in Figure 7 (c). 

 

 



 

Fig 7 (a), The output of grid current during EDRL-COA Fuzzified PLL synchronization technique 

 

Fig 7 (b), The frequency variation during EDRL MPPT with COA-Fuzzified PLL Technique 

 

 

Fig 7 (c), The Phase angle error during EDRL MPPT Technique with COA-Fuzzified PLL 

 



4.1 State-of-art comparison 

Table 5 displays a comparative analysis of the proposed COA-fuzzified-PLL controller alongside existing control 

techniques and a limited number of adaptive control techniques. The provided comparative table illustrates the 

efficacy of the proposed hybrid control scheme with respect to multiple attributes such as rejection of DC offset 

and THD of grid current. The proposed scheme demonstrates superior performance compared to existing control 

algorithms such as MCCF (Multiple complex coefficient filter), MCCF-SOGI (Multiple complex coefficient filter 

second-order generalized integrator) and fuzzy logic proportional–integrator–derivative multiple complex 

coefficient filter multiple second-order generalized integrator frequency-locked loop (FLPID-MCCF-MSOGI-

FLL) as evidenced by the results presented in Table 5. 

Traditional MPPT algorithms with conventional PLL synchronization techniques often exhibit overshoot in 

estimated phase angle, temporary deviations from desired values during transient conditions. The improved power 

quality approach employs ensemble DRL MPPT control and COA-fuzzified-PLL-based synchronizing system, 

which has less overshoot through adaptive control strategies and intelligent decision-making. Continuously 

optimizing control parameters based on real-time system dynamics, these advanced techniques minimize 

overshoot, resulting in enhanced power quality and stability. 

Similarly, settling time measures the duration for the system's output to reach and remain within a specified range 

after a disturbance or change in operating conditions. Traditional methods tend to have longer settling times due 

to slower convergence or suboptimal control actions. In contrast, the ensemble DRL MPPT controller and COA-

fuzzified-PLL-based synchronizing system reduce settling time through intelligent learning algorithms and 

adaptive control strategies. These advanced techniques facilitate faster convergence and more accurate tracking 

of desired operating points, leading to reduced settling time and improved power quality performance. 

Table 5. The summary of performance of Different controller 

Features MCCF 

 [24] 

MCCF-

SOGI 

[24] 

FLPID-

MCCF-

MSOGI-

FLL [24] 

Conventional 

PLL 

Proposed COA-

Fuzzified-PLL 

Oscillation Less Less Less Less Less 

DC Offset Rejection No No Better No Good 

Inter-Harmonics Removal No Yes Yes No Yes 

THD Of Grid Current Less Less Better No Good 

Steady State Performance  Good Good Good Good Good 

Transient Performance Good Good Good Good Good 

Grid Synchronization Yes Yes Yes No Yes 

Overshoot - - - 44.03 0 

Settling Time - - - 71ms 68ms 

 

Conclusion 
 

In conclusion, this research study aimed to improve the power quality of three-phase grid-connected photovoltaic 

(PV) systems by addressing inter-harmonics and DC offset. This was achieved by employing the Enhanced Droop 

Regulator Control (EDRL) Maximum Power Point Tracking (MPPT) technique and the COA-fuzzified-Phase-

Locked Loop (PLL) synchronization system. Extensive simulations have revealed that the integration of the 

EDRL MPPT technique and the COA-fuzzified-PLL synchronization system yields a substantial improvement in 

power quality within three-phase grid-connected photovoltaic (PV) systems. The reduction of inter-harmonics 

and DC offset leads to a decrease in voltage distortion, an enhancement in system stability, and an improvement 

in grid integration. Future research and development endeavours may prioritize the optimization of control 

strategies, the exploration of advanced algorithms, and the consideration of real-time implementation in order to 

augment the performance of the proposed techniques in practical contexts. 
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