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Abstract 13 

Genomic selection offers new prospects for revisiting hybrid breeding schemes by replacing extensive 14 

phenotyping of individuals with genomic predictions. Finding the ideal design for training genomic prediction 15 

models is still an open question. Previous studies have shown promising predictive abilities using sparse factorial 16 

instead of tester-based training sets to predict single-cross hybrids from the same generation. This study aims to 17 

further investigate the use of factorials and their optimization to predict line general combining abilities (GCAs) 18 

and hybrid values across breeding cycles. It relies on two breeding cycles of a maize reciprocal genomic selection 19 

scheme involving multiparental connected reciprocal populations from flint and dent complementary heterotic 20 

groups selected for silage performances. Selection based on genomic predictions trained on a factorial design 21 

resulted in a significant genetic gain for dry matter yield in the new generation. Results confirmed the efficiency 22 

of sparse factorial training sets to predict candidate line GCAs and hybrid values across breeding cycles. Compared 23 

to a previous study based on the first generation, the advantage of factorial over tester training sets appeared lower 24 

across generations. Updating factorial training sets by adding single-cross hybrids between selected lines from the 25 

previous generation or a random subset of hybrids from the new generation both improved predictive abilities. The 26 

CDmean criterion helped determine the set of single-crosses to phenotype to update the training set efficiently. 27 

Our results validated the efficiency of sparse factorial designs for calibrating hybrid genomic prediction 28 

experimentally and showed the benefit of updating it along generations. 29 

Keywords 30 

Hybrid breeding, Genomic selection, Factorial design, Training set optimization, Inter-generation genomic 31 

prediction 32 
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Key message (30 words) 33 

We validated the efficiency of genomic predictions calibrated on sparse factorial training sets to predict the next 34 

generation of hybrids and tested different strategies for updating predictions along generations. 35 
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Introduction 46 

Maize varieties are generally single-cross hybrids obtained by crossing two inbred lines that belong to 47 

complementary heterotic groups. The challenges for breeders are (i) selecting lines within each heterotic group 48 

that will be used as parents for the next generation and (ii) identifying the best single-cross hybrids among all 49 

possible ones in order to derive new varieties. The advent of Doubled-Haploid (DH) technology now enables the 50 

rapid production of numerous fully homozygous inbred lines each year. This large number of candidate lines 51 

produced each year in breeding programs makes generating and evaluating all potential single-cross hybrids 52 

practically undoable. To overcome this difficulty, conventional maize hybrid breeding schemes are typically 53 

divided into two stages. In the first stage (1), topcross hybrids are produced by crossing candidate lines from one 54 

heterotic group with a limited number of inbred lines from the complementary group, referred to as "testers". The 55 

performances of these topcross hybrids provide an estimation of the general combining abilities (GCA) of the 56 

candidate lines. In the second stage (2), the selected lines from stage 1 are crossed using a sparse factorial design 57 

to identify the best single-cross hybrid combinations. At this stage, the selection is performed on the GCA of the 58 

parental lines and the specific combining ability (SCA) of the pair of parental lines. Selecting lines based on a 59 

limited number of testers at stage 1 does not fully exploit the complementarity between the candidate lines from 60 

the two heterotic groups and can bias the line GCA estimation since the line GCA and its SCAs with the testers 61 

are confounded (Hallauer et al. 2010). Also, the two-stage process is time-consuming and requires extensive 62 

phenotyping (at least as many as the total number of candidate lines in both groups in stage 1). 63 

Due to limited resources for phenotyping, predicting the performance of untested hybrids has been a 64 

critical objective in hybrid selection. Bernardo (1994) was the first to propose a marker-based model for plant 65 

hybrid performance prediction. He combined marker-based distances between parental lines of hybrids and the 66 

performances of a related set of single-crosses to predict GCAs and SCAs of non-phenotyped hybrids. This 67 

prediction model, which aims at predicting the value of unphenotyped individuals based on their marker-based 68 

relationship with a set of individuals both phenotyped and genotyped, is similar to the genomic best linear unbiased 69 

prediction (GBLUP) model (VanRaden 2008) that has been proposed more recently and is now widely used to 70 

perform genomic selection (GS) in plants and animal. Different other genomic prediction models have been 71 

proposed (see Meuwissen et al. 2001 seminal paper and Howard et al. 2022 for a review), all of them use molecular 72 

markers scored across the entire genome to predict the genetic values of genotyped individuals, referred to as the 73 

prediction set (PS), using individuals both phenotyped and genotyped, referred to as the training set (TRS). Since 74 

the pioneer work of Bernardo (1994), different prediction models adapted to hybrid value prediction have been 75 
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proposed considering non-additive effects, either by modeling the GCA and SCA effects or the additive, 76 

dominance, and epistasis effects (Vitezica et al. 2013, 2017; Varona et al. 2018; González-Diéguez et al. 2021). 77 

Even if several studies have confirmed the efficiency of these GS models for predicting single-cross hybrid values 78 

in maize (see review by Kadam and Lorenz 2018), the relative interest of the different prediction models is still 79 

unclear. Besides the statistical model, various factors are known to affect genomic prediction accuracies, such as 80 

trait heritability, the number of markers, the size of the TRS, and the relationship between the TRS and the PS (see 81 

reviews: Kadam and Lorenz 2018; Isidro y Sánchez and Akdemir 2021; Merrick and Carter 2021; Kadam et al. 82 

2021). In the context of hybrid prediction, in addition to these factors, the crossing design used to produce the TRS 83 

hybrids also affects prediction accuracy (Technow et al. 2014; Seye et al. 2020; Lorenzi et al. 2022).  84 

In most studies, GS for hybrid value prediction has been considered in the second stage of the hybrid 85 

breeding scheme, i.e., by using as TRS hybrids between lines that have already undergone a selection based on 86 

their testcross values. To improve the efficiency of hybrid breeding schemes, Kadam et al. (2016) and (Giraud 87 

2016) proposed (1) to replace topcross evaluation in stage 1 with a sparse factorial design between unselected 88 

candidate lines from both groups and (2) to use GS to predict GCAs of all lines and SCA of all potential single-89 

cross combinations. This makes it possible to perform selection in one stage instead of two. Both studies found 90 

good prediction accuracies for untested hybrids using factorial designs as TRS. Later, simulations and 91 

experimental studies have shown the potential of using sparse factorial instead of tester TRSs when predicting the 92 

same generation (Seye et al. 2020; Burdo et al. 2021; Lorenzi et al. 2022). Although a simulation work validated 93 

the advantage of factorial compared to tester TRSs to predict hybrid values across breeding cycles (Seye et al. 94 

2020), further experimental validation is needed. From one cycle to the next, the average relatedness between the 95 

TRS and PS decreases and the joint effect of selection, drift, and recombination events change allele frequencies 96 

and the linkage disequilibrium between markers and QTLs, which decrease prediction accuracy if the TRS is not 97 

updated along cycles (Pszczola et al. 2012; Isidro y Sánchez and Akdemir 2021; Rio et al. 2022b). This raises 98 

questions about how to efficiently update the TRS to maximize prediction accuracy while minimizing phenotyping 99 

costs. 100 

According to the literature, an ideal TRS should maximize the accuracy by maximizing the relationship 101 

between the TRS and PS (Zhong et al. 2009; Zhao et al. 2012; Technow et al. 2013) and minimizing the within 102 

TRS relationship to capture a large genetic variance (Pszczola et al. 2012; Isidro y Sánchez and Akdemir 2021). 103 

Different optimization criteria have been proposed to define the TRS (Rio et al. 2022b). Rincent et al. (2012) 104 

proposed optimizing the TRS by maximizing the mean of the coefficient of determination (CDmean) of contrasts 105 
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between each unphenotyped PS individual and the target population mean. Numerous studies have shown that 106 

building the TRS using the CDmean significantly increases the accuracy of GS models relative to random sampling 107 

(Isidro y Sánchez and Akdemir 2021; Rio et al., 2022; Fernández-González et al. 2023). In a breeding program, 108 

where genomic prediction is applied routinely, a large dataset from previous years of phenotyping is available for 109 

model training. One can wonder which phenotypic data from the previous generation(s) should be included in the 110 

TRS and which additional hybrids should be phenotyped to complete the existing TRS and achieve the highest 111 

prediction accuracy for the new generation with a given phenotyping effort. One idea could be to use the CDmean 112 

to optimize the choice of the individuals from the new generation to be phenotyped while considering the existing 113 

TRS comprising data from the previous generations. To our knowledge, this strategy has never been tested in this 114 

context.  115 

The present study investigates the use and optimization of factorial TRS for genomic prediction of hybrid 116 

performance across breeding cycles. It relies on two breeding cycles of a reciprocal genomic selection scheme 117 

initiated from multiparental connected reciprocal populations generated in the flint and dent complementary 118 

heterotic groups. Data from the first cycle was already analyzed in previous studies (Giraud et al. 2017a, b; Seye 119 

et al. 2019) and have shown promising results in terms of genomic predictive abilities for replacing testcross 120 

evaluation by sparse factorial evaluations (Lorenzi et al. 2022). We present in study results from a new breeding 121 

cycle that was produced and evaluated in a factorial design to: (i) estimate the genetic gain achieved after selection 122 

based on genomic predictions calibrated on a sparse factorial, (ii) assess the predictive ability in the new breeding 123 

cycle and compare different GS models, (iii) evaluate the efficiency of training GS models on a factorial design 124 

for predictions across breeding cycles and compare it to tester designs, (iv) investigate the benefit of different 125 

strategies to update the factorial TRS across cycles and optimize it to predict the new generation. 126 

Materials and Methods 127 

This study relies on data from a reciprocal breeding experiment aiming at improving the silage performance of 128 

maize single-cross hybrids produced between the dent and flint heterotic groups, the two main heterotic groups 129 

used for silage maize hybrids in Northern Europe. The experimental data comprises two breeding cycles, further 130 

called G0 and G1. Inbred lines from the G0 cycle were evaluated for hybrid performances in three experimental 131 

designs already analyzed in previous publications (Giraud et al. 2017a, b; Seye et al. 2019; Lorenzi et al. 2022). A 132 

summary of the G0 cycle production is provided below. The best G0 lines in each group were selected based on 133 
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genomic predictions and intercrossed to produce the new breeding cycle (G1) we will focus on in this study. All 134 

experimental designs are described in Table 1 and Fig.1. 135 

Summary of the G0 plant material production and selection of the best candidate lines 136 

Four founder lines were intercrossed in each group to derive six biparental families. In total, 822 flint lines and 137 

802 dent lines were produced, further called G0 lines. The G0 lines were crossed to produce three experimental 138 

hybrid designs. The G0_F-1H was obtained by crossing the 822 flint lines to the 801 dent lines following a sparse 139 

factorial design, leading to 951 single-cross hybrids (on average, one line contributed to 1.2 hybrids). This 140 

experimental design was evaluated in France and Germany in 2013 and 2014 for silage performances (Giraud et 141 

al. 2017a, b; Seye et al. 2019). Then, 30 G0 lines were selected in each heterotic group based on genomic 142 

predictions trained on the G0_F-1H for an index combining silage yield, moisture content at harvest, and silage 143 

quality. Additionally, 60 G0 lines (10 lines per family) were chosen randomly. These lines were used to create two 144 

other experimental designs. The G0_F-4H factorial design composed of 363 hybrids (on average, one line 145 

contributed to four hybrids) was produced by randomly crossing (i) the 30 G0 selected flint lines to the 30 G0 146 

selected dent lines to produce 131 hybrids (further called “G0S hybrids”) and (ii) the 60 G0 random dent lines to 147 

the 60 G0 random flint lines leading to 232 hybrids (further called “G0R hybrids”). In parallel, the G0_T-F (and 148 

G0_T-D) tester design was produced by crossing the same 90 G0 flint (dent) lines from one group to two founder 149 

lines from the dent (flint) group used as testers. Together, the G0_T-F and G0_T-D tester designs were called G0 150 

tester designs or G0_T. The G0_F-4H and the G0_T were evaluated jointly in eight trials in Northern France and 151 

Germany in 2016 and 1017 (Seye 2019; Lorenzi et al. 2022). In all trials, 18 hybrids were used as controls and 152 

evaluated twice: two commercial hybrids (LG30.275 and RONALDINIO) and 16 founder hybrids produced by 153 

crossing the four flint founder lines with the four dent founder lines.  154 

New breeding cycle (G1) 155 

40 intragroup single-crosses were produced in each group by crossing the 30 selected G0 lines described above. 156 

351 dent and 351 flint DH lines (G1) were derived from the 40 single-crosses in the dent and flint groups, 157 

respectively. The dent G1 lines were crossed with the flint G1 lines following a sparse factorial design to produce 158 

442 G1 hybrids. Crosses were made at random with an average number of hybrids per line close to one. A new set 159 

of 47 G0S hybrids between the 30 G0 selected lines from each group was produced and evaluated jointly with the 160 

G1 hybrids, yielding a total of 489 hybrids further referred to as (G0S+G1)_F-1H. Hybrids were evaluated for two 161 

years in the North of France and Germany: three trials in 2019 and five in 2020. The same 18 control hybrids (two 162 
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commercial and 16 founder hybrids) as in the G0 experiments were evaluated twice in each trial. 15% of the 163 

experimental hybrids were also replicated once at each location. The field experiments were laid out as augmented 164 

partially replicated designs (p-rep) (Williams et al. 2011). Each trial comprised 512 to 520 elementary plots 165 

distributed in 26 incomplete blocks of 20 plots. Each genotype was evaluated in 7 trials across 2019 and 2020 and 166 

was replicated in at least one trial. For each trial, repetitions were allocated to blocks to form an efficient 167 

incomplete block design using the DiGGer R package (Coombes 2009).  168 

Hybrids were evaluated for 11 traits, four agronomical traits: silage yield (DMY in tons of dry matter per 169 

ha), dry matter content at harvest (DMC in % of fresh weight), female flowering date (DtSilk in days after January 170 

the first) and plant height (PH in cm) and seven silage traits for digestibility: milk fodder unit per kilogram of dry 171 

matter (MFU in MFU per kg) (Andrieu 1995) (computed using model 4.2), cell wall content of the harvested dry 172 

matter measured by the neutral detergent fiber content (NDF in % of dry matter), cell wall in vitro digestibility of 173 

the non-starch and non-soluble carbohydrates part of silage (DINAG in %) and cell wall in vitro digestibility of 174 

the non-starch, non-soluble carbohydrates and non-crude protein part of silage (DINAGZ in %), lignin, cellulose 175 

and hemicellulose contents in the cell wall NDF evaluated with the Goering and Soest (1970) method (LIGN, 176 

CELL, and HCELL in % of NDF). The DINAG and DINAGZ are two digestibility criteria first proposed by 177 

Argillier et al. (1995). The silage traits were predicted using Near Infrared Reflectance Spectrometry (NIRS) 178 

measured in the lab on silage powders or directly on fields during the harvest, depending on the trial. 179 

Outlier observations were detected by examining raw data and considering field observations. They were 180 

treated as missing data. Subsequently, filters were applied to identify plots with standing counts below 80% of the 181 

median, and DMC below 25% or above 45%, which were also considered as missing data. Values of DINAG, 182 

DINAGZ, and MFU measured in two trials were inconsistent with those of other trials and were excluded from 183 

further analyses. Following quality control and filters, the percentage of missing data across all traits was 8%. 184 

Genotyping 185 

The founder lines and the G0 parental lines were genotyped for 18,480 SNPs using a proprietary Affymetrix 186 

array provided by Limagrain. The G1 parental lines were genotyped using a custom-made chip comprising a subset 187 

of 15,000 SNPs of the Illumina® MaizeSNP50 BeadChip (Ganal et al. 2011). Filters were applied for both G0 and 188 

G1 lines: markers with more than 20% of missing values within the dent and flint parental lines, markers with 189 

more than 5% of heterozygosity among the dent (flint) parental lines, and with Minor Allele Frequency (MAF) 190 
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inferior to 5% were discarded. After quality control, only markers common to the two arrays were considered. 191 

4,812 SNP polymorphic markers (in at least the flint or dent population) were retained for further analyses. 192 

Estimation of variance components and trait heritabilities 193 

Variance components and trait heritabilities were estimated in the (G0S+G1)_F-1H design. Individual single-plot 194 

performances were corrected by the BLUPs of spatial effects predicted using the model defined in supplementary 195 

material File S1. Corrected data were then used to estimate variance components using the following model : 196 

𝑌ℎ𝑖𝑖′𝑗𝑙 = 𝜇 + 𝜆𝑙 + (𝜏ℎ + 𝜌𝑙ℎ) × 𝑡ℎ + [𝜋𝑗 + 𝐻ℎ(𝑖𝑖′)𝑗 + 𝐻𝜆𝑙ℎ(𝑖𝑖′)𝑗] × (1 − 𝑡ℎ) + 𝐸ℎ𝑖𝑖′𝑗𝑙 , (1) 197 

where 𝑌ℎ𝑖𝑖′𝑗𝑙 is the phenotypic value corrected by spatial effects of hybrid ℎ of generation j produced by crossing 198 

the flint parental line 𝑖 and the dent parent line 𝑖′ evaluated in trial 𝑙. 𝜇 is the intercept, 𝜆𝑙 is the fixed effect of trial 199 𝑙, 𝑡ℎ is an indicator function that distinguishes experimental hybrids (set to 0) from control hybrids (set to 1), 𝜏ℎ 200 

is the fixed effect of control hybrids with 19 levels (2 for commercial hybrids + 16 for founder hybrids + one for 201 

non-control hybrids), 𝜌𝑙ℎ is the effect of the interaction between trial 𝑙 and control hybrid ℎ, 𝜋𝑗 is the fixed effect 202 

of the generation with two levels (G0S or G1 hybrids). 𝐻ℎ(𝑖𝑖′)𝑗 is the random genetic effect of experimental hybrid 203 ℎ of generation 𝑗, produced by crossing the flint line 𝑖 and the dent line 𝑖′. 𝐻ℎ(𝑖𝑖′)𝑗 is decomposed into its GCA 204 

and SCA components as follows: 205 

𝐻ℎ(𝑖𝑖′)𝑗 =  𝑈𝑖𝑗 + 𝑈′𝑖′𝑗 + 𝑆𝑖𝑖′𝑗 206 

where 𝑈𝑖𝑗 (respectively 𝑈′𝑖′𝑗) is the random GCA effect of the flint line 𝑖 (respectively dent line 𝑖′) of generation 207 𝑗. We assume that 𝑈𝑖𝑗 and 𝑈𝑖′𝑗′  are independent and identically distributed (iid) within generation and follow a 208 

normal distribution: 𝑈𝑖𝑗~𝒩 (0, 𝜎𝐺𝐶𝐴𝑓𝑗2 ) and 𝑈𝑖′𝑗′ ~𝒩 (0, 𝜎𝐺𝐶𝐴𝑑𝑗2 ), respectively. 𝜎𝐺𝐶𝐴𝑓𝑗2  and 𝜎𝐺𝐶𝐴𝑑𝑗2  are the flint and 209 

dent GCA variances of generation 𝑗. 𝑆𝑘𝑘′ is the random SCA effect of the interaction between the parental lines 𝑖 210 

and 𝑖’, with 𝑆𝑖𝑖′𝑗~𝒩(0, 𝜎𝑆𝐶𝐴𝑗2 ) ind with 𝜎𝑆𝐶𝐴𝑗2  being the SCA variance at generation 𝑗. 𝐻𝜆𝑙ℎ(𝑖𝑖′)𝑗 is the genotype by 211 

trial interaction and is decomposed as follows: 212 

𝐻𝜆𝑙ℎ(𝑖𝑖′)𝑗 = (𝑈𝜆)𝑖𝑙𝑗 + (𝑈′𝜆)𝑖′𝑙𝑗 + (𝑆𝜆)𝑖𝑖′𝑙𝑗, 213 

where (𝑈𝜆)𝑖𝑙𝑗 and (𝑈′𝜆)𝑖′𝑙𝑗 are the random effects of the flint GCA effect by trial interaction, respectively dent 214 

GCA by trial interaction of generation 𝑗 and (𝑆𝜆)𝑖𝑖′𝑙𝑗  is the random effect of the SCA by trial interaction of 215 

generation 𝑗 . With (𝑈𝜆)𝑖𝑙𝑗 ∽ 𝒩 (0, 𝜎𝐺𝐶𝐴×𝐸𝑓𝑗2 ) , (𝑈′𝜆)𝑖′𝑙𝑗 ∽ 𝒩 (0, 𝜎𝐺𝐶𝐴×𝐸𝑑𝑗2 )  and (𝑆𝜆)𝑖𝑖′𝑙𝑗 ∽ 𝒩(0, 𝜎𝑆𝐶𝐴×𝐸𝑗2 ) . 216 
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𝜎𝐺𝐶𝐴×𝐸𝑓𝑗2 , 𝜎𝐺𝐶𝐴×𝐸𝑑𝑗2  and 𝜎𝑆𝐶𝐴×𝐸𝑗2  are the flint GCA by trial interaction variance, the dent GCA by trial variance and 217 

the SCA by trial interaction variance of generation 𝑗, respectively. 𝐸ℎ𝑖𝑖′𝑗𝑙 is the error term; we assume that the 218 

errors follow: 𝐸ℎ𝑖𝑖′𝑗𝑙~𝒩(0, 𝜎𝐸𝑙2 ) and are iid within trial and independent between trials, 𝜎𝐸𝑙2  is the error variance 219 

of trial 𝑙. The different random effects of the model are assumed to be independent. 220 

For each trait and each generation 𝑗 (G0S or G1), the percentage of genetic variance due to SCA was 221 

estimated (%), and broad-sense heritability was computed as follows: 222 

𝐻𝑗2 = 𝜎𝐻𝑗2
𝜎𝐻𝑗2 +𝜎𝐻×𝐸𝑗2𝑛𝑠𝑖𝑡𝑒 + 𝜎𝐸𝑚𝑜𝑦2𝑛𝑟𝑒𝑝×𝑛𝑠𝑖𝑡𝑒

 , 223 

where 𝜎𝐻𝑗2  is the hybrid genetic variance of generation 𝑗 computed as 𝜎𝐻𝑗2 = 𝜎𝐺𝐶𝐴𝑓𝑗2 + 𝜎𝐺𝐶𝐴𝑑𝑗2 + 𝜎𝑆𝐶𝐴𝑗2 , 𝜎𝐻×𝐸𝑗2  is the 224 

total genotype by trial variance of generation 𝑗 decomposed as: 𝜎𝐻×𝐸𝑗2 = 𝜎𝐺𝐶𝐴×𝐸𝑓𝑗2 + 𝜎𝐺𝐶𝐴×𝐸𝑑𝑗2 + 𝜎𝑆𝐶𝐴×𝐸𝑗2 , and 𝜎𝐸𝑚𝑜𝑦2  225 

is the mean residual variance across all trials, 𝑛𝑠𝑖𝑡𝑒 is the average number of trials in which an hybrid has been 226 

evaluated and 𝑛𝑟𝑒𝑝 is the average number of within trial replicates per hybrid across trials. 227 

Ls-means and genetic gain estimation 228 

Least square-means (ls-means) of hybrids were computed over the eight trials. The model used was: 229 

𝑌ℎ𝑟𝑙∗ = 𝜇 + 𝜆𝑙 + 𝛾ℎ + 𝐸ℎ𝑟𝑙 (2) 230 

In this model, experimental hybrids and founder hybrids were considered jointly. 𝑌ℎ𝑟𝑙∗  is the performance corrected 231 

by the spatial field effects of repetition 𝑟 of hybrid ℎ in trial 𝑙. 𝜇 is the intercept, 𝜆𝑙 is the fixed effect of trial 𝑙, 𝛾ℎ 232 

is the fixed genetic effect of hybrid ℎ. 𝐸ℎ𝑟𝑙 is the error term of environment 𝑙, with 𝐸ℎ𝑟𝑙 ~𝒩(0, 𝜎𝐸𝑙2 ) iid within trial 233 

and independent between trials. All genomic predictions were performed on the ls-means thus obtained. 234 

The founder hybrids were used as a reference for the initial unselected population. The observed genetic 235 

gain was computed as the difference between the performances of the founder hybrids and the experimental 236 

hybrids (either the G0S or the G1 hybrids). Then, we compared the observed to the predicted genetic gain estimated 237 

from the genomic predictions of hybrid values trained on the G0_F-1H. 238 

Pedigree based Best Linear Unbiased Prediction (PBLUP) model  239 

A prediction model based on the pedigree information (PBLUP) model was implemented and used as a benchmark 240 

compared to the GBLUP models. The model was:  241 
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𝒚 = 𝟏𝒏. 𝜇 + 𝒁𝒈 + 𝑬, (3) 242 

where y is the vector of ls-means of the 𝑛 phenotyped hybrids, 𝟏𝒏 is a vector of 𝑛 ones and 𝜇 is the intercept. 𝒈 is 243 

the vector of random hybrid effects, with 𝒈 ~ 𝒩(0, 𝑲𝜎ℎ2) where K is the pedigree kinship matrix computed on the 244 

hybrid population considering the founder lines as the base generation. The pedigree kinship matrix was computed 245 

with the recursive method presented in Mrode and Thompson (2005) using the AHGmatrix R-package (Amadeu 246 

et al. 2016). 𝜎ℎ2 is the hybrid variance. 𝒁 is the corresponding incidence matrix. 𝑬 is the vector of error terms, with 247 𝑬~ 𝒩(0, 𝑰𝜎𝐸2). The random effects are assumed to be independent. 248 

Genomic Best Linear Unbiased Prediction (GBLUP) models  249 

Several GBLUP models were tested to evaluate the predictive ability within the G1 cycle. Two types of models 250 

can be distinguished: the GCA-models, which decompose the hybrid genetic effect into its parental GCAs and its 251 

SCA components and the G-models, which consider genetic effects defined based on the hybrid marker genotypes.  252 

GCA.1-model. Two GBLUP models were implemented for genomic predictions depending on the TRS design 253 

(factorial or tester). The model implemented on the factorial designs including SCA effects was:  254 

 𝒚 = 𝟏𝒏. 𝜇 + 𝒁𝒅 𝒈𝑮𝑪𝑨𝒅 + 𝒁𝒇𝒈𝑮𝑪𝑨𝒇 + 𝒁𝒈𝑺𝑪𝑨𝒅𝒇 + 𝑬, (4.1) 255 

where 𝒚 is the vector of ls-means of the 𝑛 phenotyped hybrids, 𝟏𝒏 is a vector of 𝑛 ones and 𝜇 is the intercept. 256 𝒈𝑮𝑪𝑨𝒇 (respectively 𝒈𝑮𝑪𝑨𝒅) is the vector of random GCA effects of the 𝑛𝑓 flint parental lines (respectively 𝑛𝑑 dent 257 

lines), with 𝒈𝑮𝑪𝑨𝒇  ~ 𝒩 (0, 𝑲𝑮𝑪𝑨𝒇𝜎𝐺𝐶𝐴𝑓2 ) (respectively 𝒈𝑮𝑪𝑨𝒅  ~ 𝒩(0, 𝑲𝑮𝑪𝑨𝒅𝜎𝐺𝐶𝐴𝑑2 )) where 𝑲𝑮𝑪𝑨𝒇  (respectively 258 𝑲𝑮𝑪𝑨𝒅) is the genomic relatedness matrix between the flint lines (respectively dent lines). The kinship matrix was 259 

computed for all the flint (dent) parental lines following method 1 from VanRaden (2008). 𝜎𝐺𝐶𝐴𝑓2  and 𝜎𝐺𝐶𝐴𝑑2  are 260 

the flint and dent GCA variances. 𝒈𝑺𝑪𝑨𝒅𝒇  is the vector of SCA random effects of the 𝑛 hybrids, accounting for the 261 

interactions between the flint and dent parental lines, with 𝒈𝑺𝑪𝑨𝒅𝒇  ~ 𝒩 (0, 𝑲𝑺𝑪𝑨𝒅𝒇𝜎𝑆𝐶𝐴𝑑𝑓2 ) where 𝑲𝑺𝑪𝑨𝒅𝒇  is the 262 

SCA kinship matrix of the hybrids (phenotyped or not) and 𝜎𝑆𝐶𝐴𝑑𝑓2  the SCA variance. The coefficient of the SCA 263 

kinship between two flint-dent hybrids produced from crossing parental lines 𝑖 to 𝑗 and parental lines 𝑖’ to 𝑗’ were 264 

computed as the product between the flint GCA kinship coefficient between lines 𝑖 and 𝑖’ and the dent GCA 265 

kinship coefficient between lines 𝑗  and 𝑗’ (Stuber and Cockerham 1966). 𝒁𝒅 , 𝒁𝒇  and 𝒁 are the corresponding 266 

incidence matrices. 𝑬 is the vector of error terms, with 𝑬~ 𝒩(0, 𝑰𝜎𝐸2). The different random effects are assumed 267 

to be independent.  268 
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The model implemented on the G0_T-F was: 269 

𝒚 = 𝟏𝒏. 𝜇 + 𝑿𝝊 + 𝒁𝒇𝒈𝑮𝑪𝑨𝒇 + 𝒁𝒈𝑺𝑪𝑨𝒕 + 𝑬, (4.2) 270 

where 𝒚 is the vector of ls-means of the 𝑛 phenotyped hybrids, 𝟏𝒏 is a vector of 𝑛 ones and 𝜇 is the intercept. 𝝊 is 271 

the vector of fixed effects of the two dent testers. 𝒈𝑮𝑪𝑨𝒇 is the vector of random GCA effects of the 𝑛𝑓 flint parental 272 

lines, with 𝒈𝑮𝑪𝑨𝒇  ~ 𝒩 (0, 𝑲𝑮𝑪𝑨𝒇𝜎𝐺𝐶𝐴𝑓2 ) where 𝑲𝑮𝑪𝑨𝒇 is the genomic relatedness matrix between the flint lines and 273 𝜎𝐺𝐶𝐴𝑓2  is the flint GCA variance. 𝒈𝑺𝑪𝑨𝒕 is the vector of random effects of the interaction between the flint line and 274 

the dent testers, with 𝒈𝑺𝑪𝑨𝒕~𝒩(0, 𝑰𝟐 ⊗ 𝑲𝑮𝑪𝑨𝒇 𝜎𝑆𝐶𝐴𝑡2 ) where 𝜎𝑆𝐶𝐴𝑡2  is the SCA variance. The kinship matrix was 275 

computed for all the flint parental lines following method 1 from VanRaden (2008). 𝑿 ,  𝒁𝒇  and 𝒁  are the 276 

corresponding incidence matrices. 𝑬 is the vector of error terms, with 𝑬 ~ 𝒩(0, 𝑰𝜎𝐸2). The different random effects 277 

are assumed to be independent. The same model was adapted and implemented on the G0_T-D. 278 

GCA.2-model. This GCA-model was defined following González-Diéguez et al. (2021), where the 279 

genetic effect is defined according to gamete origin. The fullest model for the factorial TRS was: 280 

𝒚 = 𝟏𝒏. 𝜇 + 𝒁𝒅𝒈𝑨𝒅 + 𝒁𝒇𝒈𝑨𝒇 + 𝒁𝒈𝑫 + 𝒁𝒅𝒈𝑨𝑨𝒅 + 𝒁𝒇𝒈𝑨𝑨𝒇 + 𝒁𝒈𝑨𝑨𝒅𝒇 + 𝑬, (6) 281 

where 𝒚 is the vector of ls-means of the 𝑛 phenotyped hybrids, 𝟏𝒏 is a vector of 𝑛 ones and 𝜇 is the intercept. 𝒈𝑨𝒇 282 

and 𝒈𝑨𝒅  are the vectors of the random additive effect from the flint and dent parental lines with 283 

𝒈𝑨𝒇~𝒩 (0, 𝑲𝑨𝒇𝜎𝐴𝑓2 ) and 𝒈𝑨𝒅~𝒩(0, 𝑲𝑨𝒅𝜎𝐴𝑑2 ), respectively. 𝒈𝑫 is the vector of random dominance effect with 284 𝒈𝑫~𝒩(0, 𝑲𝑫 𝜎𝐷2), 𝒈𝑨𝑨𝒇 is the vector of random additive-by-additive epistatic effect within the flint (resp. dent) 285 

population with 𝒈𝑨𝑨𝒇~𝒩 (0, 𝑲𝑨𝑨𝒇𝜎𝐴𝐴𝑓2 )  (resp. 𝒈𝑨𝑨𝒅~𝒩(0, 𝑲𝑨𝑨𝒅𝜎𝐴𝐴𝑑2 ) ) and 𝒈𝑨𝑨𝒅𝒇  is the vector of random 286 

additive-by-additive epistatic effect across the flint and dent populations 𝒈𝑨𝑨𝒅𝒇~𝒩 (0, 𝑲𝑨𝑨𝒅𝒇𝜎𝐴𝐴𝑑𝑓2 ). 𝑲𝑨𝒇 , 𝑲𝑨𝒅 , 287 𝑲𝑫 , 𝑲𝑨𝑨𝒇 , 𝑲𝑨𝑨𝒅  and 𝑲𝑨𝑨𝒅𝒇  are respectively the flint additive, dent additive, dominance, additive-by-additive 288 

epistasis within the flint population, additive-by-additive epistasis within the dent population and the additive-by-289 

additive epistasis across populations genomic relatedness matrices computed following González-Diéguez et al. 290 

2021. 𝜎𝐴𝑓2 , 𝜎𝐴𝑑2 , 𝜎𝐷2 , 𝜎𝐴𝐴𝑓2 , 𝜎𝐴𝐴𝑑2  and 𝜎𝐴𝐴𝑑𝑓2  are the corresponding variances. 𝒁𝒇 , 𝒁𝒅 and 𝒁  are the incidence 291 

matrices. 𝑬 is the vector of error terms, with 𝑬 ~ 𝒩(0, 𝑰𝜎𝐸2). The different random effects are assumed to be 292 

independent. 293 
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G-model. This model was defined by Vitezica et al. (2017). It is based on the hybrid genotypes and does 294 

not account for the gamete origin (flint and dent parental origins). The fullest model considered for the factorial 295 

TRS was: 296 

𝒚 = 𝟏𝒏. 𝜇 + 𝒁𝒈𝑨 + 𝒁𝒈𝑫 + 𝒁𝒈𝑨𝑨 + 𝑬, (5) 297 

where 𝒚 is the vector of ls-means of the 𝑛 phenotyped hybrids, 𝟏𝒏 is a vector of 𝑛 ones and 𝜇 is the intercept. 𝒈𝑨 298 

is the vector of the random additive effect with 𝒈𝑨~𝒩(0, 𝑲𝑨 𝜎𝐴2), 𝒈𝑫 is the vector of random dominance effect 299 

with 𝒈𝑫~𝒩(0, 𝑲𝑫 𝜎𝐷2)  and 𝒈𝑨𝑨  is the vector of random additive-by-additive epistasis effect with 300 𝒈𝑨𝑨~𝒩(0, 𝑲𝑨𝑨 𝜎𝐴𝐴2 ) .  𝑲𝑨 , 𝑲𝑫  and 𝑲𝑨𝑨 are respectively the additive, dominance and additive-by-additive 301 

epistasis genomic relatedness matrices computed following Vitezica et al. 2017. 𝜎𝐴2 , 𝜎𝐷2  and 𝜎𝐴𝐴2  are the 302 

corresponding variances and Z is the incidence matrix. 𝑬 is the vector of error terms, with 𝑬 ~ 𝒩(0, 𝑰𝜎𝐸2). The 303 

different random effects are assumed to be independent. 304 

Prediction scenarios 305 

We defined three prediction scenarios to achieve three objectives: (i) assess the predictive ability of GS 306 

in the new generation and compare different GS models, (ii) evaluate the efficiency of a factorial design for 307 

predictions across breeding cycles and compare it to the tester designs, and n (iii) investigate the benefit of different 308 

strategies to update the factorial TRS across cycles and optimize it using the CDmean to predict the new generation. 309 

In Scenario 1, we evaluated the predictive ability within the new generation (G1 hybrids) to serve as a 310 

reference and compared the efficiency of several GS models. Cross-validations within the G1 hybrids were 311 

performed by training the GS model on 354 G1 hybrids (four-fifth) to predict the remaining 88 G1 hybrids (one-312 

fifth). This process was repeated a hundred times. We compared three types of GBLUP models, namely the 313 

GCA.1-model, G-model, and GCA.2-model, to a benchmark PBLUP model. The GCA.1-model involved two 314 

nested models, with or without the SCA effect. For the GCA.2- and G-models, several nested models were tested 315 

by adding successively dominance and additive-by-additive genetic effects to additive effects. See Table 2 for the 316 

summary of all tested models. 317 

Scenario 2 evaluated the efficiency of training a GBLUP model (GCA.1) on the G0 generation to predict 318 

the next one (G1). In Scenario 2a, we evaluated the efficiency of the incomplete factorial TRS (G0_F-1H) to 319 

predict G1 hybrids. We assessed the prediction stability across breeding cycles by comparing the predictive 320 

abilities obtained for the G1 hybrids to the one obtained for the G0S hybrids evaluated in the same experiments. 321 
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The GCA.1 model was used to perform predictions. In Scenario 2b, we compared the efficiency of factorial and 322 

tester TRSs from the G0 cycle to predict the G1 cycle. The GCA.1 models (4.1) or (4.2) were trained on the G0_F-323 

4H (363 hybrids) or the tester designs (360 hybrids) to predict G1 hybrids. We investigated the impact of the TRS 324 

on hybrid selection through the correlation between the GCA BLUPs predicted using the factorial and the ones 325 

obtained using the tester designs. In addition, to compare the similarity of selection between the different 326 

approaches (based on phenotypic evaluations (ls-means) or genomic predictions (BLUPs) trained on the factorial 327 

or the tester designs), the coincidence of selection was computed for each trait. For each pair of approaches, it 328 

corresponds to the percentage of common hybrids that would be selected by the two approaches at a given selection 329 

rate (%). This coincidence of selection was computed for different selection rates. As in Lorenzi et al. 2022, we 330 

sampled hybrids in the tester designs to evaluate the impact of the number of testers used in the TRS. In this 331 

Scenario 2b’, each tester TRS was composed of 180 hybrids produced by crossing in each group: (i) 90 lines to 332 

one tester (180 lines in total): since there were two testers in each group, there were four possible tester 333 

combinations, referred to as 1T-180H-180L- followed by the names of the testers, (ii) 45 lines to one tester and 334 

the 45 other lines to the other tester, referred to as 2T-180H-180L, (iii) the same 45 lines to two testers referred to 335 

as 2T-180H-90L. We compared these tester TRS to a factorial TRS by sampling 180 hybrids from the G0_F-4H 336 

in a random and balanced manner between families to maximize the number of lines. This factorial TRS comprised 337 

180 hybrids representing 170 lines (one line contributed to 2.1 hybrids on average) and was called F-180H-170L. 338 

In Scenario 2b’, all the TRSs were sampled ten times except for the one-tester designs that were sampled only 339 

once. 340 

Scenario 3 investigated TRS optimization across breeding cycles. In Scenario 3a, we evaluated the benefit 341 

of updating the TRS across cycles by adding either G0S or/and G1 hybrids to the initial G0R TRS. Several TRSs 342 

were sampled and compared to cross-validations within the G1 hybrids. To assess the benefit of adding G0S 343 

hybrids to the initial G0R TRS, we compared TRSs only composed of G0R hybrids with the same TRSs to which 344 

132 G0S hybrids from the G0_F-4H design were added. To evaluate the benefit of updating G0 TRSs with G1 345 

hybrids, we added from 0 to 354 randomly sampled G1 hybrids to G0 TRSs. One-fifth of the G1 hybrids (88 346 

hybrids) were predicted using the GCA.1 model. The mean predictive ability over 100 replicates was computed 347 

for each TRS. In Scenario 3b, our objective was to maximize the predictive ability of the G1 hybrids by optimizing 348 

a priori the G1 hybrid subset used to update the initial G0 TRS using only G1 line genotypes. We considered the 349 

CDmean proposed by Rincent et al. (2012). We used a heritability of 0.7, corresponding to the average heritability 350 

of our traits, to compute the value for the shrinkage parameter 𝜆 and the additive covariance kinship between 351 
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hybrids defined by Vitezica et al. (2017). Two optimization strategies were considered and compared to random 352 

sampling. For both strategies, we optimized the mean of the CD of contrasts between each non-phenotyped G1 353 

hybrid (PS) and the mean of the G1 hybrids. In the first strategy (CDmean1), the G1 hybrid set was optimized 354 

without considering the marker information on the G0 hybrids. The additive kinship considered to compute 355 

expected CDmeans only included the 442 G1 hybrids. In the second strategy (CDmean2), the optimization of the 356 

G1 was performed by also considering information on the G0 hybrids: the additive kinship was computed for all 357 

1802 hybrids from both generations (1360 G0+ 442 G1). The procedure was performed in both scenarios with four 358 

sampling sizes for the G1 hybrids (50,100, 200, and 300) and replicated a hundred times each. For each optimized 359 

set, all G0 hybrids plus the chosen G1 hybrids were used as TRS to predict the remaining G1 hybrids, used as VS. 360 

Predictions were performed using the GCA.1 model. 361 

Predictive ability and statistical tests 362 

In all scenarios, the predictive ability was computed as Pearson’s correlation between predicted hybrid values and 363 

hybrid ls-means. Different statistical tests were performed depending on the scenario to test the significance of 364 

differences between predictive abilities. In Scenario 1, paired t-tests were performed with a risk level α=0.05, and 365 

a Bonferroni correction (multiple comparison correction) was applied per trait. In Scenario 2b, Williams tests 366 

(Williams 1959) were performed with a risk level α=0.05 using the “r.test” function of the psych R-package 367 

(Revelle 2021). In Scenario 2b’, t-tests with a risk level α=0.05 were performed, and a Bonferroni correction was 368 

applied per trait. For all scenarios, computations were performed in the R statistical environment (R Core Team 369 

2020), and models were fitted using the “MM4LMM” R-package (Laporte and Mary-Huard 2020; Laporte et al. 370 

2022). 371 

Results 372 

For clarity purposes, results on the four main traits of interest (DMY, DMC, DtSilk, and MFU) are presented in 373 

the following. The results on the 11 studied traits are shown in supplementary materials. 374 

Variance components and broad-sense heritability (H²) at the phenotypic level without marker information 375 

Broad-sense heritabilities (H²) were medium to high (Table 3). They ranged from 0.56 (MFU) to 0.93 (DtSilk) for 376 

G0S hybrids and from 0.62 (MFU) to 0.94 (DtSilk) for G1 hybrids. Large and significant genetic variances were 377 

observed for all traits (Table 3, Table S1) with no clear differences between G0S and G1 hybrids. The main part 378 

of the genetic variance was due to GCA. The proportion of genetic variance due to SCA ranged from 0% (DMC) 379 
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to 30% (MFU) for the G0S and from 0% (DMY) to 10% (DMC) for the G1. 𝜎𝐺𝐶𝐴𝑓2  was always larger than 𝜎𝐺𝐶𝐴𝑑2  380 

except for G0S hybrids for DMC. Non-null GCA by trial variances were observed for G0S and G1 hybrids, but 381 

were lower than the GCA variances. For the G0S, 𝜎𝑆𝐶𝐴2  was larger than 𝜎𝑆𝐶𝐴𝑥𝐸2  for all traits. For G1 hybrids, 𝜎𝑆𝐶𝐴𝑥𝐸2  382 

was larger than 𝜎𝑆𝐶𝐴2 , except for DtSilk. 383 

Ls-means and genetic gain 384 

On average, G0S and G1 hybrids performed similarly (Table 4). Compared to the 16 founder hybrids, which are 385 

representative of the performance of the unselected G0 hybrids (G0R), G0S and G1 hybrids showed a gain in 386 

performance for DMY (+1.55 t/ha for G0S and +1.52 t/ha for G1). This gain was associated with a later DtSilk 387 

(+1.83 days for G0S and +1.90 days for G1), a lower DMC (-0.77% for G0S and -0.67% for G1), and a lower 388 

MFU (-2.11 MFUx10²/kg for G0S and -2.15 MFUx10²/kg for G1). The observed genetic gain for DMY was similar 389 

to the predicted one based on the genomic predictions trained on the G0_F-1H design. However, for DMC, DtSilk, 390 

and MFU, the observed response to selection was higher in absolute value than the predicted one.  391 

Scenario 1- Predictive ability within the G1 cycle and GS model comparison 392 

We assessed the predictive ability in the new breeding cycle using cross-validations among G1 hybrids (Fig.2). 393 

GBLUP predictive abilities of the new generation were high for all traits, ranging from 0.63 (DMY) to 0.76 394 

(DtSilk) when considering the best GBLUP model. All GBLUP models significantly outperformed the PBLUP 395 

model (differences between the worst GBLUP model and the PBLUP ranged from 0.07 (DMY) to 0.11 (MFU)). 396 

Differences among GBLUP models were sometimes significant but minor (<0.01), showing that models were 397 

equivalent and that adding non-additive effects had little effect. 398 

Scenario 2- Efficiency of a factorial TRS for predictions across breeding cycles and comparison with tester 399 

TRSs 400 

In Scenario 2a, we compared the ability of the G0_F-1H TRS to predict the same generation (G0S hybrids) or the 401 

new generation (G1 hybrids). Predictive abilities were high for all traits (ranging from 0.56 for DMY to 0.67 for 402 

DtSilk for G1 hybrids and from 0.60 for DMY to 0.75 for MFU for G0S hybrids) (Fig. 3). As expected, predictive 403 

abilities were higher for G0S hybrids (hybrids from the same generation as the TRS hybrids) than for G1 hybrids 404 

for all traits. Lower predictive abilities were obtained when training on the G0_F-1H compared to those obtained 405 

by cross-validations within G1 hybrids (Fig. 3). 406 
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In Scenario 2b, we compared predictive abilities obtained using either the G0_F-4H (363 hybrids) or the 407 

G0 tester designs (360 hybrids) as TRS to predict all G1 hybrids (442 hybrids) (Fig. 4). They ranged from 0.59 408 

(DMY and MFU) to 0.70 (DtSilk) when training on the G0_F-4H and from 0.60 (MFU) to 0.69 (DtSilk) when 409 

training on the G0 tester designs. Across the 11 traits, training on the G0_F-4H or the G0 tester designs gave 410 

equivalent predictive abilities except for four traits: the G0_F-4H design significantly outperformed the G0 tester 411 

designs for DMC and PH, and the G0 tester designs significantly outperformed the G0_F-4H design for DMY and 412 

CELL (Fig. S1). The GCA BLUPs of the G1 lines predicted using the G0_F-4H or the G0 tester designs as TRS 413 

were highly correlated. They ranged from 0.85 (DMC) to 0.94 (MFU) for the dent G1 lines and from 0.84 (DMY) 414 

to 0.94 (DtSilk) for the flint G1 lines, and from 0.87 (DMY, DMC) to 0.91 (DtSilk) for G1 hybrids (Table S4). 415 

The coincidence of selection for genomic predictions between the factorial and the tester TRS of the top 5% of 416 

hybrids was 52% for DMY, 61% for DMC, 65% for DtSilk, and 39% for MFU (Fig. S2), which indicates that the 417 

single-cross hybrid sets selected by the two approaches are not identical. To assess if one of the two approaches 418 

identified a higher proportion of the best-phenotyped hybrids, we compared the proportion of the top 5% hybrids 419 

identified based on the factorial or tester TRS to the top 5% phenotyped hybrids. For DMY, the major trait of 420 

interest in our study, the factorial design identified a higher proportion of the best-phenotyped hybrids compared 421 

to the tester designs. 422 

In Scenario 2b’, we investigated the efficiency of different G0 tester design compositions to predict G1 423 

hybrids (442 hybrids) at the same number of hybrids (180) and compared them with a factorial design of same size 424 

(Fig. 5). Predictive abilities varied between the four one-tester TRS ranging from 0.005 (DMC) to 0.048 (DMY), 425 

and the best one-tester TRS depended on the trait. The best two-tester TRS maximized the number of evaluated 426 

candidate lines by crossing more lines each to a different tester (2T-180H-180L) and usually outperformed the 427 

worst one-tester TRS. The F-180H-170L factorial TRS was equivalent to or outperformed the tester TRS except 428 

for DMY. On average, over the 11 traits, the F-180H-170L TRS gave the highest predictive abilities (Fig.5, Fig. 429 

S3). 430 

Scenario 3a- Benefit of updating the factorial TRS across breeding cycles 431 

To evaluate the benefit of updating the TRS across breeding cycles, four TRS strategies were evaluated 432 

based on their ability to predict G1 hybrids: (i) training on G0R only (G0_F-1H, G0R_F-4H or G0_F-1H+G0R_F-433 

4H), (ii) training on G0R plus 132 hybrids between G0 selected lines (G0S), (iii) training on G0R plus a subset m 434 

of hybrids from the new generation (G1 hybrids), and (iv) training on G0R plus 132 G0S hybrids and m G1 hybrids, 435 
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with m ranging from 1 to 354 (Fig. 6). The four TRS strategies were also compared to cross-validations within the 436 

G1 hybrids. The best G0R TRS (G0_F-1H+G0R_F-4H) was also the largest one (1183 hybrids) with predictive 437 

abilities ranging from 0.69 (MFU) to 0.76 (DMC and DtSilk), which were equivalent or higher than the ones 438 

obtained with a TRS composed of 354 G1 hybrids.  439 

Adding 132 G0S hybrids to the initial G0R TRSs (G0_F-1H, G0R_F-4H, or G0_F-1H+G0R_F-4H) 440 

increased predictive abilities (with a gain on average of 0.10 for DMY, 0.14 for DMC, 0.16 for DtSilk and 0.05 441 

for MFU). The largest gain in predictive ability was observed for the G0R_F-4H TRS, which was also the smallest 442 

G0R TRS (232 hybrids), with gains ranging from 0.08 (MFU) to 0.39 (DtSilk). There was always a gain in 443 

predictive ability when adding G1 hybrids to the TRS, whether composed of G0R or of G0R and G0S hybrids. As 444 

expected, the gain increased with the number of G1 hybrids included in TRS. Adding 354 G1 hybrids to G0R 445 

TRSs, increased predictive abilities on average by 0.13 for DMY, 0.20 for DMC, 0.21 DtSilk, and 0.12 for MFU. 446 

For TRSs comprising G0R and G0S hybrids, adding 354 G1 hybrids led to smaller gains (gain not exceeding 0.07 447 

for MFU). The largest increase in predictive abilities when updating the TRS with G1 hybrids was obtained with 448 

the smallest initial G0R TRS (G0R_F-4H). It is interesting to note that TRSs composed of G0 and 354 G1 hybrids 449 

always outperformed prediction accuracies obtained with 354 G1 (cross-validations within G1), illustrating the 450 

benefit of keeping information from the previous generation in the TRS. 451 

From Fig 6, it is possible to estimate the number of G1 hybrids to add to the initial G0R TRSs to achieve 452 

similar predictive abilities to the ones obtained when adding 132 G0S hybrids. For example, for DMY and the 453 

G0R_F-4H initial TRS, adding 132 G0S was equivalent to adding around 170 G1 hybrids. For all initial G0R 454 

TRSs, the number of G1 hybrids to include to be more efficient than 132 G0S hybrids was higher than 132 for all 455 

traits except MFU. 456 

Scenario 3b- Optimization of the composition of the factorial TRS for G1 hybrid predictions 457 

The G1 hybrid set to add to the existing G0 TRS (1360 G0 hybrids) was optimized using the CDmean following 458 

two strategies, and the results were compared to a TRS obtained from random sampling (Fig. 7). In the first strategy 459 

(CDmean1), the G1 hybrid set was optimized without considering the information from the G0 hybrids, whereas 460 

in the second strategy (CDmean2), the information from the G0 hybrids was considered. For all traits and all 461 

sampling sizes, the best CDmean strategy gave higher or at least equivalent predictive abilities compared to random 462 

sampling except for DMC for a sampling size of 300. The maximum gains were 0.03 for DMY, 0.01 for DMC, 463 

0.03 for DtSilk, and 0.02 for MFU, depending on the sampling size. Across the 100 replicates, the variance of the 464 
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predictive abilities was always lower using the CDmean (1 or 2) than the random sampling. The CDmean1, which 465 

does not consider G0 hybrid information to optimize the G1 hybrid set included in the TRS, outperformed the 466 

CDmean2 except for small sampling sizes (size 50 and 100 for DMY, size 50 for DMC, DtSilk, and MFU). 467 

Discussion 468 

SCA variance and its importance in hybrid breeding  469 

The SCA variance estimated in the G1 generation was small or equal to zero (Table 3, Table S2). Small SCA 470 

variance was expected in hybrids produced by crossing lines from divergent populations (Reif et al. 2007). The 471 

estimated SCA percentage decreased for all traits from G0 to G1 hybrids (Table S3). The precision of SCA 472 

variance estimation in our experiment is limited and does not allow us to draw a final conclusion on this evolution. 473 

However, one possible explanation for the decrease in SCA variance we observed is that the recurrent reciprocal 474 

selection increased the divergence between groups (as also observed by Gerke et al. (2015)) and, as a result, 475 

decreased the SCA variance in the flint-dent single-cross hybrids (consistent with theoretical expectations from 476 

Reif et al. (2007) and Legarra et al. (2023)). 477 

Genetic gain after selection based on genomic predictions trained on a sparse factorial design 478 

The population was selected for an index combining yield performance (DMY), dry matter content (DMC), and 479 

digestibility (MFU) based on genomic predictions. We successfully improved the mean performance of the new 480 

generation for DMY, but there was a decrease for MFU and DMC (Table 4), which was higher than expected. 481 

The negative correlation (-0.53) between DMY and MFU that was observed based on phenotypic data in the G0 482 

generation (G0_F-1H) (Fig. S4) certainly explains the difficulty of improving both traits simultaneously. This was 483 

consistent with results found by Barrière and Emile (2000) and Surault et al. (2005), who also reported a negative 484 

correlation of -0.5 between these traits for maize silage. To maintain a stable level of DMC and improve MFU in 485 

the new generation, higher weights relative to DMY should have been put on these traits in the index calculation. 486 

The genetic gain predicted by the GBLUP model trained on the G0_F-1H design was similar to the 487 

observed genetic gain for DMY. This illustrates the efficiency of GS models in predicting GCA values based on a 488 

sparse factorial TRS and confirms the results found by Seye et al. (2020) using simulations and Lorenzi et al. 489 

(2022) on the G0 generation. 490 
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Predictive ability in the new generation and comparison of different GS models 491 

In Scenario 1, we evaluated the predictive ability within G1 hybrids and compared different prediction models. 492 

All models gave high predictive abilities, with the lowest reaching 0.66 (for DtSilk with the PBLUP model). The 493 

high predictive ability of the PBLUP model indicates that family structure alone could predict part of hybrid 494 

performances. However, GBLUP models always outperformed the PBLUP, confirming the efficiency of GBLUP 495 

to predict the mendelian sampling within a family, which is of main interest for breeding. Different GBLUP models 496 

were tested. Differences were sometimes significant but always small (<0.01). Including non-additive genetic 497 

effects had little or no effect on predictive abilities, which was also reported in studies using data from inter-498 

heterotic group hybrids (Bernardo 1994; Schrag et al. 2006, 2018; Maenhout et al. 2010; Vitezica et al. 2017; 499 

González-Diéguez et al. 2021; Lorenzi et al. 2022). Note that the new SCA kinship formula proposed by González-500 

Diéguez et al. (2021) used in model GCA.2 did not improve predictive abilities compared to the one used in the 501 

GCA.1 model. This was also observed by Lorenzi et al. (2022) for genomic predictions within the G0 generation. 502 

In their simulations, Seye et al. (2020) found an advantage of including SCA in prediction models when SCA 503 

explains about 23% of the genetic variance. The small SCA variances estimated in our experimental design are 504 

consistent with the fact that including non-additive effects did not improve prediction accuracies. 505 

Assuming a single additive hybrid genetic effect (G models) or additive genetic effects defined according 506 

to the allele origin (GCA models) was equivalent in terms of quality of prediction for hybrid performance. This 507 

was surprising considering the large differences in GCA variances observed between the two groups and the 508 

detection of group-specific QTLs in the G0_F-1H design (Giraud et al. 2017b). The equivalence in terms of 509 

prediction accuracy between the G and GCA models was also shown in hybrid populations by Technow et al. 510 

(2014), González-Diéguez et al. (2021), and Alves et al. (2019). Even if the GCA model did not outperform the G 511 

model, it makes it possible to estimate parental line values and thus select the parental lines of the next cycle, 512 

which is less straightforward with a G model. We kept the GCA.1 model for the following genomic prediction 513 

scenarios for these reasons. 514 

Portability of genomic predictions trained on a sparse factorial across breeding cycles 515 

In Scenario 2a, we trained the GS model on the G0_F-1H to predict G0S and G1 hybrids, allowing us to 516 

evaluate the predictive ability across cycles and environments. We obtained high predictive abilities for G0S 517 

hybrids, which illustrates the ability of the GS model trained on the G0_F-1H design to predict the performances 518 

of a new set of hybrids between selected lines in new environments. This confirms previous results (Lorenzi et al. 519 
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2022), which considered another set of G0S hybrids evaluated in the 2016-2017 G0_F-4H trials. We observed 520 

lower predictive abilities for G1 compared to G0S hybrids. Note that G0S and G1 hybrids were evaluated in the 521 

same environments, therefore, the decrease in predictive ability is not attributable to an environmental effect. A 522 

decrease in prediction accuracy when generations differ between the TRS and PS was reported in simulations 523 

(Pszczola and Calus 2016; Seye et al. 2020) and experimental studies on hybrids (on sugar beet by Hofheinz et al. 524 

2012; on barley Sallam et al. 2015 and Michel et al. 2016 and on maize by Wang et al. 2020). This decrease is 525 

expected as selection modifies allele frequencies along generations, and recombination events modify marker-526 

QTL linkage disequilibrium. Allelic frequencies are identical in G0S and G1 hybrids since G1 lines are the 527 

unselected progeny of G0S lines. Thus, the observed decrease is due to the recombination events. Still, predictive 528 

abilities remained high, highlighting the efficiency of the GS model trained on the G0_F-1H design in decorrelating 529 

the contributions from each parental line to predict their GCAs, the GCAs of their progeny, and therefore the 530 

hybrid values across breeding cycles. 531 

Efficiency of factorial compared to tester TRSs for predictions across the breeding cycle 532 

In Scenario 2b, we compared, for the same number of hybrids and lines, the efficiency of the factorial and tester 533 

TRSs to predict hybrids across generations. A previous study using the same TRSs to predict the G0 generation 534 

showed slightly higher predictive abilities using the factorial compared to the tester TRSs (Lorenzi et al. 2022). 535 

This advantage decreased when predicting the new generation (G1). This is in accordance with results from 536 

simulations based on a similar design (Seye et al. 2020), which showed that the advantage of the factorial over the 537 

tester TRSs decreases across breeding cycles if the TRS was not updated. When investigating several tester designs 538 

composition (Scenario 2b’), we showed that the best strategy was always to use more testers while maximizing 539 

the number of candidate lines, a strategy comparable to using a sparse factorial design. 540 

Benefit of updating the factorial TRS along breeding cycles 541 

Once inbred lines from a new generation (G1) are available and can be genotyped, a key issue is to predict the best 542 

new hybrid combinations between them to prioritize hybrid production and evaluation. There are two possible 543 

situations, depending on the availability of phenotypes of a subset of hybrids from the new breeding cycle (G1 544 

hybrids). When G1 phenotypes are available, they can be used to calibrate prediction equations. We showed the 545 

benefit of combining this information with historical data from G0 hybrids compared to using G1 phenotypes 546 

alone (Fig.6). Several studies also reported similar results (Jannink 2010; Denis and Bouvet 2013; Neyhart et al. 547 

2017). Among the historical data, hybrids between the lines selected to generate the new generation (G0S) are the 548 
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most related to the G1 generation. We showed that even when G0S and G1 hybrids were already in the TRS, there 549 

was still a benefit of including hybrids between unselected lines from previous generations (G0R hybrids). This 550 

last result aligns with results found by Neyhart et al. (2017) and Brandariz and Bernardo (2018), showing that 551 

when constructing a TRS, one must consider keeping hybrids produced between unselected lines to maintain high 552 

prediction accuracy. Additionally, when including data from the two generations (G0 and G1) in the TRS, we also 553 

included TRS hybrids evaluated in different years and environments. This reduced the impact of genotype-by-554 

environment interactions and, as a result, increased prediction accuracy. Similar results have been obtained by 555 

Auinger et al. (2016). 556 

In the second situation, where G1 hybrids phenotypes are not yet available, we showed that using only 557 

historical data in the TRS can provide good prediction accuracies (Fig.6). We evaluated the benefit of producing 558 

and phenotyping additional data to update the historical (G0) TRS, particularly the benefit of adding G0S hybrids. 559 

G0S are single-crosses between the G0 lines selected to be the parents of the G1 generation, so including these 560 

hybrids increases the relationship between the TRS and the G1 PS. We compared G0S and G1 hybrids for their 561 

efficiency to update the TRS. Predictive abilities obtained with the 132 G0S hybrids were reached when adding a 562 

similar number or more G1 hybrids (Fig.6). This indicates that for a fixed number of hybrids, using G0S hybrids 563 

was equivalent to or slightly better than using G1 hybrids for updating the TRS. Once the best candidate lines are 564 

selected to become the parental lines (corresponding to G0S lines) for the subsequent breeding cycle, but hybrids 565 

from the new cycle (G1 hybrids) are not yet available, it is beneficial to phenotype new hybrid combinations 566 

between the selected lines to update the TRS. Several entangled factors can explain the result: (i) the increased 567 

TRS size, (ii) the increased relationship between the TRS and PS, and (iii) the increased number of years and 568 

environments in the data used as TRS (see reviews by Isidro y Sánchez and Akdemir 2021 and Rio et al. 2022). 569 

Adding G0S hybrids is a way to accumulate information on the hybrid values (GCAs) of the selected lines in 570 

different environments, which is helpful to predict the hybrid values of their progeny. Our results also show that 571 

even if G0S hybrids  are added to the TRS, it is still interesting to add performances of G1 hybrids to the TRS 572 

when these become available, as it increases the genotypic relatedness between the TRS and the PS (Fig.6).  573 

Optimization of the G1 hybrid set to phenotype to update the TRS 574 

In Scenario 3b, we optimized the G1 hybrid set used to update the initial G0 TRS. The G1 hybrid set was optimized 575 

based on the CDmean computed considering (CDmean 2) or not (CDmean 1) the information from the initial G0 576 

TRS (G0R+G0S hybrids) (Fig.7). As expected, optimizing the TRS using the CDmean (CDmean 1 or CDmean 2) 577 
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instead of random sampling increased our predictive abilities in most of the cases. This was also reported in 578 

numerous other studies (Rincent et al. 2012, 2017; Isidro et al. 2015; Akdemir et al. 2015; Mangin et al. 2019; 579 

Isidro y Sánchez and Akdemir 2021; Kadam et al. 2021). Interestingly, we observed more stable predictions 580 

abilities across replicates using the CDmean, than with random sampling. It has to be noted that in this optimization 581 

process, we used CDs computed assuming a single additive genetic effect despite using a GCA/SCA prediction 582 

model for our predictions. We could have included non-additive effects in the computation of the CDmean, as 583 

done by Momen and Morota (2018) and Fristche-Neto et al. (2018). However, these authors did not find a clear 584 

benefit of accounting for dominance in the CDmean computation, and we did not see any advantage of including 585 

the dominance effect in our prediction models. For these reasons, we do not expect that adding dominance in the 586 

CDmean computation would have had a positive impact.  587 

It was surprising to us that the CDmean 1 (which does not consider information from the G0 TRS hybrids) 588 

outperformed the CDmean 2 (which considers the G0 information). The CDmean 1 likely selected G1 hybrids that 589 

were representative of the whole range of G1 hybrids. In contrast, since the hybrids between the G0S parental lines 590 

of the G1 were already in the TRS, the CDmean 2 likely maximized the diversity of the TRS by favoring G1 591 

hybrids genetically distant from the G0 hybrids. The CDmean 2 assumed that G0 and G1 hybrids were evaluated 592 

in the same environments, which was not true. As a consequence, some of the G0 hybrids may not have been as 593 

informative to predict the G1 hybrids as they seemed, based on the genomic relationship matrix. This may explain 594 

why CDmean 2 did not outperform CDmean 1. To compute the CDmean, we could have considered each 595 

environment as a different trait and used the correlation value between the two environments, as suggested by Ben-596 

Sadoun et al. (2020). Rio et al. (2022a) showed the benefit of using such multi-environmental CDs to optimize the 597 

allocation of individuals in trial networks, and this could have been extended to multigeneration TRS optimization. 598 

In practice, one cannot know in advance the correlation between the environments where the previous generation 599 

was evaluated and those where the new generation will be evaluated. One solution might be to use historical data 600 

to estimate the magnitude of correlations that can be expected between years and use this value when computing 601 

the expected multi-environment CD. 602 

Conclusions 603 

Our study confirms the efficiency of combining genomic predictions and sparse factorial TRS to predict candidate 604 

lines GCAs and hybrid values across breeding cycles. Genomic prediction accuracy was high and increased when 605 

updating the TRS by incorporating performances of hybrids between selected lines from the previous generation 606 
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and potentially hybrids from the new generation. When incorporating hybrids from the new generation, choosing 607 

them based on a criterion such as the CDmean was beneficial. 608 
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Figure legends 815 

Fig. 1 Hybrid experimental designs produced by crossing inbred lines from the initial generation (G0) and the 816 
inbred lines obtained after one cycle of selection (G1). 817 

Fig. 2 Predictive abilities obtained by cross-validations within the 442 G1 hybrids using different prediction 818 
models (PBLUP, GCA.1, GCA.2 or G models) in Scenario 1. The mean predictive ability over the 100 replicates 819 
is represented by a white cross. Significant differences (as obtained by paired t-tests at a level risk α=0.05) are 820 
indicated with letters: two different letters indicate a significant difference and at least one common letters indicate 821 
no significant difference. 822 

Fig. 3 Predictive abilities obtained in Scenario 2a when training the GS model on the G0_F-1H design (951 823 
hybrids) to predict the 47 G0S hybrids or the 442 G1 hybrids. The dotted line corresponds to the mean predictive 824 
ability over 100 replicates of cross-validations within the 442 G1 hybrids. 825 

Fig. 4 Predictive abilities obtained for the G1 hybrids (442) by training the GS model on the G0_F-4H (363) or 826 
the G0_T (360) TRSs in Scenario 2b. Williams tests were performed (α=0.05) and significant differences were 827 
indicated with letters: two different letters indicate a significant difference and at least one common letters indicate 828 
no significant difference. 829 

Fig. 5 Predictive abilities obtained in Scenario 2b’ by training the GS model on 180 hybrids issued from tester-830 
based or factorial TRSs to predict the G1 hybrids (442). The different tester-based TRSs correspond to: 90 lines 831 
crossed to one tester (1T-180H-180L-A, 1T-180H-180L-B, 1T-180H-180L-C, 1T-180H-180L-D), 90 lines 832 
crossed to two testers (2T-180H-180L), 45 lines crossed to two testers (2T-180H-90L). The factorial design (F-833 
180H-152L) corresponds to the crosses of 76 flint lines with 76 dent lines. The sampling was repeated 10 times 834 
and t-tests (α=0.05) were performed for the F-180H-170L, 2T-180H-180L and 2T-180H-90L. Significant 835 
differences were indicated with letters: two different letters indicate a significant difference and at least one 836 
common letters indicate no significant difference. 837 

Fig. 6 Predictive abilities obtained in Scenario 3a when predicting one-fifth of the G1 hybrids (88) using different 838 
TRSs: G0R hybrids (in solid colored lines) completed by 132 G0S hybrids (in doted colored lines) and m G1 839 
hybrids (with m ranging from 0 to 354 from the left to the right of each graph). The mean predictive ability over 840 
100 replicates is represented by a dot for each TRS. The number of hybrids in the initial G0R TRSs is indicated 841 
between brackets in the figure legend. 842 

Fig. 7 Predictive abilities obtained with TRSs composed of an initial G0 set (1360 hybrids) completed by a 843 
CDmean optimized G1 hybrid set of different sizes (50, 100, 200 and 300). The G1 hybrid set is optimized 844 
considering only G1 information (CDmean 1) or considering G1 and G0 information (CDmean 2) in the calculation 845 
of the CDmean and compared to a randomly sampled TRS (Random). The white cross represents the mean 846 
predictive ability over the 100 replicates.  847 
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Table 1 Description of all experimental designs used in this study.  849 

Years of 

phenotyping 

Breeding 

cycle 
Design Name 

Hybrids within 

the design a 
Reference c 

2013, 2014 G0 Factorial G0_F-1H G0Ra Giraud et al. 2017a, b; 

Seye et al. 2019; Lorenzi 

et al. 2022 

2016, 2017 G0 Factorial G0_F-4H G0R + G0Sb Seye 2019; Lorenzi et al. 

2022 
Tester G0_T 

2019, 2020 G0+G1 Factorial (G0S+G1)_F-1H G0S + G1 Current study 

a G0R hybrids were produced by crossing two random lines from the G0 cycle 850 
b G0S hybrids were produced by crossing two selected lines from the G0 cycle 851 
c A reference was indicated for data that was already analyzed in previous studies 852 

 853 

Table 2 Definition of the genomic prediction models tested in Scenario 1.  854 

Models Model code Random genetic effectsa Reference 

PBLUP 𝑔 Henderson 1976 

GCA.1 

 

GCA 𝑔𝐺𝐶𝐴𝑓 + 𝑔𝐺𝐶𝐴𝑑 VanRaden 2008 

GCA_SCA 𝑔𝐺𝐶𝐴𝑓 + 𝑔𝐺𝐶𝐴𝑑 + 𝑔𝑆𝐶𝐴 

GCA.2 GCA:A 𝑔𝐴𝑓 + 𝑔𝐴𝑑 + 𝑟 González-Diéguez 

et al. 2021 GCA:AD 𝑔𝐴𝑓 + 𝑔𝐴𝑑 + 𝑔𝐷 

GCA:A(AAdf) 𝑔𝐴𝑓 + 𝑔𝐴𝑑 + 𝑔𝐴𝐴𝑑𝑓 

GCA:AD(AAdf) 𝑔𝐴𝑓 + 𝑔𝐴𝑑 + 𝑔𝐷 + 𝑔𝐴𝐴𝑑𝑓  

GCA:AD(AAf)(AAd)(AAdf) 𝑔𝐴𝑓 + 𝑔𝐴𝑑 + 𝑔𝐷 + 𝑔𝐴𝐴𝑓 + 𝑔𝐴𝐴𝑑 + 𝑔𝐴𝐴𝑑𝑓 

G G:A 𝑔𝐴 Vitezica et al. 2017 

G:AD 𝑔𝐴 + 𝑔𝐷 

G:A(AA) 𝑔𝐴 + 𝑔𝐴𝐴 

G:AD(AA) 𝑔𝐴 + 𝑔𝐷 + 𝑔𝐴𝐴 

a The list of the random genetic effects considered in the GCA models correspond to: dent GCA (𝑔𝐺𝐶𝐴𝑑), flint 855 
GCA (𝑔𝐺𝐶𝐴𝑓), SCA (𝑔𝑆𝐶𝐴), intragroup additive-by-additive epistasis for the dent (𝑔𝐴𝐴𝑑) and flint group (𝑔𝐴𝐴𝑓), 856 

and intergroup additive-by-additive epistasis (𝑔𝐴𝐴𝑑𝑓) effects. In the G models, random genetic effects correspond 857 

to: additive (𝑔𝐴), dominance (𝑔𝐷) and additive-by-additive epistasis (𝑔𝐴𝐴) effects. 858 
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Table 3 Broad-sense heritability (H²), percentage of genetic variance assigned to SCA variance (%SCA) and 860 
variance components estimated on phenotypic data corrected for spatial effects for the (G0S+G1)_F-1H without 861 
marker information. 862 

 
DMY  

(t/ha) 
DMC 

(%) 
DtSilk 

(days) 
MFU 

(MFUx10²/kg) 
 G0S G1 G0S G1 G0S G1 G0S G1 𝝈𝑮𝑪𝑨𝒇𝟐   0.50(0.24)d 0.31(0.05) 0.46(0.28) 1.47(0.21) 1.63(0.71) 2.06(0.29) 0.44(0.24) 0.49(0.09) 𝝈𝑮𝑪𝑨𝒅𝟐   0.13(0.18) 0.25(0.05) 1.42(0.51) 0.73(0.21) 1.57(0.65) 1.41(0.27) 0.00 0.36(0.09) 𝝈𝑺𝑪𝑨𝟐   0.14(0.18) 0.00 0.00 0.25(0.20) 0.03(0.27) 0.05(0.22) 0.19(0.13) 0.00(0.09) 𝝈𝑮𝑪𝑨𝒇×𝑬𝟐  0.07(0.08) 0.05(0.05) 0.00 0.11(0.05) 0.41(0.16) 0.17(0.07) 0.27(0.17) 0.20(0.07) 𝝈𝑮𝑪𝑨𝒅×𝑬𝟐  0.12(0.09) 0.07(0.04) 0.39(0.13) 0.31(0.05) 0.05(0.12) 0.09(0.06) 0.06(0.12) 0.13(0.07) 𝝈𝑺𝑪𝑨×𝑬𝟐   0.00 0.23(0.07) 0.00 0.00 0.00 0.24(0.11) 0.00 0.11(0.09) 𝝈𝑬𝟐  a  0.31(0.05)-1.40(0.12) 0.57(0.07)-3.62(0.27) 0.64(0.09)-2.33(0.20) 0.12(0.02)-7.97(0.55) 
%SCAb 19 0 0 10 1 1 30 0 
H² c 0.87 0.80 0.90 0.92 0.93 0.94 0.56 0.62 

a Minimum and maximum residual variance across all environments 863 
b Percentage of SCA variance computed as 

𝝈𝑺𝑪𝑨𝟐𝝈𝑮𝑪𝑨𝒅𝟐 +𝝈𝑮𝑪𝑨𝒇𝟐 +𝝈𝑺𝑪𝑨𝟐 × 100 864 

c Broad-sense heritability 865 
d Standard error in brackets 866 

 867 

Table 4 Performances (ls-means) of commercial, founder and experimental hybrids (G0S and G1 hybrids) and 868 
genetic gain of the experimental hybrids compared to the founder hybrids corresponding to the (G0S+G1)_F-1H 869 
design. 870 

 
Hybrid type Component DMY 

(t/ha) 
DMC 

(%) 
DtSilk 

(days) 
MFU 

(MFUx10²/kg) 

Ls-

means 

Commercial Mean 17.96 

(17.18-18.74)b 
34.69 

(34.37-35.00) 
201.89 

(200.27-203.50) 
95.54 

(95.34-95.74) 

Sdc 1.10 0.45 2.28 0.28 

Founder Mean 15.80 

(14.27-17.47) 
34.10 

(30.53-37.48) 
203.14 

(199.80-206.16) 
95.28 

(91.13-98.14) 

Sd 0.84 1.94 1.50 2.05 

G0S Mean 17.35 

(14.82-18.89) 
33.33 

(30.54-37.13) 
204.97 

(201.80-208.79) 
93.17 

(89.04-97.06) 

Sd 0.92 1.40 1.82 1.56 

G1 Mean 17.33 

(14.33-19.72) 
33.43 

(29.39-39.18) 
205.04 

(197.98-211.40) 
93.13 

(87.59-101.36) 

Sd 0.85 1.63 1.97 1.71 

Genetic 

gaina 

G0S 1.55 -0.77 1.83 -2.11 

G1 1.52 -0.67 1.90 -2.15 

Predicte

d genetic 

gaind 

G0S 1.45 -0.33 1.18 -1.35 

G1 1.41 -0.28 0.91 -1.14 

a Genetic gain computed as the difference between the mean performance of the experimental hybrids and the 871 
founder hybrids 872 
b Minimum and maximum mean performance in brackets 873 
c Standard deviation of the ls-means of the experimental hybrid performances 874 
d Predicted genetic gain based on genomic predictions trained on the G0_F-1H 875 



Figures

Figure 1

Hybrid experimental designs produced by crossing inbred lines from the initial generation (G0) and the
inbred lines obtained after one cycle of selection (G1).



Figure 2

Predictive abilities obtained by cross-validations within the 442 G1 hybrids using different prediction
models (PBLUP, GCA.1, GCA.2 or G models) in Scenario 1. The mean predictive ability over the 100
replicates is represented by a white cross. Signi�cant differences (as obtained by paired t-tests at a level
risk α=0.05) are indicated with letters: two different letters indicate a signi�cant difference and at least
one common letters indicate no signi�cant difference.



Figure 3

Predictive abilities obtained in Scenario 2a when training the GS model on the G0_F-1H design (951
hybrids) to predict the 47 G0S hybrids or the 442 G1 hybrids. The dotted line corresponds to the mean
predictive ability over 100 replicates of cross-validations within the 442 G1 hybrids.



Figure 4

Predictive abilities obtained for the G1 hybrids (442) by training the GS model on the G0_F-4H (363) or the
G0_T (360) TRSs in Scenario 2b. Williams tests were performed (α=0.05) and signi�cant differences were
indicated with letters: two different letters indicate a signi�cant difference and at least one common
letters indicate no signi�cant difference.



Figure 5

Predictive abilities obtained in Scenario 2b’ by training the GS model on 180 hybrids issued from tester-
based or factorial TRSs to predict the G1 hybrids (442). The different tester-based TRSs correspond to: 90
lines crossed to one tester (1T-180H-180L-A, 1T-180H-180L-B, 1T-180H-180L-C, 1T-180H-180L-D), 90 lines
crossed to two testers (2T-180H-180L), 45 lines crossed to two testers (2T-180H-90L). The factorial design
(F-180H-152L) corresponds to the crosses of 76 �int lines with 76 dent lines. The sampling was repeated
10 times and t-tests (α=0.05) were performed for the F-180H-170L, 2T-180H-180L and 2T-180H-90L.
Signi�cant differences were indicated with letters: two different letters indicate a signi�cant difference
and at least one common letters indicate no signi�cant difference.



Figure 6

Predictive abilities obtained in Scenario 3a when predicting one-�fth of the G1 hybrids (88) using
different TRSs: G0R hybrids (in solid colored lines) completed by 132 G0S hybrids (in doted colored lines)
and m G1 hybrids (with m ranging from 0 to 354 from the left to the right of each graph). The mean
predictive ability over 100 replicates is represented by a dot for each TRS. The number of hybrids in the
initial G0R TRSs is indicated between brackets in the �gure legend.



Figure 7

Predictive abilities obtained with TRSs composed of an initial G0 set (1360 hybrids) completed by a
CDmean optimized G1 hybrid set of different sizes (50, 100, 200 and 300). The G1 hybrid set is optimized
considering only G1 information (CDmean 1) or considering G1 and G0 information (CDmean 2) in the
calculation of the CDmean and compared to a randomly sampled TRS (Random). The white cross
represents the mean predictive ability over the 100 replicates.
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