
On Implementing Stabilizing Leader Election with
Weak Assumptions on Network Dynamics † ‡
Karine Altisen

Grenoble Alpes University
Stéphane Devismes

University of Picardie Jules Verne

Anaïs Durand
University of Clermont Auvergne

Colette Johnen
University of Bordeaux

Franck Petit
Sorbonne University

Research Article

Keywords: Self-stabilization, Pseudo-stabilization, Dynamic Graphs, Leader Election, Speculation

Posted Date: August 28th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3281830/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-3281830/v1
https://doi.org/10.21203/rs.3.rs-3281830/v1
https://creativecommons.org/licenses/by/4.0/

On Implementing Stabilizing Leader Election with

Weak Assumptions on Network Dynamics † ‡

Karine Altisen1, Stéphane Devismes2, Anäıs Durand3,

Colette Johnen4, Franck Petit5

1Univ. Grenoble Alpes, CNRS, Grenoble INP∗, VERIMAG, 38 000
Grenoble, France.

2Université de Picardie Jules Verne, MIS, Amiens, France.

3Université Clermont Auvergne, LIMOS, Clermond-Ferrand, France.

4Université de Bordeaux, LaBRI, Bordeaux, France.

5Sorbonne Université, LIP6, Paris,France.

Contributing authors: Karine.Altisen@univ-grenoble-alpes.fr;
Stephane.Devismes@u-picardie.fr; Anais.Durand@uca.fr;

Colette.Johnen@labri.fr; Franck.Petit@lip6.fr;

Abstract

We consider self-stabilization and its weakened form called pseudo-stabilization.
We study conditions under which (pseudo- and self-) stabilizing leader election is
solvable in networks subject to frequent topological changes. To model such an
high dynamics, we use the dynamic graph (DG) paradigm and study a taxonomy
of nine important DG classes. Our results show that self-stabilizing leader election
can only be achieved in the classes where all processes are sources. Furthermore,
even pseudo-stabilizing leader election cannot be solved in all remaining classes,
except in the class where at least one process is a timely source. We illustrate
this result by proposing a pseudo-stabilizing leader election algorithm for the
latter class. We also show that in this last case, the convergence time of pseudo-
stabilizing leader election algorithms cannot be bounded. Nevertheless, we show

†This study has been partially supported by the French anr project ANR-22-CE25-0008-01 (SkyData).
‡A preliminary version of this paper has been published in the proceedings of PODC’2021 [1].

∗Institute of Engineering Univ. Grenoble Alpes

1

that our solution is speculative since its convergence time can be bounded when
the dynamics is not too erratic, precisely when all processes are timely sources.

Keywords: Self-stabilization, Pseudo-stabilization, Dynamic Graphs, Leader Election,
Speculation

MSC Classification: 68W15 68M15

1 Introduction

Leader election is a fundamental problem in distributed computing. Notably, it is
often used as a basic building block in the design of more complex crucial tasks
such as spanning tree constructions, broadcasts, and convergecasts. Consequently,
leader election is commonly used as a benchmark problem exploring new models or
environments.

Modern networks (e.g., MANET (Mobile Ad-Hoc Networks), VANET (Vehicular
Ad-Hoc Networks), and DTN (Delay-Tolerant Networks) are prone to both faults and
frequent alteration of their topology (i.e., the addition or removal of links). Several works
aim at capturing such a network dynamics using graph-based models. In [2, 3], the
network dynamics is represented as a sequence of digraphs called evolving or dynamic
graphs. In [4], the topological evolution of the network is modeled by a Time-Varying
Graph (TVG). A TVG consists of a (fixed) digraph and a presence function which
indicates whether or not a given arc of the digraph exists at a given time.

The way a network is connected over time is of prime interest to develop algorithmic
solutions. On the other hand, an algorithm should be as general as possible and so not
focus on a single dynamic pattern. Therefore, dynamic patterns are often classified
according to the temporal characteristics of edge presence they satisfy; see, e.g., [4].
Such taxonomies are always proposed together with possibility/impossibility results
establishing the expressive power of classes that compose them.

In [5], we initiated research to unify fault-tolerance and endurance to high-frequency
of topological changes by introducing self-stabilizing algorithms for the leader election
problem in three important classes of dynamic networks, modeled using the TVG
paradigm. In the present paper, we explore conditions on the network dynamics under
which the (deterministic) stabilizing leader election is solvable. The term “stabilization”
should be understood here in a broad sense. Indeed, it will cover both self-stabilization [6]
and its weakened deterministic variant called pseudo-stabilization [7] (n.b., by definition,
any self-stabilizing algorithm is pseudo-stabilizing, but the reverse is not necessarily
true). Essentially, these two properties express the ability of a distributed algorithm to
withstand transient faults, i.e., faults (such as memory corruption) that occur at an
unpredictable time, but do not result in a permanent hardware damage and whose
frequency is low. Indeed, starting from an arbitrary configuration (which may be the

2

result of transient faults), a self-stabilizing algorithm makes a distributed system reach
within a finite time a configuration from which all possible execution suffixes satisfy
the intended specification. In contrast, an algorithm is pseudo-stabilizing if all its
executions, starting from arbitrary configurations, have a suffix satisfying the intended
specification. Up to now, these two stabilizing properties have been mainly studied
in static systems, i.e., assuming a network with a fixed topology. In highly dynamic
networks, the design of stabilizing solutions is challenging since the network topology
continuously evolves over time. Notably, stabilization should be achieved in spite of
the high-frequency of topological changes occurring throughout the convergence.

As shown by the present paper, pseudo- (and so self-) stabilization is often simply
impossible to achieve when the network dynamics is too erratic. Furthermore, when sta-
bilization is possible, the convergence time of stabilizing solutions is often unboundable.
In such cases, speculation [8] makes sense. Indeed, an algorithm is speculative whenever
it satisfies its requirements for all executions, but also exhibits significantly better
performances in a subset of more probable executions. Speculative self-stabilization
has been initially investigated in static networks [9]. Yet, recently, speculative self-
stabilizing solutions for dynamic networks have been proposed [5]: when convergence
time cannot be bounded in a very general class, an important subclass where it can be
is exhibited.

Contribution. We study conditions under which stabilizing leader election can be
solved in highly dynamic identified message passing systems. We model the network
dynamics using the dynamic graph (DG) paradigm [2]. Moreover, we assume that
processes can synchronously communicate using local broadcast primitives: at each
round, every process can send a common message to its unknown set of current
neighbors (if any).

Due to the intrinsic absence of termination detection, stabilizing leader election is
close to the eventual leader election problem Ω [10] studied in crash-prone partially
synchronous, yet static and fully connected, systems. In this problem, all correct
processes should eventually always select the same correct process as leader [11]. We
propose here to study the stabilizing leader election problem in DG classes defined
by analogy with the classes of partially synchronous systems investigated for Ω. In
those latter classes, the notions of source, sink, and timeliness are central. We first
accommodate these concepts to the DG paradigm. Roughly speaking, in a DG, a source
is a process which is infinitely often able to reach all other ones by flooding. It is a
quasi-timely source if, using flooding, it can infinitely often reach all other processes
within some bounded time ∆. Finally, a timely source is a source that can always reach
(still by flooding) all other processes within some bounded time ∆. Conversely, a sink
is a process which is infinitely often reachable by all other ones using flooding. Quasi-
timely and timely sinks are defined similarly to the quasi-timely and timely sources.
Using these notions, we consider a taxonomy of nine DG classes—the hierarchy among
all classes of this taxonomy is presented in Figure 2, page 6:

• J1,∗, J
Q
1,∗(∆), and J B

1,∗(∆) contain every DG where at least one (a priori unknown)
process is a source, a quasi-timely source, and a timely source, respectively.

3

JB
1,∗(∆)

J
Q
1,∗(∆)

J1,∗

JB
∗,1(∆)

J
Q
∗,1(∆)

J∗,1

JB
∗,∗(∆)

J
Q
∗,∗(∆)

J∗,∗

Fig. 1 Stabilizing leader election: summary of the results. Pseudo- (and so self-) stabilizing leader
election is impossible in the red area. Self- (and so pseudo-) stabilizing leader election is possible in
the green area. In the yellow area, only pseudo-stabilization can be achieved.

• J∗,1, J
Q
∗,1(∆), and J B

∗,1(∆) contain every DG where at least one (a priori unknown)
process is a sink, a quasi-timely sink, and a timely sink, respectively.

• J∗,∗, J
Q
∗,∗(∆), and J B

∗,∗(∆) (the three classes studied in [5]) contain every DG where
all processes are sources, quasi-timely sources, and timely sources, respectively.

The ability to solve a global task such as leader election in a given system inherently
depends on the ability to broadcast information. So, it seems natural to study systems
with sources achieving various timeliness guarantees (e.g., simple sources, quasi-timely
sources, and timely sources). Furthermore, the fact that sinks are the obvious dual
of sources is the main motivation to study systems containing some of them. Then,
encompassing worst-case executions, where for example there is a unique source, may
seem to be irrelevant in practice. However, the fact that a system stabilizes to a unique
leader even under such weak conditions makes it more resilient. Indeed, to make the
election fail, the system should suffer from numerous and frequent erratic topological
changes in order to violate these weak dynamic assumptions. Moreover, after the end
of such a disastrous period, the system will likely elect a leader again within a short
period.

It is in this spirit that we study the possibility of designing stabilizing leader
election in those classes. (Our results are summarized in Figure 1.) From [5], we already

know that self-stabilizing leader election can be achieved in J∗,∗, J
Q
∗,∗(∆), and J B

∗,∗(∆).
However, in this paper, we show that those three classes are actually the only ones of
our taxonomy where it is possible. Furthermore, we establish that in the remaining
classes, even pseudo-stabilizing leader election is not possible, except in the class
J B
1,∗(∆), i.e., any DG with at least one timely source. For this latter class, we propose

a pseudo-stabilizing leader election algorithm, called Algorithm LE . We also show that,
in general, convergence time of pseudo-stabilizing leader election algorithms cannot be
bounded in J B

1,∗(∆). Nevertheless, we show that Algorithm LE is speculative in the

sense that its convergence time in J B
∗,∗(∆) ⊂ J B

1,∗(∆) is at most 6∆ + 2 rounds.

4

Related Work. Ensuring convergence in highly dynamic networks regardless of the
initial configuration is challenging, even impossible in many cases [12]. However, per-
haps surprisingly, a number of self-stabilizing works, e.g., [13–15] (n.b., [13] deals with
the leader election problem) are advertised as solutions suited for dynamic networks.
Actually, those works propose self-stabilizing algorithms dedicated to arbitrary net-
work topologies and do not propose any specific patch to handle topological changes.
Consequently, they tolerate topological changes only if they are eventually detected
locally at involved processes and if the frequency of such events is low enough. Indeed,
in such a case, topological changes can be seen as transient faults. Furthermore,
several approaches derived from self-stabilization, e.g., superstabilization [16] and grad-
ual stabilization [17], aims at additionally providing countermeasures to efficiently
treat topological changes when they are both spatially and timely sparse (i.e., tran-
sient). Overall, all these approaches become totally ineffective when the frequency of
topological changes drastically increase.

To the best of our knowledge, a few self-stabilizing works [5, 18–20] deal with a
highly dynamic context. The present paper is actually a follow-up of [5], in which we
propose self-stabilizing solutions for the leader election in three important classes of
dynamic networks, namely J∗,∗, J

Q
∗,∗(∆), and J∗,∗. Here we complete the panorama

by studying more general classes. All other aforementioned works, i.e., [18–20], use
widely different models and assumptions than ours.

In [18], authors consider the self-stabilizing exploration of a highly dynamic ring by
a cohort of synchronous robots endowed with visibility sensors, moving actuators, yet
no communication capabilities. Contrary to [18], our classes never enforce the network
to have a particular topology at a given time.

In [19], Cai et al. tackles the self-stabilizing leader election problem in highly dynamic
systems through the population protocol model. In this model, communications are
achieved by atomic rendezvous between pairs of anonymous processes, where ties are
non deterministically broken. The local broadcast primitive we use here is weaker.
Moreover, authors assume global fairness, meaning that every configuration which is
infinitely often reachable is actually infinitely often reached. We do not make such an
assumption here.

Finally, Dolev et al. in [20] assume that the system is equipped with a routing
algorithm which allows any two processes to communicate, provided that the sender
knows the identifier of the receiver. This black-box protocol abstracts the dynamics of
the system: the network dynamics makes it fair lossy, non-FIFO, and duplication-prone.
Moreover, the channel capacity is assumed to be bounded. Based on this weak routing
algorithm, they build a stronger routing protocol which is reliable, FIFO, and which
prevents duplication. Again, the communication primitive we assume is drastically
weaker. As a matter of facts, in several classes studied here all-to-all communication is
simply impossible.

Roadmap. In Section 2, we present our taxonomy of dynamic graphs classes and
the computational model. In the same section, we define the two stabilizing variants
we will consider as well as the leader election problem. Section 3 is dedicated to

5

our impossibility results and lower bounds. Our speculative pseudo-stabilizing leader
election algorithm for J B

1,∗(∆) is proposed in Section 4 and proven in Section 5. We
make concluding remarks in Section 6.

2 Preliminaries

2.1 Dynamic Graphs

We adopt the formalism of dynamic graphs defined in [2]. For any digraph G, we denote
by V (G) its vertex set and by E(G) its set of oriented edges. A dynamic graph G with
vertex set V (DG for short) is an infinite sequence of loopless digraphs G1, G2, ... such
that V (Gi) = V , for every i ∈ N∗. For every i ∈ N∗, we denote by Gi▷ the dynamic
graph Gi, Gi+1, ... with vertex set V , i.e., the suffix of G starting from position i.

A journey J can be thought as a path over time from a starting vertex p1 to a
destination vertex qk, i.e., J is a finite non-empty sequence of pairs J = (e1, t1), (e2, t2),
..., (ek, tk) where ∀i ∈ {1, . . . , k}, ei = (pi, qi) ∈ E(Gti) and i < k ⇒ qi = pi+1 ∧ ti <
ti+1. Vertices p1 and qk are respectively called the initial and final extremities of J .
We respectively denote by departure(J) and arrival(J) the starting time t1 and the
arrival time tk of J . The temporal length of J is equal to arrival(J)−departure(J)+1.
A journey from p to q is a journey whose initial and final extremities are p and q,
respectively. We denote by JG(p, q) the set of journeys from p to q in G. We let

G

⇝

be the binary relation over V such that p
G

⇝ q if and only if p = q or there exists a
journey from p to q in G. The temporal distance from p to q in G, d̂G(p, q), is defined

as follows: d̂G(p, q) = 0 if p = q, d̂G(p, q) = min{arrival(J) : J ∈ JG(p, q)} otherwise
(by convention, we let min ∅ = +∞). Roughly speaking, the temporal distance from p
to q in G gives the minimum timespan for p to reach q in G. For all previous notations,
we omit the subscript G when it is clear from the context.

Classes. A class of dynamic graphs is defined as a particular set of dynamic graphs. A
DG class C is said to be recurring if and only if for every DG G ∈ C, we have ∀i ∈ N∗,
Gi▷ ∈ C; in other words, every recurring DG class is suffix-closed. We consider the nine
classes of recurring DGs defined in Table 1.

By definition, for every ∆ ∈ N∗, we have the inclusions depicted in Figure 2.
Furthermore, Theorem 1 states that there is no inclusion between any other pair of
classes. In particular, this means that inclusions in Figure 2 are strict.

J B
∗,∗(∆) JQ

∗,∗(∆) J∗,∗

J B
1,∗(∆) JQ

1,∗(∆) J1,∗

J B
∗,1(∆) JQ

∗,1(∆) J∗,1

Fig. 2 The hierarchy of studied DG classes. A → B means that A ⊂ B.

6

Classes with a source

Class J1,∗

At least one vertex, called a (temporal) source, can reach all the other
vertices infinitely often through a journey:

G ∈ J1,∗ iff ∃src ∈ V, ∀p ∈ V, ∀i ∈ N∗, src
Gi▷
⇝ p

Class JQ
1,∗(∆)

At least one vertex, called a quasi-timely source, is infinitely often at
temporal distance at most ∆ from each other vertex:

G ∈ J
Q
1,∗(∆) iff ∃src ∈ V, ∀p ∈ V, ∀i ∈ N∗, ∃j ≥ i, d̂Gj▷

(src, p) ≤ ∆

Class JB
1,∗(∆)

At least one vertex, called a timely source, is always at temporal distance
at most ∆ from all other vertices:

G ∈ JB
1,∗(∆) iff ∃src ∈ V, ∀p ∈ V, ∀i ∈ N∗, d̂Gi▷

(src, p) ≤ ∆

Classes with a sink

Class J∗,1

At least one vertex, called a (temporal) sink, can be reached by all the
other vertices infinitely often through a journey:

G ∈ J∗,1 iff ∃snk ∈ V, ∀p ∈ V, ∀i ∈ N∗, p
Gi▷
⇝ snk

Class JQ
∗,1(∆)

Every vertex is infinitely often at temporal distance at most ∆ from at
least one given vertex, called a quasi-timely sink:

G ∈ J
Q
∗,1(∆) iff ∃snk ∈ V, ∀p ∈ V, ∀i ∈ N∗, ∃j ≥ i, d̂Gj▷

(p, snk) ≤ ∆

Class JB
∗,1(∆)

Every vertex is always at temporal distance at most ∆ of at least one
given vertex, called a timely sink:

G ∈ JB
∗,1(∆) iff ∃snk ∈ V, ∀p ∈ V, ∀i ∈ N∗, d̂Gi▷

(p, snk) ≤ ∆

Classes where every vertex is both a sink and a source

Class J∗,∗
Every vertex can always reach all the others through a journey:

G ∈ J∗,∗ iff ∀p ∈ V, ∀q ∈ V, ∀i ∈ N∗, p
Gi▷
⇝ q

Class JQ
∗,∗(∆)

Every vertex is infinitely often at temporal distance at most ∆ from
every other vertex:

G ∈ J
Q
∗,∗(∆) iff ∀p, q ∈ V, ∀i ∈ N∗, ∃j ≥ i, d̂Gj▷

(p, q) ≤ ∆

Class JB
∗,∗(∆)

Every vertex is always at temporal distance at most ∆ from all other
vertices:

G ∈ JB
∗,∗(∆) iff ∀p ∈ V, ∀q ∈ V, ∀i ∈ N∗, d̂Gi▷

(p, q) ≤ ∆

Table 1 The studied recurring DG classes (∆ ∈ N∗ and G is a dynamic graph with vertex set V).

JB
1,∗(∆) JB

∗,∗(∆) JB
∗,1(∆) JQ

1,∗(∆) JQ
∗,∗(∆) JQ

∗,1(∆) J1,∗ J∗,∗ J∗,1

JB
1,∗(∆) — ⊈ (1) ⊈ (1) ⊂ ⊈ (1) ⊈ (1) ⊂ ⊈ (1) ⊈ (1)

JB
∗,∗(∆) ⊂ — ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂

JB
∗,1(∆) ⊈ (1) ⊈ (1) — ⊈ (1) ⊈ (1) ⊂ ⊂ ⊈ (1) ⊈ (1)

JQ
1,∗(∆) ⊈ (2) ⊈ (1) ⊈ (1) — ⊈ (1) ⊈ (1) ⊂ ⊈ (1) ⊈ (1)

JQ
∗,∗(∆) ⊈ (2) ⊈ (2) ⊈ (2) ⊂ — ⊂ ⊂ ⊂ ⊂

JQ
∗,1(∆) ⊈ (1) ⊈ (1) ⊈ (2) ⊈ (1) ⊈ (1) — ⊈ (1) ⊈ (1) ⊂

J1,∗ ⊈ (3) ⊈ (1) ⊈ (1) ⊈ (3) ⊈ (1) ⊈ (1) — ⊈ (1) ⊈ (1)

J∗,∗ ⊈ (3) ⊈ (3) ⊈ (3) ⊈ (3) ⊈ (3) ⊈ (3) ⊂ — ⊂

J∗,1 ⊈ (1) ⊈ (1) ⊈ (3) ⊈ (1) ⊈ (1) ⊈ (3) ⊈ (1) ⊈ (1) —

Fig. 3 Inclusion relations between classes (from rows to columns).

7

Theorem 1. ∀∆ ∈ N∗, the inclusions given in Figure 2 hold. These inclusions are
strict and there is no inclusion between any other pair of classes.

Proof. First, for every ∆ ∈ N∗, the inclusions in Figure 2 hold by definition of the
classes. Now, regarding non-inclusions, the proof is split into three parts. Each number
in Figure 3 refers to one of the part.

Let ∆ be a positive integer and V = {v1, ..., vn} be a set of n > 1 vertices.

⊈ (1) This first part of the proof compares DGs with a source (resp. a sink) against
all to all DGs.

Let S = (V,ES) be an out-star graph, i.e., ES = {(v1, vi) : i ∈ {2, ..., n}}. Let
T = (V,ET) be an in-star graph, i.e., ET = {(vi, v1) : i ∈ {2, ..., n}}. See Figure 4
for illustrative examples.
We consider the dynamic graph G(1S) = S, S, ... with vertex set V .

Obviously, G(1S) ∈ J1,∗,J
Q
1,∗(∆) and J B

1,∗(∆), since at any time, v1 can directly
reach any other vertex using one single edge.
But G(1S) ̸∈ J∗,∗,J

Q
∗,∗(∆),J B

∗,∗(∆), indeed v1 can never be reached.

Moreover, by transitivity, G(1S) ̸∈ J∗,1,J
Q
∗,1(∆),J B

∗,1(∆). Hence, the non-
inclusions between those classes.
Similarly, we consider the dynamic graph G(1T) = T, T, ... with vertex set V .

Obviously, G(1T) ∈ J∗,1,J
Q
∗,1(∆),J B

∗,1(∆). But, G(1T) ̸∈ J∗,∗,J
Q
∗,∗(∆),J B

∗,∗(∆).

Moreover, by transitivity, G(1T) ̸∈ J1,∗,J
Q
1,∗(∆),J B

1,∗(∆).
⊈ (2) This second part of the proof compares classes with a quasi-bounded distance

against classes with a bounded distance (i.e., B against Q).
Let G(2) = G1, G2, ... be the dynamic graph with vertex set V where ∀i ∈ N∗,

if ∃j ∈ N such that i = 2j , then Gi is fully connected; Gi has no edge otherwise.
Obviously, G(2) ∈ JQ

∗,∗(∆),JQ
1,∗(∆),JQ

∗,1(∆), since at position 2j , every vertex
can directly reach every other one using one single edge.

But, G(2) ̸∈ J B
∗,∗(∆),J B

∗,1(∆),J B
1,∗(∆) because waiting for the next index, which

is a power of 2, is longer and longer and so cannot be bounded.
⊈ (3) The third part of the proof compares recurrent dynamic graphs against dynamic

graphs with bounded or quasi-bounded distances.
Consider the following edges: ei = (vi, vi+1), for i = 1, ..., n−1 and en = (vn, v1).

Notice that those edges shape a unidirectional ring.
Let G(3) = G1, G2, ... be the dynamic graph with vertex set V , where ∀i ∈ N∗,

Gi contains 0 or one edge; precisely, for every j ∈ N, G2j contains the edge
e(j mod n)+1; Gi contains no edge otherwise (i.e., when i cannot be written as a
power of 2).
Obviously, G(3) ∈ J∗,∗,J∗,1,J1,∗, because every edge of the ring always

eventually appears.
However, G(3) ̸∈ JQ

∗,∗(∆),JQ
∗,1(∆),JQ

1,∗(∆). Indeed, the temporal length of
journeys linking any two non-consecutive vertices increases over time and so
cannot be bounded. Moreover, by transitivity, G(3) ̸∈ J B

∗,∗(∆),J B
∗,1(∆),J B

1,∗(∆).

8

. . .

v1

. . .

v1

Fig. 4 An out-star graph S and an in-star graph T .

2.2 Computational Model

We consider the computational model defined in [2, 21]. We assume a distributed
system made of a set V of n processes. Each process has a local memory, a local
sequential and deterministic algorithm, and message exchange capabilities. We assume
that each process p has a unique identifier (ID for short).The ID of p is denoted by
id(p) and taken in an arbitrary domain IDSET totally ordered by <. Processes are
assumed to communicate by message passing through an interconnected network that
evolves over the time. The dynamic topology of the network is then conveniently
modeled by a dynamic graph G = G1, G2, ... with vertex set V , i.e., the set of processes.
Processes execute their local algorithms in synchronous rounds. For every i ∈ N∗, the
communication network at Round i is defined by Gi, i.e., the graph at position i in
G. ∀p ∈ V , ∀i ∈ N∗, we denote by IN (p)i = {q ∈ V : (q, p) ∈ E(Gi)} the set of p’s
incoming neighbors at Round i. IN (p)i is assumed to be unknown by p, whatever be
the value of i.

A distributed algorithm A is a collection of n local algorithms A(p), one per process
p ∈ V (n.b., different processes may have different codes). At each round, the state of
each process p ∈ V in A is defined by the values of its variables in A(p). Some variables
may be constant in which case their values are predefined. Since any algorithm A is
designed for a given class of dynamic graphs C, we assume the following property of
well-formedness : for all G,G′ ∈ C with vertex sets V and V ′ respectively, if |V | = |V ′|,
then every process p ∈ V ∩ V ′ executes the same local program A(p) (in particular,
with the same set of local states) whether p is running in G or G′. This property claims
that an algorithm depends only on (1) characteristics that are global to the class in
which it runs (e.g., ∆ for J B

1,∗(∆)), (2) process identifiers, and (3) maybe the number
of processes.

A configuration of A for V is a vector of n components γ = (s1, s2, . . . , sn), where
s1 to sn represent the states of the processes in V . Let γ1 be the initial configuration
of A for V . For any (synchronous) round i ≥ 1, the system moves from the current
configuration γi to some configuration γi+1, where γi (resp. γi+1) is referred to as
the configuration at the beginning (resp. end) of Round i. Such a move is atomically
performed by every process p ∈ V according to the following three steps, defined in its
local algorithm A(p):

1. p sends a message consisting of all or a part of its local state in γi using the
primitive SEND(),

9

2. using Primitive RECEIVE(), p receives all messages sent by processes in IN (p)i,
and

3. p computes its state in γi+1.

An execution of a distributed algorithm A in the dynamic graph G = G1, G2, ... is
an infinite sequence of configurations γ1, γ2, . . . of A for V such that ∀i > 0, γi+1 is
obtained by executing a synchronous round of A on γi based on the communication
network at Round i, i.e., the graph Gi.

2.3 Stabilizing Leader Election in Recurring DG Classes

Research on self-stabilization in highly dynamic identified message-passing systems
has been initiated in [5]. Notably, [5] adapted the definition of self-stabilization to
handle recurring DG classes. We recall this definition below. Next, we accommodate
the definition of pseudo-stabilization [7], that was initially defined in the static context,
to recurring DG classes. Notice that, in [7], Burns, Gouda, and Miller emphasize that
the only difference between the two definitions actually relies on the use of “does not”
instead of ”cannot”. We further discuss this issue in this section. Finally, we define
what we mean by stabilizing leader election.

Stabilization in Recurring DG Classes. Let A be a distributed algorithm, SP be
a specification (i.e., a predicate over configuration sequences), and C be a recurring
DG class.

Definition 1 (Self-stabilization). An algorithm A is self-stabilizing for SP on C if and
only if for every set of processes V , there exists a subset of configurations L of A for
V , called legitimate configurations, such that for every G ∈ C with set of processes V ,

1. for every configuration γ of A for V , every execution of A in G starting from γ
contains a legitimate configuration γ′ ∈ L (Convergence), and

2. for every legitimate configuration γ ∈ L and every execution e in G starting from
γ, SP (e) holds (Correctness).

The length of the stabilization phase of an execution e is the length of its longest
prefix containing no legitimate configuration. The stabilization time in rounds is the
maximum length of a stabilization phase over all possible executions.

Basically, a self-stabilizing system, starting from an arbitrary configuration, eventu-
ally reaches a configuration from which it cannot deviate from its intended specification.
In the context of static networks, Burns et al. have defined [7] a weak variant of
self-stabilization called pseudo-stabilization. Intuitively, regardless the initial configu-
ration of the system, a pseudo-stabilizing system eventually reaches a configuration
from which it does not deviate from its intended specification. In more detail, self-
stabilization requires the system to converge to a (legitimate) configuration from which
all possible execution suffixes satisfy the intended specification, regardless the initial
configuration and despite the adversarial behavior of the environment. In contrast,
pseudo-stabilization just imposes every execution (still starting from any configuration)
to have a correct suffix, i.e., a suffix satisfying the intended specification. Hence, there

10

may exist executions whose correct suffix is only made of configurations for which
there always exists a possible future where the system deviates from its specification.
As a consequence, we cannot in general define a set of legitimate configurations for
pseudo-stabilizing solutions: this notion is irrelevant in pseudo-stabilization. In other
words, in pseudo-stabilization, the fact that the system does deviate from its speci-
fication in a given correct suffix is sometimes due to the “friendly” behavior of the
environment during that suffix.

The difference between self-stabilization and pseudo-stabilization may seem to be
very tight, but is actually fundamental. Indeed, in [7], pseudo-stabilization has been
shown to be strictly stronger than self-stabilization in terms of expressive power. That
is, there are systems and problems for which pseudo-stabilizing solutions do exist but
self-stabilizing ones do not. As a matter of facts, they show that the data-link problem
can be pseudo-stabilizingly, yet not self-stabilizingly, solved in static message passing
systems where the link capacity is unbounded and the process memories are finite.

Below, we give a definition of pseudo-stabilization in the context of recurring DG
classes.

Definition 2 (Pseudo-stabilization). A is pseudo-stabilizing for SP on C if and
only if for every set of processes V , every G ∈ C with set of processes V , and every
configuration γ of A for V , every execution of A in G starting from γ contains a suffix
satisfying SP .

The length of the pseudo-stabilization phase of an execution γ1, γ2, . . . is the
minimum index i such that SP (γi+1, γi+2, . . .) holds. The pseudo-stabilization time
in rounds is the maximum length of a pseudo-stabilization phase over all possible
executions.

Remark 1. By definition, if A is self-stabilizing for SP on C, then A is also pseudo-
stabilizing for SP on C (but the reverse is not necessarily true).

Moreover, the length of the pseudo-stabilization phase is less than or equal to that
of the stabilization phase in a given execution of A; and so are its pseudo-stabilization
and stabilization times.

Stabilizing Leader Election. The leader election problem consists in distinguishing
a single process in the system. In identified networks, the election usually consists in
making the processes agree on one of the identifiers held by processes. The identifier
of the elected process is then stored at each process p as an output variable, denoted
here by lid(p).

In the following, we call fake ID any value v ∈ IDSET (recall that IDSET is the
definition domain of the identifiers) such that v is not assigned as a process identifier
in the system, i.e., there is no process p ∈ V such that id(p) = v. In the stabilizing
context, the output variables lid may be initially corrupted; in particular some of them
may be initially assigned to fake IDs. Despite such fake IDs, the goal of a self-stabilizing
algorithm is to make the system converge to a legitimate configuration γ from which a
unique process is forever adopted as leader by all processes whatever be the execution

11

suffix, i.e., ∃p ∈ V such that ∀q ∈ V, lid(q) = id(p) forever in all possible execution
suffixes starting from γ. The goal of a pseudo-stabilizing algorithm is to ensure the
existence of an execution suffix where a unique process is forever adopted as leader
by all processes. Hence, the leader election specification SPLE can be formulated as
follows: a sequence of configurations γ1, γ2, . . . satisfies SPLE if and only if ∃p ∈ V
such that ∀i ≥ 1, ∀q ∈ V , the value of lid(q) in Configuration γi is id(p).

In the sequel, we say that an algorithm is a self- (resp. pseudo-) stabilizing leader
election algorithm for the recurring DG class C if and only if it is self- (resp. pseudo-)
stabilizing for SPLE on C.

3 Impossibility Results

In this section, we first show impossibility results on self-stabilizing leader election in
DG classes with a source. Then, we show that even pseudo-stabilization is impossible
for the leader election problem in JQ

1,∗(∆), J1,∗, and DG classes with a sink. Finally, we

consider the time complexity issue in J B
1,∗(∆): we show that the pseudo-stabilization

time cannot be bounded in this class. This latter result applies, in particular, to
Algorithm LE presented in Section 4.

All results of this section are based on the notion of indistinguishable executions [10].
The principle of this proof scheme is as follows. First, we assume, by the contradiction,
that a deterministic leader election algorithm has a given property (related to pseudo-
or self- stabilization) in a particular DG class. Then, we consider two sets of processes
of same cardinality that differ by only few processes (in the usual case, they differ by
only one process). We exhibit two particular executions, one for each set, on two well-
chosen DGs of the class. The stabilizing election succeeds in the first one. Moreover, all
or a part of processes common to both sets behave exactly the same in both executions:
we chose the DG and the initial configuration of the second execution in such way that
these processes start with the same local states and receive the same messages at the
same times in both executions; justifying then the term “indistinguishable”. Now, the
behavior of those processes make the stabilizing election fail in the second execution,
leading to a contradiction.

On self-stabilizing leader election in DG classes with a source. We first
show that no deterministic algorithm can solve the self-stabilizing leader election in
DG classes with a source. To that goal, we first introduce some DGs and a helpful
intermediate result (see Lemma 1) that will be used in several impossibility proofs.

Then, we prove the result for Classes J B
1,∗(∆), JQ

1,∗(∆), and J1,∗.

Definition 3. Let PK(X, y) be the digraph with vertex set X and edge set {(p, q) :
p ∈ X \ {y} ∧ q ∈ X ∧ p ≠ q}. PK(X, y) is ”quasi-complete” in the sense that only
links outgoing from y are missing. Let PK(X, y) be the dynamic graph G1, G2, ... such
that |X| ≥ 2, y ∈ X, and ∀i ≥ 1, Gi = PK(X, y).

Remark 2. By definition, every dynamic graph PK(X, y) belongs to J B
1,∗(∆), for

12

every ∆ ∈ N∗. Indeed, all processes, except y, are timely sources that can always reach
all other processes within one round. In contrast, y can never transmit information to
any other process.

The following lemma formally asserts that in PK(V, p), Process p cannot be finally
elected since the other processes have no means to detect that id(p) is not a fake ID.
Indeed, by definition of PK(V, p), they never receive any message from p.

Lemma 1. Let V be a set of at least two processes. Let p ∈ V and ∆ ∈ N∗. Let A be
any deterministic pseudo-stabilizing leader election algorithm for J B

1,∗(∆). Let γ1 be
any configuration of A for V where ∀q ∈ V , lid(q) = id(p).

Then, in the execution e = γ1, γ2, ... of A in PK(V, p), at least one process eventually
modifies the value of its lid variable.

Proof. Assume, by the contradiction, that ∀i ∈ N∗, ∀q ∈ V , we have lid(q) = id(p) in
γi.

Let v be any process such that v /∈ V (in particular, id(v) ̸= id(q), ∀q ∈ V). Let
V ′ = V \ {p} ∪ {v} and γ′

1 be any configuration of A for V ′ such that

1. v has any local state in γ′
1, and

2. ∀q ∈ V ′ \ {v}, the local state of q is the same in γ′
1 and γ1.

The only difference between γ1 and γ′
1 is that p has been replaced by v (with an

arbitrary local state). We now consider the execution e′ = γ′
1, γ

′
2, ... of A in PK(V ′, v)

(recall that PK(V ′, v) ∈ J B
1,∗(∆); see Remark 2).

Claim 1.*: ∀q ∈ V ′ \ {v}, ∀i ∈ N∗, q has the same local state in γ′
i and γi.

Proof of the claim: By induction on i. The base case i = 1 is trivial, by construction
of γ′

1. Let i ≥ 1. By induction hypothesis, ∀q ∈ V ′ \ {v}, q has the same local
state in γ′

i and γi. Let x be any process in V ′ \ {v}. Since by construction
V ′ \{v} = V \{p}, the in-neighborhood of x is V ′ \{v} at the beginning of Round
i both in e and e′. So, x receives the same set of messages and takes the same
state in Round i of both e and e′, since A is deterministic. Hence, ∀q ∈ V ′ \ {v},
q has the same local state in γ′

i+1 and γi+1.

By Claim 1.*, ∀q ∈ V ′ \ {v}, lid(q) is constantly equal to id(p) in e′. Now, p /∈ V ′ (in
other words, id(p) is a fake ID for V ′). So, e′ has no suffix satisfying SPLE : A is not a
pseudo-stabilizing leader election algorithm for J B

1,∗(∆), a contradiction.

The next theorem is a direct consequence of Lemma 1.

Theorem 2. Let ∆ ∈ N∗. There is no deterministic self-stabilizing leader election
algorithm for J B

1,∗(∆).

Proof. We proceed by contradiction. Let A be a deterministic self-stabilizing leader
election algorithm for J B

1,∗(∆). Let V be any set of at least two processes. Let γ1 be

any legitimate configuration of A for J B
1,∗(∆). Let ℓ ∈ V be the elected leader in γ1,

i.e., ∀q ∈ V , lid(q) = id(ℓ) in γ1. Now, consider the execution e = γ1, γ2, ... of A in

13

PK(V, ℓ) (recall that PK(V, ℓ) ∈ J B
1,∗(∆); see Remark 2). By Lemma 1, there exists

a process p ∈ V and a round i ∈ N∗ such that lid(p) = id(ℓ) at the beginning of
Round i, but lid(p) ̸= id(ℓ) at the end of Round i. Hence, SPLE(e) does not hold, a
contradiction to the correctness property of Definition 1.

By inclusion (see Figure 2) and Theorem 1, this impossibility immediately extends

to other classes with a source, i.e., JQ
1,∗(∆) and J1,∗.

Corollary 1. Let ∆ ∈ N∗. There is no deterministic self-stabilizing leader election
algorithm neither for JQ

1,∗(∆) nor J1,∗.

On pseudo-stabilizing leader election in JQ
1,∗(∆) and J1,∗. We now show that

no deterministic algorithm can solve the pseudo-stabilizing leader election in Classes
JQ
1,∗(∆) and J1,∗. We first prove the result for Class JQ

1,∗(∆) (see Theorem 3) and then
extend it to J1,∗ as a direct consequence of Theorem 1 and Figure 2 (see Corollary 2).
Our result is tight since we will propose a deterministic pseudo-stabilizing leader
election algorithm for J B

1,∗(∆) in Section 4.

The result is obtained by contradiction: we consider a set of at least two processes
and construct on the fly an execution together with its associated DG of JQ

1,∗(∆) in
such a way that the leader election fails. We start in a configuration where no leader is
elected and let the pseudo-stabilizing leader election algorithm execute in a complete
graph until a leader is elected (it will happen since the algorithm is assumed to be
pseudo-stabilizing). Once a leader, say ℓ, is elected, we disturb the network by making
the execution continue in PK(V, ℓ) until a process changes its leader (since J B

1,∗(∆) ⊂

JQ
1,∗(∆), Lemma 1 applies) and then switch back to a complete graph, and so on. Hence,

there is never a permanent leader in the execution. Moreover, since the constructed
graph contains infinitely many complete graphs, it trivially belongs to JQ

1,∗(∆), for
every ∆ ∈ N∗. We first define some DG used in the proof.

Definition 4. Let K(X) = (X,E) be the complete digraph, i.e., E = {(p, q) : p, q ∈
X ∧ p ̸= q}. Let K(X) be the dynamic graph G1, G2, ... such that ∀i ≥ 1, Gi = K(X).

Theorem 3. Let ∆ ∈ N∗. There is no deterministic pseudo-stabilizing leader election
algorithm for JQ

1,∗(∆).

Proof. We proceed by the contradiction. Let A be a pseudo-stabilizing leader election
algorithm for JQ

1,∗(∆). Let V be a set of at least two processes.

Claim 3.*: Let γ1 be a configuration of A for V where there is a unique leader ℓ ∈ V .
Let e = γ1, ... be the execution of A starting from γ1 in PK(V, ℓ). Then, there
exists i ∈ N∗ such that ℓ is not the leader in γi.
Proof of the claim: Since J B

1,∗(∆) ⊂ JQ
1,∗(∆), the claim is immediate from Lemma 1.

Let G = G1, G2, ... be a dynamic graph with vertex set V and e = γ1, γ2, ... be the
execution of A in G starting from γ1 constructed as follows: γ1 is a configuration where
there is no unique leader and G1 = K(V); then, ∀i ∈ N∗,

14

1. if there is one and the same leader ℓ in both γi and the configuration γi+1 computed
from γi and Gi, then Gi+1 = PK(V, ℓ);

2. otherwise, Gi+1 = K(V).

By construction and Claim 3.*, e has no suffix satisfying SPLE . Moreover, by Claim
3.* again, G contains K(V) infinitely many times. Hence, G ∈ JQ

1,∗(∆). Consequently,

A is not a deterministic pseudo-stabilizing leader election algorithm for JQ
1,∗(∆), a

contradiction.

From Theorem 1 and Figure 2, we have the following corollary.

Corollary 2. There is no deterministic pseudo-stabilizing leader election algorithm
for J1,∗.

Overall, the previous impossibility result shows that to elect a stable leader, other
processes should regularly receive information from that leader. Otherwise, they even-
tually suspect its identifier to be a fake one. Now, in JQ

1,∗(∆) and J1,∗, no process has

any timeliness guarantee on the messages it broadcasts. In contrast, in J B
1,∗(∆), there

is at least one process (a timely source) which is always able to broadcast information
within bounded time, making then the pseudo-stabilizing leader election possible, as
we will see in Section 4.

On pseudo-stabilizing leader election algorithm in classes with a sink. We
now introduce some DGs allowing us to show that no pseudo-stabilizing leader election
algorithm for J B

∗,1(∆) exists (see Theorem 4). Then, we extend this result to every
class with a sink and self-stabilizing algorithms, as direct consequences of Theorem 1,
Figure 2, and Remark 1 (see Corollary 3).

Definition 5. Let X be any vertex set such that |X| ≥ 2. For every y ∈ X, let S(X, y)
be the digraph with vertex set X, y ∈ X, and edge set {(p, y) : p ∈ X \ {y}}. S(X, y)
is an in-star graph in the sense that y has no outgoing link and each vertex p ̸= y
has only one outgoing link to y, as shown previously in Figure 4. Let S(X, y) be the
dynamic graph G1, G2, ... such that ∀i ≥ 1, Gi = S(X, y).

Remark 3. By definition, every dynamic graph S(X, y) belongs to J B
∗,1(∆), for every

∆ ∈ N∗. Indeed, y is a timely sink that can always be reached from all other processes
in one round. However, y can never transmit information to any other process.

The overall idea of this result is the following: consider a set V of at least three
processes, one process p of V , and the DG S(V, p); then every leaf of the star (at least
two) will eventually choose itself as leader since it has no means to guess any identifier
of some other process. Indeed, using S(V, p), no process, except p, can receive messages.

Theorem 4. Let ∆ ∈ N∗. There is no deterministic pseudo-stabilizing leader election
algorithm for J B

∗,1(∆).

15

Proof. We proceed by the contradiction. Let V be a set of at least three processes
and p ∈ V . Let A be a deterministic pseudo-stabilizing leader election algorithm for
J B
∗,1(∆). Let e = γ1, γ2, ... be any execution of A in S(V, p).

To obtain the contradiction, we show below that for every process q ∈ V \ {p},
eventually lid(q) = id(q) forever in e. Since |V \ {p}| ≥ 2, we immediately obtain the
contradiction.

Let q ∈ V \ {p}. Since A is a deterministic pseudo-stabilizing leader election
algorithm for J B

∗,1(∆), there exists i ∈ N∗ and v ∈ V such that ∀j ≥ i, lid(q) = id(v)
in γj . Assume, by the contradiction, that v ≠ q. Let w be any process such that
w /∈ V (in particular, id(w) ̸= id(x), ∀x ∈ V). Let V ′ = V \ {v} ∪ {w}. Let γ′

1 be any
configuration of A for V ′ such that

1. w has any local state in γ′
1, and

2. ∀x ∈ V ′ \ {w}, the local state of x is the same in γ′
1 and γi.

The only difference between γi and γ′
1 is that v has been replaced by w (with an

arbitrary local state). We now consider the execution e′ = γ′
1, γ

′
2, ... of A in S(V ′, w)

(recall that S(V ′, w) ∈ J B
∗,1(∆); see Remark 3).

Claim 4.*: ∀j ∈ N∗, the local state of q is the same in γ′
j and γi+j−1.

Proof of the claim: By induction on j. The base case j = 1 is trivial, by construction
of γ′

1. Let j ≥ 1. By induction hypothesis, γ′
j(q) = γi+j−1(q). By construction,

the in-neighborhood of q is empty at the beginning of both Round i+ j − 1 in e
and Round j in e′. So, q receives no message and takes the same state in both
Round i+ j − 1 of e and Round j of e′, since A is deterministic. Hence, the local
state of q is the same in γ′

j+1 and γi+j .

By Claim 4.*, lid(q) = id(v) forever in e′. Now, id(v) /∈ V ′ (in other words, id(v)
is a fake ID for V ′). So, e′ has no suffix satisfying SPLE : A is not a deterministic
pseudo-stabilizing leader election algorithm for J B

∗,1(∆), a contradiction.

From Theorem 1, Figure 2 and and Remark 1, we have the following corollary.

Corollary 3. Let ∆ ∈ N∗. There is no deterministic pseudo-stabilizing leader election
algorithm neither for JQ

∗,1(∆) nor J∗,1. There is no deterministic self-stabilizing leader

election algorithm neither for J B
∗,1(∆), JQ

∗,1(∆), nor J∗,1.

On time complexity of deterministic pseudo-stabilizing leader election
in J B

1,∗(∆). Below, we show that the length of the pseudo-stabilization phase of

any deterministic pseudo-stabilizing leader election algorithm for J B
1,∗(∆) cannot be

bounded.

Theorem 5 is still shown by contradiction: we assume the length of the pseudo-
stabilization phase of some pseudo-stabilizing algorithm is bounded by some function
with parameters n and ∆, f(n,∆). Then, we consider an execution that begins in an
arbitrary configuration while the network is complete (see Definition 4). We assume
the network remains complete until the end of Round f(n,∆). By hypothesis, a leader,
say ℓ, is elected at that time. Yet, we disturb the system by making the execution

16

continue in the graph PK(V, ℓ). Now, on the one hand, we know (from Lemma 1) that
a process will eventually change its leader, falsifying the specification after Round
f(n,∆); and, on the other, any DG starting with a finite number of complete graphs
followed by PK(V, ℓ) belong to J B

1,∗(∆). Hence, we obtain the contradiction.

Theorem 5. Let ∆ ∈ N∗ and n ≥ 2. Let A be a deterministic pseudo-stabilizing leader
election algorithm for J B

1,∗(∆). There exists no function f : N∗ ×N∗ → N such that

∀G ∈ J B
1,∗(∆) with a vertex set of n processes, the length of the pseudo-stabilization

phase of every execution of A in G is less than or equal to f(n,∆).

Proof. Assume by the contradiction that such a function f exists. By definition (see
Definition 4), K(V) ∈ J B

1,∗(∆). Let γ1, γ2, ... be any execution of A in K(V). Let
i = f(n,∆) + 1. By hypothesis, there exists ℓ ∈ V such that ∀p ∈ V , γi(p).lid = id(ℓ).

Let e be the execution of A in PK(V, ℓ) starting from γi. By Lemma 1, at least one
process eventually modifies the value of its lid variable in e (this in particular means
that SPLE(e) does not hold).

Now, G = (K(V))i−1,PK(V, ℓ), i.e., the sequence made of i − 1 graphs K(V)
followed by the sequence of graphs in PK(V, ℓ), is a dynamic graph with vertex set V
that belongs to J B

1,∗(∆). Moreover, e′ = γ1, γ2, ..., γi−1, e, i.e., the sequence made of
γ1, γ2, ..., γi−1 followed the sequence of configurations in e, is an execution of A in G
where SPLE does not hold. Hence, the length of the pseudo-stabilization phase in e′ is
greater than f(n,∆), a contradiction.

4 Pseudo-stabilizing Leader Election in J B
1,∗(∆)

Overview. Algorithm LE , whose code is given in Algorithm 1, is a pseudo-stabilizing
leader election algorithm for J B

1,∗(∆). Its goal is to elect what we call a stable process.
Intuitively, a process p is stable if eventually all other processes receive (maybe
indirectly) information about p at least every ∆ rounds.

Basically, in the algorithm all processes initiate a broadcast at each round. So, since
there exist timely sources in Class J B

1,∗(∆), there are stable processes in the system,
namely the timely sources themselves.

To evaluate the stability of a process p, we use a so-called suspicion counter. The
suspicion counter of p is maintained by p itself and is incremented each time p learns
that some other process does not consider it as stable. In the following, we call suspicion
value of p the current value of the suspicion counter of p.

Due to initial inconsistencies, a suspicion counter may be reset once during the
first round. Yet, after the first round, each counter is monotonically nondecreasing.
Moreover, the counter of each timely source is eventually constant since it is stable, by
definition. Finally, each process aims at electing a process with the minimum suspicion
value (we use identifiers to break ties) since such a process will be a stable process.

17

Algorithm 1: Algorithm LE , code for each process p

Inputs: ∆ ∈ N∗ : upper bound on the temporal distance from a timely source
to any other process

id(p) ∈ IDSET : ID of p

Type: MapType : map containing tuples of the form ⟨id, susp, ttl⟩ ∈ IDSET ×N× {0, . . . ,∆}

Local Variables:
lid(p) ∈ IDSET : ID of the leader
Lstable(p) ∈ MapType : locally stable processes for p
Gstable(p) ∈ MapType : globally stable processes collected by p
msgs(p) : set containing records of the form ⟨id, LSPs, ttl⟩, where

⟨id, LSPs, ttl⟩ ∈ IDSET × MapType × {0, . . . ,∆}

Macro: minSusp(p) = min{Gstable(p)[q].susp : q ∈ Gstable(p)}

1: Repeat Forever

2: SEND({msg ∈ msgs(p) : msg.ttl > 0 ∧ msg.id ∈ msg.LSPs})
3: mailbox := RECEIVE()

4: if ⟨id(p),−,∆⟩ /∈ Lstable(p) then insert ⟨id(p), 0,∆⟩ in Lstable(p)
5: if ⟨id(p),−,∆⟩ /∈ Gstable(p) ∨ Gstable(p)[id(p)].susp ̸= Lstable(p)[id(p)].susp then

6: insert Lstable(p)[id(p)] in Gstable(p)

7: forall id ∈ Lstable(p) do

8: if id ̸= id(p) ∧ Lstable(p)[id].ttl ̸= 0 then Lstable(p)[id].ttl − −

9: forall id ∈ Gstable(p) do

10: if id ̸= id(p) ∧ Gstable(p)[id].ttl ̸= 0 then Gstable(p)[id].ttl − −

11: forall records msg = ⟨id, LSPs, ttl⟩ in a message of mailbox do

12: if id ̸= id(p) then

13: if ⟨id,−, ttl⟩ /∈ msgs(p) then insert msg = ⟨id, LSPs, ttl⟩ in msgs(p)

14: if ⟨id,−,−⟩ /∈ Lstable(p) ∨ (
〈

id,−, ttl′
〉

∈ Lstable(p) with ttl′ < ttl) then

15: insert ⟨id, LSPs[id].susp, ttl⟩ in Lstable(p);

16: forall
〈

id′, susp,−
〉

∈ LSPs : id′ ̸= id(p) do

17: insert
〈

id′, susp,∆
〉

in Gstable(p)

18: if id(p) /∈ LSPs then Lstable(p)[id(p)].susp + +; Gstable(p)[id(p)].susp + +;

19: forall id ∈ Lstable(p) do

20: if Lstable(p)[id].ttl = 0 then remove the tuple associated to id in Lstable(p)

21: forall id ∈ Gstable(p) do

22: if Gstable(p)[id].ttl = 0 then remove the tuple associated to id in Gstable(p)

23: forall msg ∈ msgs(p) do

24: if msg.ttl = 0 ∨ msg.id /∈ msg.LSPs then remove msg from msgs(p)
25: else msg.ttl − −

26: insert ⟨id(p), Lstable(p),∆⟩ in msgs(p)

27: lid(p) := min{id ∈ Gstable(p), Gstable(p)[id].susp = minSusp(p)}

To implement this principle, each process p maintains four variables: lid(p), msgs(p),
Lstable(p), and Gstable(p). Variable lid(p) is the output of the algorithm, it eventually
contains the identifier of the elected process. The three other variables are more complex
data structures. Basically, Process p stores in msgs(p) the messages that it will send
at the beginning of the next round; see Line 2. Lstable(p) and Gstable(p) are used to
detect stable processes. They are both of type MapType.

Type MapType. The main objective of Algorithm LE is to identify a set of stable
processes. To achieve this, processes exchange information about each process they
heard about. This information is stored in data structures of type MapType, i.e., maps
containing tuples of three elements:

18

• an identifier id ∈ IDSET ,
• a natural number susp, representing the (maybe outdated) suspicion value of the
process identified by id, and

• a timer value ttl ∈ {0, . . . ,∆} (ttl stands for ”time to live”).

A map of type MapType is indexed by the first element id of each tuple it contains.
So, there exists at most one tuple ⟨id,−,−⟩ in any variable of type MapType, where
”−” is a wildcard, i.e., ”−” is any possible value. (For example, in Line 13, ⟨id,−, ttl⟩
represents any tuple with id and ttl as first and third fields, whatever the value of
the second field is.) We simply denote by M [id] the tuple of index id in the map M .
Moreover, for sake of simplicity, we write id ∈ M to mean that the tuple M [id] exists,
i.e., M contains a tuple of index id: ⟨id,−,−⟩ ∈ M ; see Line 7 for example. Of course,
insertion and removal functions maintain the uniqueness of each index in the map. In
particular, if a tuple ⟨id, s, t⟩ is inserted into the map M while M [id] already exists,
M [id] is just refreshed with the new values s and t.

Locally Stable Processes. Every process p stores into its Lstable(p) variable
information — precisely, an identifier, a suspicion value, and a timer value — for each
process that is locally stable at p, i.e., for each process q that p currently considers as
a candidate for the leader election because it receives information from q at most ∆
rounds ago.

Globally Stable Processes. For every process p, its Gstable(p) variable contains
information — i.e., tuples made of an identifier, a suspicion value, and a timer value
— related to globally stable processes, meaning processes that are locally stable at any
process (and so not only at p). Eventually all stable processes (in particular, the timely
sources) should forever belong to Gstable(p), for every process p. Moreover, at each
round every process selects the value of its output lid(p) among identifiers stored into
Gstable(p). Precisely, p chooses an ID in Gstable(p) associated with the minimum
suspicion value (we use IDs to break ties); see Line 27 and Macro minSusp(p).

Messages. Processes exchange information stored into what we call records. Actually, a
record R is a tuple ⟨id, LSPs, ttl⟩, where R.id ∈ IDSET , R.LSPs is of type MapType,
and R.ttl ∈ {0, . . . ,∆} is a timer value. The variable msgs(p) is used to store the
records that will be sent by Process p at the beginning of the next round. Actually,
msgs(p) is a set (and so not a map) meaning in particular that it may contain several
records tagged with the same identifier.

At each round, each process p initiates the broadcast of a record
⟨id(p), Lstable(p),∆⟩ by inserting it into msgs(p); see Line 26. Note that in each record
⟨id(p), Lstable(p),∆⟩ initiated by p, we have id(p) ∈ Lstable(p) (if necessary, id(p) is
added in Lstable(p) at Line 4, and then never removed). Then, the timer in the record
is used to relay the record during ∆ rounds. The goal of this broadcast is to inform
other processes about the current list of processes that are locally stable at p with their
associated suspicion value known by p (n.b., those suspicion values may be outdated).

At each round, received records that should be relayed are collected into msgs(p)
and their associated timer is decremented; see Lines 13 and 25. Only well-formed

19

records R (i.e., satisfying R.id ∈ R.LSPs) with non-zero timer will be sent during the
next round; see Lines 2 and 24. The condition R.id ∈ R.LSPs allows eliminating some
spurious messages. The timer mechanism, in particular, ensures that records tagged
with fake IDs are eventually no more relayed since such records are never initiated.

Management of Lstable(p). Recall that Lstable(p) contains the identifiers and known
suspicion values of processes that are currently considered by p to be locally stable.
First, p always considers itself as a locally stable process. Thanks to Line 4, a tuple
⟨id(p),−,∆⟩ forever belongs to Lstable(p) after the first round (n.b., the suspicion
value of p is never reset after the first round). Then, p supplies Lstable(p) using records
it receives from other processes. Upon receiving a record ⟨id, LSPs, ttl⟩, p inserts the
tuple ⟨id, LSPs[id].susp, ttl⟩ into Lstable(p) if either id does not appear in Lstable(p),
or ttl is greater than the current timer associated to id in Lstable(p); see Lines 14-15.
Notice that LSPs[id].susp is meant to be the suspicion value of the initiator at the
time it started to broadcast the record.

The timer value of each record in Lstable(p) is decremented at each round, except
for the record associated to id(p); see Lines 7-8. Once a timer value has reached 0, the
corresponding record is removed from Lstable(p); see Lines 19-20. Hence, an identifier
id different from id(p) remains in Lstable(p) only if p receives at least every ∆ rounds
a record ⟨id,−,−⟩ initiated by the process whose identifier is id. Notice that, since
records tagged with fake IDs are eventually never more received, they also eventually
vanish from all Lstable maps.

Management of Gstable(p). Similarly to Lstable(p), p always considers itself as
a globally stable process. Thank to Line 5, a tuple ⟨id(p),−,∆⟩ forever belongs to
Gstable(p) after the first round. Then, p supplies Gstable(p) with the map R.LSPs
attached to each record R it receives from other processes. At each round, each identifier
different from id(p) present in a map of some received record is meant to be the
identifier of a locally stable process at some other process. So, it is meant to identify a
globally stable process. Such an identifier and its associated suspicion value is then
stored into Gstable(p) with a timer initialized to ∆; see Lines 16-17.

Similarly to Lstable(p), the timer values of each record in Gstable(p) are decre-
mented at each round; see Lines 9-10. Moreover, every record whose timer value reaches
0 is removed from Gstable(p); see Lines 21-22. Hence, an identifier id different from
id(p) remains in Gstable(p) only if p receives at least every ∆ rounds a record from
some other process notifying that a process identified by id is one of its locally stable
processes. Remark that, since fake IDs eventually vanish from all Lstable maps, fake
IDs also eventually vanish from all Gstable maps.

Suspicion value. To simplify a bit the algorithm design, the suspicion value of
each process p is stored in both Lstable(p)[id(p)].susp and Gstable(p)[id(p)].susp.
So, the values Lstable(p)[id(p)].susp and Gstable(p)[id(p)].susp should be kept equal;
see Lines 5, 6, and 18. Moreover, after the first round, the suspicion value of p is
monotonically nondecreasing.

20

Actually, p increments its suspicion value each time it realizes that it is not part of
the locally stable processes of some other process q, i.e., each time it receives a record
R initiated by q such that id(p) /∈ R.LSPs; see Line 18.

Using the broadcasts it initiates at each round, p aims at continuously propagating
its latest suspicion value to all other processes.

Fake IDs. We have seen that records tagged with fake IDs are eventually no more
sent. Furthermore, by a domino effect, fake IDs are eventually removed from all Lstable
and Gstable maps. Actually, we can prove that no fake ID exists in the system after at
most 4∆ rounds; see Lemma 8 for details.

Pseudo-stabilization. We have seen that every process p collects in Lstable(p) the
list of processes that it currently considers to be locally stable, including itself. In
particular, an identifier id different from id(p) remains in Lstable(p) only if p received
at least every ∆ rounds a record ⟨id,−,−⟩ initiated by the process identified by id.
Hence, if the temporal distance between two processes p and q is always at most ∆,
then eventually id(q) ∈ Lstable(p) forever. A direct consequence of this property is that
the identifier of every timely source eventually constantly belongs to the Lstable map
of every process. Actually, we can show that the identifier of each timely source forever
belongs to any Lstable map after at most 2∆ + 1 rounds; see Lemmas 10 and 11.

Gstable maps are managed similarly to Lstable maps using timers. Each process p
forever appears in its own Gstable map after at most one round. Then, p tries to fill it
with information (including the suspicion value) about the local stable processes at all
other processes. Notice that eventually each received suspicion value is either up to
date or an old one.

Again, since p receives records initiated by each timely source at least every ∆
rounds, almost up-to-date information about the processes locally stable at each
timely source are eventually always present in Gstable(p). Notably, identifiers that are
eventually forever present in Lstable maps of all timely sources, in particular their own
identifiers, are eventually forever present in each Gstable map (actually, after at most
3∆ + 2 rounds by Lemma 12).

Recall that after the first round, the suspicion value of every process is monotonically
nondecreasing. Moreover, the suspicion value of a process p is incremented only when
p receives a record with a list of locally stable processes that does not include its
own identifier. Hence, from the previous discussion, we know that each timely source
only increments its suspicion value a finite number of times. Moreover, eventually all
processes store forever in their Gstable map both the identifiers and the final suspicion
values of all timely sources.

Now, consider a process q whose identifier is infinitely often absent from Gstable(p),
for some process p. In this case, there are infinitely many periods of ∆ rounds where p
receives no record including id(q) into its list of locally stable processes. This means,
in particular, that every timely source broadcasts infinitely many records that do
not include id(q) into the attached list of locally stable processes. Since initiated by
timely sources, such records reach q infinitely often, and consequently the suspicion

21

counter of q grows infinitely often. Moreover, from the previous discussion, if q is also
inserted infinitely often in some Gstable map, then its suspicion value in the map
grows infinitely often.

Overall, the Gstable map of every process eventually forever contains the identifiers
and final suspicion values of all processes (including timely sources) whose suspicion
value is eventually constant. Moreover, every other process which regularly appears
in the map does so with an associated suspicion value that increases again and again.
Now, at the end of each round, each process p selects an identifier in its Gstable map
with the minimum attached suspicion value (the order on identifiers may be used to
break ties). This identifier necessarily corresponds to the one of the processes that
eventually forever appear into all Gstable maps; and eventually all processes agree on
one having the actual minimum suspicion value (the order on identifiers may be used
to break ties). Hence, all processes eventually forever elect the same process.

Speculation. The pseudo-stabilization time of Algorithm LE cannot be bounded in
J B
1,∗(∆) by Theorem 5. However, Algorithm LE is speculative in the sense that its

pseudo-stabilization time in J B
∗,∗(∆) ⊂ J B

1,∗(∆) is bounded. This result is due to the

fact that all processes are timely sources in J B
∗,∗(∆).

In more detail, the suspicion value of each process becomes constant after executing
at most 2∆ + 1 rounds in a DG of J B

∗,∗(∆); see Lemma 12. Then, we can show that
during the next 4∆ rounds, all fake IDs vanish (Lemma 8) and all nodes are inserted
forever into all Gstable maps (Lemma 10) with their final suspicion values (Lemma 16
and Remark 4.(b)). Hence, at the beginning of the next round (i.e., after at most
6∆ + 2 rounds), a unique leader is forever elected by all processes (Theorem 7).

5 Correctness

Let ∆ ∈ N∗. Let G = G1, G2, ... be a dynamic graph with vertex set V of Class J B
1,∗(∆).

To simplify the notations, in the following, we denote by d̂i(p, q) the temporal distance

from Vertex p to Vertex q in G at position i ∈ N∗, i.e., d̂Gi▷
(p, q). All along the proof,

we study a given execution of Algorithm LE in G and we denote this execution by
ex = γ1, γ2, ...

Let i ∈ N∗ and p be a process. If var(p) is a variable of p, we denote by var(p)i
the value of var(p) in Configuration γi, i.e., at the beginning of Round i.

According to the computational model, the step between the configurations γi and
γi+1 is performed on the communication network described by the graph Gi. At the
end of Round i (which is also the beginning of Round i + 1), i.e., in Configuration
γi+1, the variable var(p) takes its next value var(p)i+1.

Remark 4. Let p ∈ V . The following remarks are local observations, directly deduced
from the code of p.

22

(a) If ⟨id(p),−,∆⟩ /∈ Lstable(p), p executes Line 4 and inserts ⟨id(p), 0,∆⟩ into
Lstable(p). Afterwards, this tuple is never removed from Lstable(p) since
Lstable(p)[id(p)].ttl never decreases.
Thus, ∀i > 1, id(p) ∈ Lstable(p)i.

(b) If ⟨id(p),−,∆⟩ /∈ Gstable(p) or Gstable(p)[id(p)].susp ̸= Lstable(p)[id(p)].susp,
p executes Line 6 and inserts Lstable(p)[id(p)] into Gstable(p). Afterwards, this
tuple is never removed from Gstable(p) since Gstable(p)[id(p)].ttl never decreases.
Moreover, each time Lstable(p)[id(p)].susp is incremented, Gstable(p)[id(p)].susp
is incremented too, and conversely; see Line 18.
Thus, ∀i > 1, id(p) ∈ Gstable(p)i and Gstable(p)i[id(p)].susp =

Lstable(p)i[id(p)].susp.
(c) Any record msg such that msg.id /∈ msg.LSPs is never sent; see Line 2. Moreover,

at each round, every process q ∈ V removes such records from msgs(q); Line 24.
Thus, ∀i > 1, ∀msg ∈ msgs(p)i, msg.id ∈ msg.LSPs.

(d) Let i ∈ N∗. p receives a record msg during Round i (i.e., msg is in a message
of its mailbox at Round i) if and only if there exists a process q ∈ IN (p)i such
that msg ∈ msg(q)i (at the beginning of Round i), msg.ttl > 0 and msg.id ∈
msg.LSPs.

Communication Exchanges. We first show some properties on the communication
exchanges between processes. Lemma 2 gives conditions to ensure that a record
msg = ⟨id, LSPs,∆−X⟩ in a message of some process mailbox at Round i has been
effectively produced by the process identified by id at Round i − X − 1. Lemma 3
establishes that the record produced by a given process p at Round i ∈ N∗ (and so

sent at Round i+ 1) is received at Round i+ d̂i+1(p, q) by each process q such that

d̂i+1(p, q) ≤ ∆.

Lemma 2. Let q be a process in V . Let X and i be two integers such that 0 ≤ X < ∆
and i > X + 1. Let msg be a record such that msg.ttl = ∆−X.

If msg ∈ msgs(q)i (i.e., at the beginning of Round i), then msg was initiated
during Round i−X − 1 by a process p ∈ V such that msg.LSPs = Lstable(p)i−X and
msg.id = id(p).

Proof. The fact that if a record msg is initiated (Line 26) by some process p in V during
the k-th round with k ∈ N∗, then msg.id = id(p) and msg.LSPs = Lstable(p)k+1 is
direct from the code (note that msg.LSPs is never modified).

Hence, it remains to show the first part: precisely, we show by induction on
X ∈ {0, ...,∆−1} that ∀q ∈ V , ∀i > X+1, if msg = ⟨id, LSPs,∆−X⟩ is in msgs(q)i
(i.e., in msgs(q) at the beginning of Round i), then msg was initiated by some process
p ∈ V during Round i−X − 1.

Base case (X = 0): Let q ∈ V and i > 1. Assume there exists a record msg ∈ msgs(q)i
such that msg.ttl = ∆.
If a record, msg′, is already in msgs(q)i−1, i.e., at the beginning of Round

i − 1 or if q has received msg′ during Round i − 1 (Line 13), q decrements the

23

associated timer (Line 25) during Round i− 1. Thus, at the beginning of Round i,
the timer associated to msg′ is lower than ∆. Since the timer of msg is ∆, the only
remaining possibility is that msg was initiated by q (Line 26) during Round i− 1.

Induction step (0 < X < ∆): Let q ∈ V and i > X + 1. Assume there exists a record
msg = ⟨id, LSPs,∆−X⟩ ∈ msgs(q)i.

Notice that msg was not initiated by q (Line 26) during Round i− 1, otherwise
the associated timer would be ∆. Thus, there are two cases : either q received msg
during Round i − 1 or msg was already in msgs(q) at the beginning of Round
i− 1. In both cases, q decrements the timer associated to the record (Line 25) at
the end of Round i− 1. So:
(a) Either q receives msg′ = ⟨id, LSPs,∆−X + 1⟩ during Round i−1 and msg′

was sent by some process q′. Thus, msg′ ∈ msgs(q′)i−1.
(b) Or, msg′ = ⟨id, LSPs,∆−X + 1⟩ ∈ msgs(q)i−1.
The induction hypothesis applies in both cases: there is some process p ∈ V such

that id = id(p) that initiatedmsg′ (and somsg) during Round (i−1)−(X−1)−1 =
i−X − 1.

The next corollary follows from Lemma 2 and Remark 4.(d).

Corollary 4. Let q be a process in V . Let X and i be integers such that 0 ≤ X < ∆
and i > X + 1.

If q receives a record msg = ⟨id, LSPs,∆−X⟩ during Round i, then msg was
initiated at Round i−X − 1 by some process p ∈ V such that LSPs = Lstable(p)i−X

and id = id(p).

Lemma 3. ∀p, q ∈ V , ∀i > 1, ∀d ≤ ∆, d̂i(p, q) = d implies that

(a) q receives a record ⟨id(p), Lstable(p)i,∆− d+ 1⟩ during Round i+ d− 1 if q ≠ p;
and

(b) ⟨id(p), Lstable(p)i,∆− d⟩ ∈ msgs(q)i+d.

Proof. By induction on d ∈ {0, ...,∆}.

Base case (d = 0): Let i > 1. Let p, q ∈ V such d̂i(p, q) = 0. Then p = q, by definition.
Process p ends each round, and in particular Round i, by inserting the record
⟨id(p), Lstable(p)i,∆⟩ into msgs(p); see Line 26. Hence, ⟨id(p), Lstable(p)i,∆⟩ ∈
msgs(q)i.

Induction step (0 < d ≤ ∆): Let i > 1. Let p, q ∈ V such d̂i(p, q) = d (n.b., p ≠ q). By
definition, there is a journey J = (e1, t1), ...(ek, tk) ∈ J (p, q) such that t1 ≥ i,

tk = i+ d− 1 and ek = (q′, q) for some q′ ∈ V . Hence, d̂i(p, q
′) = d′ < d̂i(p, q) = d

and we can apply the induction hypothesis to q′: ⟨id(p), Lstable(p)i,∆− d′⟩ ∈
msgs(q′)i+d′ . During every round from Round i+ d′ to Round i+ d− 1, the timer
of this record decreases by one at each round (see Line 25). Hence, since the timer
is equal to ∆−d′ at the beginning of Round i+d′, the timer is equal to ∆−d+1 at
the beginning of Round i+d−1 (indeed, i+d−1− (i+d′) = ∆−d′− (∆−d+1)).

24

Notice that, meanwhile and since ∆ − d + 1 > 0, the record has not been
discarded from msgs(q′) (the first and second fields remaining unchanged).
As ek = (q′, q) is an edge of Gi+d−1 (by definition of J), the timer of the record

(∆ − d + 1) is positive, and id(p) ∈ Lstable(p)i (Remark 4.(a)), Remark 4.(d)
applies: q receives a record msg = ⟨id(p), Lstable(p)i,∆− d+ 1⟩ during Round
i+ d− 1; proving (a).
We now look at the algorithm of q during Round i+ d− 1: it treats the record

msg using Line 13.
If ⟨id(p),−,∆− d+ 1⟩ /∈ msgs(q)i+d−1 then msg is inserted into msgs(q). As

∆− d+ 1 > 0 and id(p) ∈ Lstable(p)i (Remark 4.(a)), its timer is decreased; see
Line 25. Hence, we have ⟨id(p), Lstable(p)i,∆− d⟩ ∈ msgs(q)i+d.
Otherwise, there exists some map M such that ⟨id(p),M,∆− d+ 1⟩ ∈

msgs(q)i+d−1. We can apply Lemma 2 with ”X”= d − 1 ∈ {0, ...,∆ − 1} and
”i”= i+d−1 since i+d−1 > d−1+1: we deduce thatM = Lstable(p)i+d−1−(d−1) =
Lstable(p)i. The conclusion is the same as in the former case, and we are done
with (b).

Properties on Locally and Globally Stable Processes. A process q is memorized
into Lstable(p) at Round i+∆+ 1 (i.e., q ∈ Lstable(p)i+∆+1) if and only if a record
from q was received by p during the time interval {i + 1, ..., i + ∆} (Corollary 5
and Lemma 6). A process q is memorized into Gstable(p) at Round i +∆+ 1 (i.e.,
q ∈ Gstable(p)i+∆+1) if and only if a record ⟨−, LSPs,−⟩ such that id(q) ∈ LSPs
was received by p during the time interval {i+ 1, ..., i+∆} (Lemma 5 and Lemma 7).

Lemma 4. Let i > 1. Let p be a process of V . If no tuple ⟨id,−,−⟩ is inserted in
Lstable(p) by p at Line 15 during ∆ consecutive rounds starting at Round i (i.e., from
Round i to i+∆− 1), then id /∈ Lstable(p)i+∆ or id = id(p).

Proof. Let i > 1 and p ∈ V . Let id ∈ IDSET such that id ̸= id(p). Assume that no
tuple ⟨id,−,−⟩ is inserted into Lstable(p) by p at Line 15 during Round i, ..., i+∆−1.

Since id ̸= id(p), Line 15 is the only way for p to insert ⟨id,−,−⟩ into Lstable(p).
So, if no tuple ⟨id,−,−⟩ exists in Lstable(p)i, we are done.

Otherwise, some tuple ⟨id,−, ttl⟩ exists in Lstable(p)i (i.e., at the beginning of and
during Round i) with ttl ∈ {0, ...,∆}. Now, as ttl ≤ ∆, Lstable(p)[id].ttl necessarily
reaches 0 during Round i+max(0, ttl− 1) since if positive, it decreases by one at each
round (Line 8). Then, the tuple corresponding to id is removed from Lstable(p); see
Line 20. Therefore, no tuple ⟨id,−,−⟩ exists in Lstable(p)i+max(1,ttl). As such tuple
can neither be inserted until Round i+∆, this proves that no tuple ⟨id,−,−⟩ exists
in Lstable(p)i+∆.

From the previous lemma, we have the following corollary.

Corollary 5. Let i > 1. Let p be a process of V . If p receives no record ⟨id,−,−⟩

25

during ∆ consecutive rounds starting at Round i (i.e., from Round i to i + ∆ − 1),
then id /∈ Lstable(p)i+∆ or id = id(p).

The following result about globally stable processes is very similar to the previous
lemma; and so is the proof.

Lemma 5. Let i > 1. Let p be a process of V and id ∈ IDSET . If p receives no
record ⟨−, LSPs,−⟩ with id ∈ LSPs during ∆ consecutive rounds starting from Round
i (i.e., from Round i to i+∆− 1), then id /∈ Gstable(p)i+∆ or id = id(p).

Proof. Let i > 1, p ∈ V , and id be a process identifier distinct from id(p). Assume
that p receives no record ⟨−, LSPs,−⟩ with id ∈ LSPs from Round i to i+∆− 1.

The only way to insert a tuple ⟨id,−,−⟩ into Gstable(p) is by Line 6 (this inserts
Lstable(p)[id(p)] but Lstable(p)[id(p)] .id = id(p) ̸= id) or by receiving some record
⟨id′, LSPs,−⟩ with id′ ≠ id(p) (see Line 17): this line inserts every tuple ⟨id′′, susp,∆⟩
such that ⟨id′′, susp,−⟩ ∈ LSPs and id′′ ≠ id(p). So, as no record ⟨−, LSPs,−⟩ with
id ∈ LSPs is received, no record ⟨id,−,−⟩ is inserted into Gstable(p) during Round i,
..., i+∆− 1.

If no tuple ⟨id,−,−⟩ exists in Gstable(p)i, we are done. Otherwise, some tuple
⟨id,−, ttl⟩ exists in Gstable(p)i (i.e., at the beginning of and during Round i) with
ttl ∈ {0, ...,∆}. Now, as ttl ≤ ∆, Gstable(p)[id].ttl necessarily reaches 0 during Round
i+max(0, ttl−1) since if positive, it decreases by one at each round; see Line 10. Then,
the tuple corresponding to id is removed from Gstable(p); see Line 22. Therefore, no
tuple ⟨id,−,−⟩ exists in Gstable(p)i+max(1,ttl). As such tuple can neither be inserted
until Round i+∆, this proves that no tuple ⟨id,−,−⟩ exists in Gstable(p)i+∆.

Lemma 6. Let i > 1 and j ∈ {i, ..., i + ∆ − 1}. Let p be a process of V . Let
id ∈ IDSET distinct from id(p). If p receives a record ⟨id,−,∆+ i− j⟩ during Round
j, then id ∈ Lstable(p)i+∆.

Proof. Let i > 1 and j ∈ {i, ..., i+∆− 1}, p ∈ V , id ∈ IDSET such that id ̸= id(p).
Assume that p receives a record ⟨id,−,∆+ i− j⟩ during Round j.

According to Line 14 and 15, ⟨id,−, ttl⟩ ∈ Lstable(p)j+1 with ttl ≥ ∆+ i− j (it is
not removed at Line 20 since ∆ + i− j > 0). The timer associated to id in Lstable(p)
is decremented at most by one (Line 8) during a round (n.b., when the tuple ⟨id,−,−⟩
is updated in Lstable(p), its timer does not decrease; see Lines 14-15) and a tuple
⟨id,−, ttl′⟩ is removed from Lstable(p) at some round only if ttl′ reaches 0 during that
round (Line 20). As the timer of id in Lstable(p)j+1 is ttl ≥ ∆+ i−j, a tuple ⟨id,−,−⟩
remains in Lstable(p) during at least ∆ + i− j − 1 rounds, i.e., from Round j + 1 to
Round ∆ + i (since j + 1 + (∆ + i− j)− 1 = ∆+ i).

Lemma 7. Let i > 1 and p ∈ V . Let id ∈ IDSET distinct from id(p) and LSPs ∈
MapType such that id ∈ LSPs. If p receives a record ⟨−, LSPs,−⟩ during Round i,
then ∀j ∈ {i+ 1, ..., i+∆}, id ∈ Gstable(p)j.

26

Proof. Let i > 1. Let p ∈ V . Let id ∈ IDSET such that id ̸= id(p) and LSPs ∈
MapType such that id ∈ LSPs. Assume that p receives a record ⟨−, LSPs,−⟩ during
Round i.

According to Line 17, Process p inserts ⟨id,−,∆⟩ into Gstable(p) during Round i.
So ⟨id,−,∆⟩ ∈ Gstable(q)i+1 (it is not removed at Line 22 since ∆ > 0). The timer
associated to id in Gstable(p) is decremented at most by one (Line 10) during a round
(n.b., when the tuple ⟨id,−,−⟩ is updated in Gstable(p), its timer is not decremented;
see Line 17), and a tuple ⟨id,−, ttl⟩ ∈ Gstable(p) is removed during a round only if ttl
reaches 0 during that round; see Line 22. As the timer of id in Gstable(p)i+1 is ∆, a
tuple ⟨id,−,−⟩ remains in Gstable(p) during at least ∆− 1 rounds, i.e., from Round
i+ 1 to Round ∆ + i (since i+ 1 +∆− 1 = ∆+ i).

Removing Fake IDs.

Lemma 8. Let f be a fake ID, p ∈ V , i > 4∆, and msg ∈ msgs(p)i be a record. We
have: (a) msg.id ≠ f , (b) f /∈ Lstable(p)i (c) f /∈ msg.LSPs, and (d) f /∈ Gstable(p)i.

Proof. Let f be a fake ID.

(a) First, any process only initiates records with its own ID (Line 26). So no record
⟨f,−,−⟩ are ever initiated. Then, if some msgs(q) with q ∈ V contains some record
⟨f,−, ttl⟩ at the beginning of the execution, then thanks to the timer mechanism, the
timer in this record and in all its copies broadcasted into the network will reach 0
within at most ∆ rounds. Then, those records will not be sent (Line 2) and finally
will be removed from every msgs set where they appear (Line 24). Hence, ∀i1 > ∆,
msgs(p)i1 contains no record ⟨f,−,−⟩, for every p ∈ V .

(b) Let p ∈ V . By Corollary 5, for every Round i2 ≥ i1 +∆ > 2∆, f /∈ Lstablei2(p).

(c) Let p ∈ V . Let msg = ⟨id, LSPs, ttl⟩ be a record in msgs(p) at the beginning of
Round i3 > 3∆. By Lemma 2, there is a process q ∈ V such that id = id(q) and LSPs =
Lstable(q)i3−∆+ttl. As i3−∆+ttl > 2∆, we apply (b): f /∈ Lstable(q)i3−∆+ttl = LSPs.

(d) Let p ∈ V . Since (c) holds, p receives no record ⟨−, LSPs,−⟩ such that f ∈
LSPs, from Round i3; we can apply Lemma 5: for every Round i4 ≥ i3 +∆ > 4∆,
f /∈ Gstable(p)i4 .

Stable Memorization of some Processes in Map Gstable. We define as TSources
the set of timely sources of G. Timely sources (and may be some other processes)
increment their suspicion variable only finitely many times (Lemma 10). We also define
as ♢Const the set of processes whose suspicion value is eventually constant. If some
process p is in ♢Const, we denote by tp some date after which its suspicion value
is constant forever and we show that p is memorized forever by every process q at
least from Round i ≥ tp +∆+ 1 (i.e., p ∈ Gstable(q)i); see Lemma 12. In the next
paragraph, we establish that the finally elected process is a process of ♢Const.

27

Definition 6. We define TSources as the set of timely sources of G. Namely, for a
process r ∈ V ,

r ∈ TSources if and only if ∀p ∈ V, ∀i ∈ N∗, d̂i(r, p) ≤ ∆.

Note that TSources ̸= ∅ since G ∈ J B
1,∗(∆).

Lemma 9. Let r ∈ TSources. ∀k > ∆+ 1, ∀p ∈ V , id(r) ∈ Lstable(p)k.

Proof. The proof is done setting k to i+∆, for some i > 1. Let i > 1, r ∈ TSources,
and p ∈ V . According to Remark 4.(a), id(r) ∈ Lstable(r)i+∆. Assume that p ≠ r and

d̂i(r, p) = d. As r is a source and p ̸= r, we have 1 ≤ d ≤ ∆. By Lemma 3, p receives a
record ⟨id(r),−,∆− d+ 1⟩ during Round i+ d− 1. According to Lemma 6, we have
id(r) ∈ Lstable(p)i+∆.

Definition 7. For every i ∈ N∗ and p ∈ V , let suspicion(p)i be defined as follows:

suspicion(p)i =

{

−∞ if id(p) /∈ Lstable(p)i,
Lstable(p)i[id(p)].susp otherwise.

Notice that, by Remark 4.(a), suspicion(p)i ̸= −∞ for every i > 1.

Definition 8. We define the set ♢Const of processes in V . Let p be a process of V .

p ∈ ♢Const if and only if ∃maxSuspicion(p) ∈ N, ∃tp ∈ N∗, ∀i ≥ tp,
suspicion(p)i = maxSuspicion(p).

Namely, ♢Const is the set of processes whose suspicion counter is eventually constant.

Lemma 10. TSources ⊆ ♢Const ̸= ∅ and ∀p ∈ TSources, tp ≤ 2∆ + 1.

Proof. Let r ∈ TSources. Let i > 2∆+1. We first show that for every processes q and
p, if ⟨id(q), LSPs, ttl⟩ ∈ msgs(p)i, then r ∈ LSPs. Indeed, by Lemma 2, this record
was initiated by Process q and LSPs = Lstable(q)i−X with X = ∆ − ttl. Lemma 9
allows us to conclude that r ∈ LSPs, since i−X > ∆+ 1.

Therefore, every record received by r during any Round i > 2∆+1 contains r in its
source field. So r does not augment its suspicion value during any Round i > 2∆ + 1
(see Line 18); hence ∀i > 2∆ + 1, suspicion(r)i = suspicion(r)2∆+1.

Lemma 11. Let p ∈ ♢Const. ∀i > tp, ∀r ∈ TSources, id(p) ∈ Lstable(r)i.

Proof. Let p ∈ ♢Const. Let r ∈ TSources. Assume, by the contradiction, that id(p) /∈

Lstable(r)i with i > tp. Note that p ≠ r, by Remark 4.(a). We have d̂i(r, p) =
d ∈ {1, ...,∆} since p ̸= r and r ∈ TSources. By Lemma 3, p receives the record
⟨id(r), Lstable(r)i,∆− d+ 1⟩ during Round j = i+ d− 1. As id(p) /∈ Lstable(r)i, the
value of Lstable(p)[p].susp is incremented (Line 18) during Round j. Since the suspicion
value of a process cannot decrease after the first round, suspicion(p)i ≤ suspicion(p)j <

28

suspicion(p)j+1 and j ∈ {i, ..., i + ∆ − 1}, i.e., j ≥ i > tp. A contradiction to the
definition of ♢Const.

Lemma 12. Let p ∈ ♢Const. ∀i ≥ tp +∆+ 1, ∀q ∈ V , id(p) ∈ Gstable(q)i.

Proof. Let p ∈ ♢Const. Let q ∈ V .

• If q = p, since i > 1, id(p) ∈ Gstable(q)i; see Remark 4.(b).
• If q ̸= p and q ∈ TSources, by Lemma 11, we have that ∀i > tp, id(p) ∈
Lstable(q)i. Now, as id(p) ̸= id(q), we use the contraposition of Corollary 5: let
i > max(∆ + 1, tp); there exists a round k ∈ {i − ∆, ..., i − 1} during which q
receives a record ⟨id(p), LSPs, ttl⟩.
By Remark 4.(d), id(p) ∈ LSPs since k ≥ i − ∆ > 1. Thus, by Lemma 7,

∀x ∈ {k + 1, ..., k + ∆}, id(p) ∈ Gstable(q)x. So id(p) ∈ Gstable(q)i whatever
be the value of k (indeed, take x = k + (i − k) since 1 ≤ i − k ≤ ∆). Thus,
∀i > max(∆+1, tp), id(p) ∈ Gstable(q)i. Since, max(∆+1, tp) ≤ tp +∆, we have
∀i ≥ tp +∆+ 1, id(p) ∈ Gstable(q)i.

• If q ̸= p and q /∈ TSources, let r ∈ TSources: ∀j ∈ N∗, d̂j(r, q) = d ≤ ∆.
Let i > tp. According to Lemma 3, q receives a record

⟨id(r), Lstable(r)i,∆− d+ 1⟩ during Round i+ d− 1. As i > tp, by Lemma 11,
we have id(p) ∈ Lstable(r)i. According to Lemma 7, ∀k ∈ {i+d, ..., i+d−1+∆},
we have id(p) ∈ Gstable(q)k. This result holds in particular for k = i + d:
∀i ≥ tp + 1, id(p) ∈ Gstable(q)i+d, i.e., ∀i ≥ tp + d+ 1, id(p) ∈ Gstable(q)i. Now,
d ≤ ∆, so ∀i ≥ tp +∆+ 1, id(p) ∈ Gstable(q)i.

Hence, in any case, ∀i ≥ tp +∆+ 1, p ∈ Gstable(q)i.

Accuracy of the Memorized Suspicion Values. We establish that if id(p) ∈
Gstable(q) at Round t + 4∆, then the suspicion value of p memorized by q at that
round (i.e., Gstable(q)t+4∆[p].susp) is the suspicion value of p at a previous round
not earlier than round t + 2 (Lemma 16). Then, using Lemma 12 and owing the
fact that tp > 0, we can deduce that at any round t ≥ tp + 4∆ + 1, every process
has memorized maxSuspicion(p) as the suspicion value of p, for every p ∈ ♢Const.
Finally, the suspicion value of processes not belonging to ♢Const never stops to
increase along the execution, ex. Hence, we can conclude that ℓ = min{id(p) : p ∈
♢Const ∧maxSuspicion(p) = minr∈♢Const{maxSuspicion(r)}} is eventually elected
by every process forever (Theorem 6).

Lemma 13. Let q be a process of V . ∀i ≥ ∆ + 1, for every record ⟨id, LSPs,−⟩
received by q during Round i, ∃p ∈ V such that id = id(p), id(p) ∈ LSPs and
∃t ∈ {i−∆+ 1, ..., i}, LSPs[id(p)].susp = suspicion(p)t .

Proof. Let q be a process of V . Let ttl ∈ {0, ...,∆} and i ≥ ∆ + 1. Assume that q
receives a record msg = ⟨id, LSPs, ttl⟩ during Round i. Hence ttl ≥ 1 and Corollary 4
applies: there exists a process p ∈ V such that id = id(p), LSPs = Lstable(p)t

29

with t = i − ∆ + ttl. We have t ∈ {i − ∆ + 1, ..., i}. As t > 1, by Remark 4.(a),
id(p) ∈ Lstable(p)t = LSPs. Moreover, LSPs[id(p)].susp = Lstable(p)t[id(p)].susp =
suspicion(p)t, by definition.

Lemma 14. Let p and q be two distinct processes of V . ∀i ≥ 2∆ + 1, if id(p) ∈
Lstable(q)i, then there exists t ∈ {i−2∆+1, ..., i−1} such that Lstable(q)i[id(p)].susp =
suspicion(p)t.

Proof. Let p, q ∈ V such that p ̸= q. Let i ≥ 2∆ + 1. Let s ∈ N.

First, at least one tuple ⟨id(p),−,−⟩ is inserted into Lstable(q) by q at Line 15
during the last ∆ round, by Lemma 4. Such insertions are due to receptions at q of
records ⟨id(p),−,−⟩ during the same rounds.

Consider then any record ⟨id(p), LSPs,−⟩ received by q at some round X ′ ∈
{i−∆, ..., i− 1}. By Lemma 13, and since X ′ ≥ ∆+ 1, id(p) ∈ LSPs and there exists
t ∈ {X ′ −∆+1, ..., X ′} (i.e., t ∈ {i− 2∆+ 1, ..., i− 1}) such that LSPs[id(p)].susp =
suspicion(p)t. This is in particular true for each of these records that causes an insertion
into Lstable(q) for id(p). Since this is the only way to modify the suspicion value of p
at q, we are done.

Lemma 15. Let q be a process of V . Let i ≥ 3∆. For every record ⟨−, LSPs,−⟩ received
by q at Round i, ∀p ∈ V such that id(p) ∈ LSPs, there exists t ∈ {i− 3∆+2, ...i} such
that LSPs[id(p)].susp = suspicion(p)t.

Proof. Let q ∈ V . Let i ≥ 3∆. Assume that q receives a record ⟨id, LSPs, ttl⟩ during
Round i. Let p ∈ V such that id(p) ∈ LSPs. First, ttl ∈ {1, ...,∆}, by definition of the
algorithm. By Corollary 4 and as i > ∆, there is a process x such that id = id(x) and
LSPs = Lstable(x)t with t = i−∆+ ttl that has initiated the record ⟨id, LSPs, ttl⟩.
Note that i−∆+ 1 ≤ t ≤ i.

If p ̸= x, then since t ≥ i − ∆ + 1 ≥ 2∆ + 1, we have LSPs[id(p)].susp =
Lstable(x)t[id(p)].susp = suspicion(p)t′ with t′ ∈ {t− 2∆+1, ..., t− 1}, by Lemma 14.

If p = x then by Remark 4.(a), id(p) ∈ Lstable(x)t = LSPs. So,
Lstable(x)t[id(p)].susp is well-defined, and LSPs[id(p)].susp = Lstable(x)t[id(p)].susp
= suspicion(p)t′ for t

′ = t.

Since t ∈ {i−∆+ 1, . . . , i}, in both cases, we have t′ ∈ {i− 3∆ + 2, ..., i}, and we
are done.

Lemma 16. Let p and q be two distinct processes. Let i ≥ 4∆. If id(p) ∈ Gstable(q)i
then there exists t ∈ {i − 4∆ + 2, ..., i − 1} such that Gstable(q)i[id(p)].susp =
suspicion(p)t.

Proof. Let p and q be two distinct processes. Let i ≥ 4∆. Assume id(p) ∈ Gstable(q)i.

30

By Lemma 5, since id(p) ∈ Gstable(q)i, id(p) ̸= id(q) and i−∆ > 1: there exists
X ∈ {1, ...,∆} such that q receives some record ⟨−, LSPs,−⟩ with id(p) ∈ LSPs at
Round i−X. We note

Xm = min{X : 1 ≤ X ≤ ∆ and q receives some record ⟨−,M,−⟩ such that id(p) ∈ M
during Round i−X}

(i.e., i−Xm is the latest round when q receives such a record until Round i).

Let ⟨−, LSPs,−⟩ be any record received by q during Round i − Xm such that
id(p) ∈ LSPs. As i − Xm ≥ 3∆, we have LSPs[id(p)].susp = suspicion(p)t with
t ∈ {i − Xm − 3∆ + 2, ..., i − Xm}, by Lemma 15. Hence, during Round i − Xm,
Gstable(q)[id(p)].susp is set to suspicion(p)t; see Line 17. Note that t ∈ {i − 4∆ +
2, ..., i− 1}.

By construction of Xm, no record ⟨−,M,−⟩ such that id(p) ∈ M is received
during Round i − Xm + 1 to Round i − 1. Furthermore, since id(p) ∈ Gstable(q)i,
the information of id(p) has not been removed from Gstable(q) meanwhile. Hence,
Gstable(q)i[p].susp = suspicion(p)t.

By definition of the ♢Const set and since suspicion counter cannot decrease after
the first round, we have the following remark.

Remark 5. ∃T ∈ N∗ such that ∀i ≥ T ,

a) ∀p ∈ V \ ♢Const we have suspicion(p)i > minr∈♢Const{maxSuspicion(r)}
b) ∀p′ ∈ ♢Const, we have suspicion(p′)i = maxSuspicion(p′)

Notice that T ≥ tp′ , ∀p′ ∈ ♢Const.

Theorem 6. ∀i ≥ T + 4∆ + 1, ∀q ∈ V , lid(q) = ℓ = min{id(p) : p ∈ ♢Const ∧
maxSuspicion(p) = minr∈♢Const{maxSuspicion(r)}} at the beginning of Round i.

Proof. Let q be a process of V . Let i ≥ T + 4∆+ 1. By Lemma 8, it follows:

(a) For every id ∈ Gstable(q)i, there exists a process p ∈ V such that id(p) = id.

Then, we also have the following property.

(b) For every process p ∈ V , if id(p) ∈ Gstable(q)i, then there exists t ∈ {T, ..., i}
such that Gstable(q)i[id(p)].susp = suspicion(p)t.

Indeed, if p = q then by Remark 4.(b), Gstable(q)i[id(q)].susp =
Lstable(q)i[id(q)].susp = suspicion(q)i, as i ≥ 2. Otherwise, p ≠ q and by Lemma 16,
Gstable(q)i[id(p)].susp = suspicion(p)t with i− 4∆ + 2 ≤ t ≤ i− 1.

Now, as the suspicion value of any process p cannot decrease after the first round,
Gstable(q)i[id(p)].susp ≥ suspicion(p)t ≥ suspicion(p)T , for every id(p) ∈ Gstable(q)i.
Hence, by definition of T , we have

(c) ∀p /∈ ♢Const, Gstable(q)i[id(p)].susp > minr∈♢Const{maxSuspicion(r)}.

31

Let p ∈ ♢Const. By Lemma 12, id(p) ∈ Gstable(q)i, since i ≥ tp+∆+1. Moreover, by
(b), there exists t ∈ {T, ..., i} such that Gstable(q)i[id(p)].susp = suspicion(p)t. Now,
as t ≥ tp (by definition of ♢Const), suspicion(p)t = maxSuspicion(p), it follows:

(d) ∀p ∈ ♢Const, id(p) ∈ Gstable(q)i and Gstable(q)i[id(p)].susp =
maxSuspicion(p).

Thus, at the beginning of Round i, Gstable(q)i

• only contains records tagged with identifiers of processes of V by (a);
• may contain records tagged with identifiers of non-members of
♢Const, but their associated suspicion values are strictly greater than
minr∈♢Const{maxSuspicion(r)}, by (c); and

• contains a record for each member p of ♢Const with an associated suspicion value
equal to the maximum suspicion value of p, by (d).

Hence, at the end of Round i− 1 (and so, at the beginning of Round i), the process
elected by q, lid(q)i, is ℓ; see Line 27.

Corollary 6. Algorithm LE is a deterministic pseudo-stabilizing leader election
algorithm for J B

1,∗(∆).

Speculation. The pseudo-stabilization time of Algorithm LE cannot be bounded in
J B
1,∗(∆) by Theorem 5. However, Algorithm LE is speculative in the sense that its

pseudo-stabilization time in J B
∗,∗(∆) ⊂ J B

1,∗(∆) is bounded.

Theorem 7. The pseudo-stabilization time of Algorithm LE in J B
∗,∗(∆) is at most

6∆ + 2 rounds.

Proof. By definition, in J B
∗,∗(∆), ∀p ∈ V , p ∈ TSources (i.e., V \ ♢Const = ∅). Then,

by Lemma 10, ∀p ∈ V , tp ≤ 2∆ + 1. So, we can let T = 2∆ + 1, and ∀i ≥ 6∆ + 2,
lid(p) = ℓ at the beginning of Round i, by Theorem 6.

6 Conclusion

We have studied the expressive power, w.r.t. the (deterministic) leader election problem,
of pseudo- and self-stabilization in nine classes of dynamic graphs. Our results show
that self-stabilizing leader election can only be solved in the three classes studied in [5].
Furthermore, even pseudo-stabilizing leader election cannot be solved in the remaining
classes, except in the class where at least one process is a timely source.

We have defined those classes by analogy with classes mainly studied for the Ω
problem in crash-prone partially synchronous systems. We have simply skipped several
other dynamic patterns classically used in those systems, e.g., patterns related to
eventual timeliness and the notion of bi-source. Actually, as explained in [10], the fact
that the bound immediately holds (timeliness) or only eventually (eventual timeliness)
has no impact on stabilizing systems: just consider the first configuration from which

32

the bound is guaranteed as the initial point of observation. Similarly, dealing with
dynamic graphs where at least one process is a bi-source (i.e., a process which is
both a source and a sink) is not an issue in the expressive point of view. Indeed, the
existence of a bi-source makes those dynamic graphs belonging to the class J∗,∗ since
any bi-source acts as a hub during flooding.

Now, concerning the efficiency of solutions, our results give a broad answer in terms
of time complexity, in particular about convergence time. However, the space complexity
aspect remains widely open. In particular, the stabilizing solution we proposed for
J B
1,∗(∆) and the one proposed for J∗,∗ in [5] use an infinite memory. In a future work,

we would like to establish whether this drawback can be precluded.

Competing Interests. The authors declare that there are no competing interests
directly or indirectly related to this work.

Data Sharing. Authors declare that data sharing not applicable to this article as no
datasets were generated or analyzed during the current study.

References

[1] Altisen, K., Devismes, S., Durand, A., Johnen, C., Petit, F.: On implementing
stabilizing leader election with weak assumptions on network dynamics. In: Miller,
A., Censor-Hillel, K., Korhonen, J.H. (eds.) PODC ’21: ACM Symposium on
Principles of Distributed Computing, Virtual Event, Italy, July 26-30, 2021, pp.
21–31. ACM, ??? (2021). https://doi.org/10.1145/3465084.3467917

[2] Charron-Bost, B., Moran, S.: The firing squad problem revisited. Theor. Comput.
Sci. 793, 100–112 (2019)

[3] Bui-Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost
journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(2), 267–285 (2003)

[4] Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. Int. J. Parallel Emergent Distributed Syst. 27(5), 387–408
(2012)

[5] Altisen, K., Devismes, S., Durand, A., Johnen, C., Petit, F.: Self-stabilizing
systems in spite of high dynamics. In: ICDCN ’21: International Conference on
Distributed Computing and Networking, pp. 156–165. ACM, Virtual Event, Nara,
Japan (2021)

[6] Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

[7] Burns, J.E., Gouda, M.G., Miller, R.E.: Stabilization and pseudo-stabilization.
Distributed Comput. 7(1), 35–42 (1993)

33

https://doi.org/10.1145/3465084.3467917

[8] Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.L.: Zyzzyva: Speculative
byzantine fault tolerance. ACM Trans. Comput. Syst. 27(4), 7–1739 (2009)

[9] Dubois, S., Guerraoui, R.: Introducing speculation in self-stabilization: an applica-
tion to mutual exclusion. In: Fatourou, P., Taubenfeld, G. (eds.) ACM Symposium
on Principles of Distributed Computing, PODC ’13, pp. 290–298. ACM, Montreal,
QC, Canada (2013)

[10] Delporte-Gallet, C., Devismes, S., Fauconnier, H.: Stabilizing leader election in
partial synchronous systems with crash failures. J. Parallel Distributed Comput.
70(1), 45–58 (2010)

[11] Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On implementing
omega in systems with weak reliability and synchrony assumptions. Distributed
Comput. 21(4), 285–314 (2008)

[12] Braud-Santoni, N., Dubois, S., Kaaouachi, M., Petit, F.: The next 700 impossibility
results in time-varying graphs. Int. J. Netw. Comput. 6(1), 27–41 (2016)

[13] Datta, A.K., Larmore, L.L.: Self-stabilizing leader election in dynamic networks.
Theory Comput. Syst. 62(5), 977–1047 (2018)

[14] Dolev, S.: Optimal time self-stabilization in uniform dynamic systems. Parallel
Process. Lett. 8(1), 7–18 (1998)

[15] Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuming
only read/write atomicity. Distributed Comput. 7(1), 3–16 (1993)

[16] Dolev, S., Herman, T.: Superstabilizing protocols for dynamic distributed systems.
Chic. J. Theor. Comput. Sci. 1997 (1997)

[17] Altisen, K., Devismes, S., Durand, A., Petit, F.: Gradual stabilization. J. Parallel
Distributed Comput. 123, 26–45 (2019)

[18] Bournat, M., Datta, A.K., Dubois, S.: Self-stabilizing robots in highly dynamic
environments. Theor. Comput. Sci. 772, 88–110 (2019)

[19] Cai, S., Izumi, T., Wada, K.: How to prove impossibility under global fairness:
On space complexity of self-stabilizing leader election on a population protocol
model. Theory Comput. Syst. 50(3), 433–445 (2012)

[20] Dolev, S., Hanemann, A., Schiller, E.M., Sharma, S.: Self-stabilizing end-to-end
communication in (bounded capacity, omitting, duplicating and non-fifo) dynamic
networks - (extended abstract). In: Richa, A.W., Scheideler, C. (eds.) Stabilization,
Safety, and Security of Distributed Systems - 14th International Symposium, SSS
2012. LNCS, vol. 7596, pp. 133–147. Springer, Toronto, Canada (2012)

[21] Barjon, M., Casteigts, A., Chaumette, S., Johnen, C., Neggaz, Y.M.: Maintaining

34

a distributed spanning forest in highly dynamic networks. Comput. J. 62(2),
231–246 (2019)

35

	Introduction
	Preliminaries
	Dynamic Graphs
	Computational Model
	Stabilizing Leader Election in Recurring DG Classes

	Impossibility Results
	Pseudo-stabilizing Leader Election in J1,* B()
	Correctness
	Conclusion

