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Abstract

Purpose: The primary objective of this study was to develop and evaluate a
deep neural network model based on convolutional neural networks (CNNs) for
accurately classifying SARS-CoV-2 viral sequences and other subtypes within
the Coronaviridae family. With the rapid evolution of viral genomes and the
increasing need for timely classification, we aimed to provide a robust and efficient
tool that could enhance the accuracy of viral identification and classification
processes. By harnessing the power of deep learning, we sought to contribute to
advancing viral genomics research and aid in surveilling emerging viral strains.
Methods: We designed and implemented a CNN-based deep neural network
architecture capable of processing complete cDNA genomic sequences to achieve
our goal. We used a dataset comprising diverse viral subtypes, including SARS-
CoV-2, for training and testing. The dataset was partitioned using a 5-fold
cross-validation strategy to ensure rigorous evaluation. Our model’s performance
was assessed using various metrics, including accuracy, precision, sensitivity,
specificity, F1-score, and AUROC. Additionally, artificial mutation tests were
conducted to evaluate the model’s generalization ability across sequence vari-
ations. We also used the BLAST algorithm and conducted comprehensive
processing time analyses for comparison.
Results: The developed CNN-based model demonstrated exceptional perfor-
mance across various evaluation metrics. In the training phase, the model
consistently achieved maximum values for accuracy, sensitivity, specificity, and
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other key metrics, indicating its robust learning ability. Notably, during testing
on over 10,000 viral sequences, the model exhibited a sensitivity of over 99% for
sequences with fewer than 2,000 mutations. The CNN-based model showcased
superior accuracy and significantly reduced processing times compared to the
BLAST algorithm. These findings underscore the model’s effectiveness in accu-
rately classifying viral sequences and its potential to revolutionize viral genomics
research.
Conclusion: This study introduces a CNN-based deep neural network model as
a powerful tool for precisely classifying viral sequences, specifically focusing on
SARS-CoV-2 and other Coronaviridae family subtypes. Our model’s superiority
is evident through rigorous evaluation and comparison with existing methods,
offering enhanced accuracy and efficiency. The application of artificial mutation
testing demonstrated the model’s robustness in handling sequence variations. By
harnessing deep learning capabilities, our model significantly contributes to viral
classification and genomics research. As viral surveillance becomes increasingly
critical, our model holds promise in aiding rapid and accurate identification of
emerging viral strains.

Keywords: SARS-CoV-2, COVID-19, viral classification, deep learning

1 Introduction

One particular virus has made of attention of the entire world, the SARS-CoV-2.
The virus belongs to the family Coronaviridae, which contains one of the largest viral
genomes, ranging from 26,000 base pairs (bp) to 31,700 bp [1]. The SARS-CoV-2 causes
the COVID-19 disease, which has caused the death of thousands of people worldwide
due to its high virulence rate in conjunction with your rapid spread. [2, 3]. The novel
and timely classification systems are necessary for more insights into the evolution of
underlying mechanisms of increased epidemicity and enhanced virulence compared to
related lineages [4, 5].

Viral classification is a task largely applied for many scientists around the world.
This activity assigns a certain sequence to a specific group based on known genomic
sequences which share common characteristics and traits [6]. The conventional meth-
ods for characteristics extraction of the virus are based on sequence alignment
[7, 8]. Alignment-based techniques search for regions of similarity between biologi-
cal sequences from a previously characterized reference sequence. These techniques
can also be used for viral identification [6]. Alignment-based techniques are used in
algorithms like BLAST (Basic Local Alignment Search Tool) [9], MALT (Megan align-
ment tool) [10], FASTP (FASTQ preprocessor) [11], ClustalW [12] and USEARCH
[13]. However, these methods have some limitations: low accuracy and limited genomic
sequence length used. The use of long genomic sequences implies a high computational
cost due to the nature of the problem [7, 14]. Works presented in [6] and [7] draw
attention to the evidence that alignment-based methods are not quite satisfactory
when applied to genomes susceptible to large genetic variations, which is the case of
the vast majority of the viruses. In order to minimize these problems, free-alignment
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(FA) techniques emerged, which are based on features from linear algebra, informa-
tion theory and statistical mechanics to calculate the similarity or distance between
sequences [6, 7].

According to [6, 15, 16], to provide the best results, the viral classification based on
free-alignment algorithms uses the artificial intelligence approach based on machine
learning (ML) techniques to perform the feature extraction of the genomic sequences.
Recent studies indicate that ML algorithms and techniques have been widely used
in research related to genomics, including viral classification, for offering a set of
methods capable of identifying highly complex patterns in an automated, efficient way
and with the minimal human intervention [17, 18]. Works in the literature show that
machine learning based on Deep Learning (DL) techniques provides excellent results
for genomic sequences applications, including classification problems [19, 20].

Mottaqi [18] and Lalmuanawma [21] show that among many ML algorithms, the
Convolutional Neural Networks (CNN) have been frequently used for data analysis
based on genomic sequence for their ability to extract intrinsic characteristics of the
sequences and present promising results in their applications. However, most of these
tools and techniques use genomic sequences of limited length or are aimed at other
purposes such as protein prediction [22, 23].

Fabijańska proposes a deep viral genome classifier, named VGDC (Viral Genome
Deep Classifier), able to identify viral subtypes from different families such as dengue,
hepatitis B and C, HIV-1, and influenza A presented F1-score between 0.85 and 1 [24].
Tampuu et al. presented an architecture to recognize the presence of viruses by the
raw metagenomic contigs of various human samples. The methodology proposed was
named ViraMiner and made use of two CNNs. They reached a Receiver Operating
Characteristic (ROC) curve of 0.923[25].

The work presented by Whata et al. used a CNN and a Bi-LSTM (bi-directional
long short-term memory), which he called CNN-Bi-LSTM (convolutional neural net-
work bidirectional long short-term memory). This model achieved a classification
accuracy of 99.95%, AUC of 100.00%, specificity of 99.97%, and sensitivity of 99.97%
as from 34 sequences from the SARS-CoV-2 virus and 295 samples from other viruses
of the same family [26].

The study presented by Adetiba et al. used a CNN to perform a multiclass clas-
sification of genomic sequences of three viral subtypes, MERS-CoV (Middle East
Respiratory Syndrome CoV), SARS-CoV (Severe Acute Respiratory Syndrome CoV),
and SARS-CoV -2 (Severe Acute Respiratory Syndrome Coronavirus 2). The authors
used the GSP (Genomic Signal Processing) technique to transform the genomic
sequences into RGB images and later applied them to a CNN, using only 300 sam-
ples for training . The model obtained an accuracy of 95% for MERS-CoV, 95% for
SARS-CoV, and 95% for SARS-CoV-2, titled by the authors DeepCOVID-19 [27].

Classification between SARS-CoV-2, MERS-CoV, SARS-CoV, hepatitis-A,
dengue, and influenza was proposed by Gunasekaran at al.. Therefore, the authors
use the CNN, CNN-LSTM, and CNN-Bidirectional LSTM architectures with k-mers
to verify which architectures present better performance. According to the tests per-
formed, it was observed that CNN and CNN-Bidirectional LSTM with k-mers offered
the highest accuracy metrics, reaching 93.16% and 93.13%, respectively [28]. A neural
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network called miRNA proposed by Lopez-Rincon et al. was applied at viral classifi-
cation. The architecture has a few layers and was also used to classify viruses from the
Coronaviridae family. This model showed an accuracy of 98%, specificity of 0.9939,
and sensitivity of 1.00 [20].

Several viral genomic sequences of different sizes were analyzed by [29], which used
the area under the receiver operating characteristic (AUROC) as their performance
metric. The research obtained AUROC values of 0.95, 0.93, 0.97, and 0.98, for the
genomic sizes 300, 500, 1000, and 3000 bp, respectively. The architecture used was
called DeepVirFinder and consists of a CNN of multiple layers [29].

Given this context, the present work aims to present a technique capable of clas-
sifying the Coronaviridae family’s viruses and recognizing the SARS-Cov-2 virus.
That approach uses the CNN that receives complete genomic sequences of cDNA as
input, codified by the one-hot-encoding technique. Thus, this work makes the following
specific contributions:

• Develop an alignment-free method to classify SARS-CoV-2 sequences between
viruses of the same family.

• Develop a deep learning algorithm that can efficiently classify from the complete
cDNA sequences of the virus.

• Comparison of performance of the proposed model with the BLAST algorithm with
the number of samples found or correctly classified and the processing time both
tools took to present their results.

2 Results

2.1 Training and validation

As mentioned in Section 3.1, the dataset used for training the network comprises
501 samples referring to the Non-SARS group and receiving label 0 and 501 samples
from SARS, in which they obtained label 1. In this way, we obtained a training set
balanced and homogeneous consisting of 1,002 samples. Cross-validation was used to
train and validate the classification model (see Section 3.2). The performance metrics
for the k-fold (k = 5) cross-validation corresponded to the average between all the
values obtained in each fold. The classification results of validation (after training)
were presented through the confusion matrix (see Figure 1), the ROC (see Figure 2),
and measured by the sensitivity, specificity, precision, accuracy, and F1-score metrics
(see Table 1). As a result, the model results in maximum performance values for the
training and validation sets, as shown in Table 1.

Figure 1 presents the results of the mean classification of the samples referring to
the validation set (SARS-Cov-2 and Not SARS-Cov-2) and shows that for all subsets,
all sequences were correctly grouped according to their respective class. The ROC
curve for this problem is shown in Figure 2 and presents sensitivity and specificity
values equal to 100%, according to Table 1.

Figures 3 and 4 illustrate the training and validation learning curve for accu-
racy and loss, respectively. Each iteration point represents the mean and standard
deviations of the 5-fold cross-validation. The accuracy learning curve of training and
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Table 1 Performance metrics results for the classification of SARS-Cov-2 from the architecture
proposed in this work for the validation set.

Metrics Performance

Sensitivity 100%
Specificity 100%
Precision 100%
Accuracy 100%
F1-score 100%
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s
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99
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Fig. 1 Confusion matrix of the proposed approach to the classification problem of being SARS-CoV-
2 and Non SARS-CoV-2. Non SARS-CoV-2 samples are represented by label 0, and SARS-CoV-2
samples are represented by label 1. The model is able to correctly classify all samples according to
their classes.

validation (see 3) corroborates with the results presented in Table 1, and these curves
show that the model does not suffer from overfitting (high variance) or underfitting
(high bias). Furthermore, the reduced difference (almost zero) between the training
and validation curves consolidates the absence of overfitting. The training was con-
cluded after 10 epochs with 72 iterations, as shown in Figures 3 and 4. It is observed
that the error was stabilized after the 30th iteration (see Figure 4).

2.2 SARS-Cov-2 prediction tests

Similar to the methodology used in [14], two tests were performed to evaluate the
SARS-Cov-2 prediction of the proposed deep learning model after training. The tests
were composed of samples not used in the training stage, that is, samples that remained
from the initial dataset belonging to the SARS-CoV-2 virus (see Section 3.3). The
tests, called Prediction test 1 and Prediction test 2, are described below.
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Fig. 2 ROC curve for classification of SARS-CoV-2 and Non SARS-CoV-2.

Fig. 3 The learning curve of training and validation accuracy of the training set using 5-fold cross-
validation.

2.2.1 Prediction test 1

Of the remaining 16,891 SARS-CoV-2 samples from the initial dataset, 12,000 were
randomly chosen to compose this experiment. These samples obtained label 1 indi-
cating that they were SARS-CoV-2. The objective of this experiment was to test the
model for identifying SARS-CoV-2.
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Fig. 4 The learning curve of training and validation loss of the training set using 5-fold cross-
validation.

2.2.2 Prediction test 2

For this experiment, 10,000 samples of SARS-CoV-2 were used (of the remaining
16,891 SARS-CoV-2 samples from the initial dataset), in which they were divided
into two groups, each with 5,000 samples. In one of these groups, we applied the
artificial mutation method discussed in Subsection 3.4 to investigate the architecture’s
sensitivity and robustness to possible mutations in the SARS-CoV-2 virus. In this
way, a group was created with 5,000 samples of the SARS-CoV-2 virus, which suffered
artificial mutations, and another group, also with 5,000 samples, which did not undergo
any mutation. The artificial mutation strategy used Vmax = 31,029 and γ = 5%, i.e.,
Nmut = 1,551 nucleotides have changed per sequence.

2.2.3 Prediction test results

The results of Prediction tests 1 and 2 are shown in Table 2. For prediction test 1,
11,996 were correctly classified to their respective group (SARS-CoV-2), and only 4
samples were not classified correctly, reaching 99.99%, 100%, 99, 94%, and 99, 96% for
the sensitivity, precision, F1-score, and accuracy, respectively. As described above, pre-
diction test 2 verified the ability of the trained model to classify SARS-CoV-2 samples
even after changing their genomic structure through the artificial mutation technique
in half of the dataset samples. Even applying modifications to the sequences, the
model is quite sensitive to possible mutations that the sequences may suffer, reach-
ing a sensitivity value of 99.77%. This result strongly attests to the model’s ability to
generalize, given that, even with the samples changing, the network can identify who
is SARS-CoV-2 through low false negative results (accuracy about 99.96%).

The results obtained through the experiments carried out and detailed in Section
3.3, are promising, consistent with the performance obtained in the network train-
ing phase. Furthermore, the sensitivity and precision values derived from the set of
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Table 2 Results associated with prediction tests 1 and 2.

Pt Sensitivity Precision F1-Score Accuracy

Pt-1 99.99% 100% 99.94% 99.96%
Pt-2 99.77% 100% 99.88% 99.96%

experiments remain high regardless of the class labels, which is very important, con-
sidering that high rates of false negatives directly corroborate the increase in infected
people. Finally, the proposed model’s characteristics and results will be compared and
discussed with works found in the literature below.

3 Methods

3.1 Database and data balancing

The National Genomics Data Center (NGDC) provides open and free access to a
set of database resources that have the resources of the New Coronavirus 2019 Data
Resource - 2019nCoVR. The 2019nCoV maintains daily updates and brings together a
comprehensive collection of genomic sequences and clinical information, not only about
SARS-CoV-2 but also regarding other viruses that belong to the coronaviridae family
worldwide and from other traditional repositories, such as the National Center for
Biotechnology Information - NCBI [30]. The 2019nCoV was the chosen repository to
download the dataset. Sequences belonging to the coronaviridae family were selected,
whose size ranges from 25,000 bp to 35,000 bp, covering the size of all viruses in the
family without losing any crucial genetic information. The selected host was the Homo
Sapiens. The download of the dataset used in this research was carried out in August
2020, when the variants of concern were not yet available.

The database used is formed by 17,893 genomic sequences of nine types of viruses
of the coronaviridae family, coming from 62 different countries. Figure 5 shows all
countries with genomic samples on the database. It is observed that the United States
has the highest number of sequences, followed by Australia, India, and China. From
the 17,893 samples, 17,392 belong to the SARS-CoV-2 virus 97.2% of all), of which
11,140 are coming from the United States (62.25% of all).

The data used for viral classification are cDNA sequences, whose length varies
from 26,342 bp to 31,029 bp. Table 3 summarizes some properties related to viral
subtypes present in the database. The BetaCoronaVirus shows the most extensive
sequence length among all virus subtypes, varying between 31,029 bp and 30,536 bp.
In addition to having the same sequence length (30,499 bp), the CoronaVirus cya-
BetaCov/2019, CoronaVirus cyb-BetaCov/2019, and CoronaVirus cyc-BetaCov/2019
are the viruses that have the smallest amount of samples in the database. They are
long genomic samples and very similar viruses, so a robust model is required to provide
the appropriate classification [24].

As shown in Table 3, the largest amount of samples in the database belong to the
SARS-CoV-2 virus, which causes the COVID-19 disease, followed by the MERS-CoV
virus. In this context, it was necessary to balance the data to improve the network’s
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Fig. 5 Countries that contain genomic samples of the Coronaviridae family in the database.

Table 3 Viral subtypes on the database created for this work.

Virus
Number of
samples

Minimum sequence
length

Maximum sequence
length

BetaCoronaVirus 140 30,536 31,029
CoronaVirus cya-BetaCov/2019 1 30,499 30,499
CoronaVirus cyb-BetaCov/2019 1 30,499 30,499
CoronaVirus cyc-BetaCov/2019 1 30,499 30,499

HCoV-229E 27 26,592 27,307
HCoV-HKU11 18 29,367 29,983
HCoV-NL63 55 27,302 27,832
MERS-CoV 258 29,267 30,150
SARS-CoV-2 17,392 26,342 28,784

performance and avoid problems such as Overfitting due to the disproportion of
samples from the other viruses.

The dataset was divided into two groups: non SARS-CoV-2 and SARS-CoV-2, as
illustrated in Figure 6. The non SARS-CoV-2 group comprises eight viral subtypes
different from the SARS-CoV-2 virus, totaling 501 samples. Therefore, 501 samples
were taken from all countries that presented genomic sequences of the SARS-CoV-2
virus randomly and uniformly, guaranteeing diversity and representativeness of each
viral subtype in the training and validation sets, as illustrated in Figure 7. The dataset
used for the training and validation phases contains 1,002 samples in total. The samples
were labeled by 0 and 1, where 0 is associated with the non SARS-CoV-2 samples,
and 1 is related to the SARS-CoV-2 samples. Part of the remaining genomic samples
was used to test the performance of the network.
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Fig. 6 Dataset of all viral subtypes after the data balancing process.
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Fig. 7 Dataset after balancing the samples according to their groups.

3.2 CNN architecture and parameters

Based on the length of the sequences in the database presented in Table 3, it appears
that the most prolonged sequences correspond to BetaCoronaVirus. Therefore, all
genomic sequences will have the same length (Nmax = 31,029) to be processed by
CNN. Then, for each m-th sample, the CNN receives as entry 5 channels of dimension
31,029×1. As described in Section 3.3, this strategy allows all M viral sequences have
the same length.

The CNN used in this work comprises twenty-six layers, divided into 1D convolu-
tional layers and fully connected layers. The 1D convolutional layers are responsible
for extracting characteristics of the cDNA genomic sequences, and the fully connected
layers are responsible for classifying the data extracted from the previous layers, gen-
erating a total of 14,545,426 parameters across all layers, as shown in Table 4. Figure
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Fig. 8 CNN used for the viral classifier proposal presented in this work.

8 details the CNN architecture used in the appropriate viral classifier for the database
described in Section 3.1.

The CNN comprises four convolutional layers, followed by a normalization layer
and the activation function ReLu (Rectified Linear Unit). The MaxPool function is
applied after each activation layer, with windows ranging in size from 8, 16, 32 and
64. In addition to the convolutional layers, the CNN structure contains four fully
connected layers with 64, 32, 16, and 2 neurons, respectively. The number of neurons
in the last layer corresponds to the number of classes to be classified, followed by
the softmax function that will output the probability that each sequence belongs to a
specific class.

The cross-validation k-fold was used to evaluate the proposed model, where k
refers to the number of subsets, or folds, into which the dataset will be divided. We
defined the value of k = 5 so that the dataset will be divided into five subsets, each
fold containing 201 samples. In the cross-validation scheme, k − 1-folds are used for
model training (801 samples), and 1-fold is used for model validation (201 samples),
totaling 1,002 samples.The optimizer chosen for updating the network weights was the
adam (Adaptive Moment Estimation), whose learning rate was 0.001 (see Table 5). An
optimizer is a function that aims to reduce the error between the results obtained by
a model concerning the desired results. Among the various optimizers, adam is one of
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Table 4 CNN architecture used in this work with four convolutional layers and four fully
connected layers.

Layers Description Values

1 Input (L× 1× 5) N = 31,030
2 Conv1d (K1@B1) K1 = 256 and B1 = 8
3 BatchNorm -
4 ReLU -
5 MaxPool1D (Ps) Ps = 8
6 Conv1D (K2@B2) K2 = 64 and B2 = 16
7 BatchNorm -
8 ReLU -
9 MaxPool1D (Ps) Ps = 16
10 Conv1D (K3@B3) K3 = 32 and B3 = 8
11 BatchNorm
12 ReLU -
13 MaxPool1D (Ps) Ps = 32
14 Conv1D (K4@B4) K4 = 32 and B4 = 64
15 BatchNorm -
16 ReLU -
17 MaxPool1D (Ps) Ps = 64
18 Flatten -
19 Dense1 (P1) P1 = 64
20 Dropout (a1) a1 = 0.4
21 Dense2 (P2) P2 = 32
22 Dropout (a2) a2 = 0.4
23 Dense3 (P3) P3 = 16
24 Dropout (a3) a3 = 0.4
25 Dense4 (P4) P4 = 2
26 Softmax 2 Classes

the most used in the literature, especially in deep learning. This optimizer is indicated
in problems that involve a large amount of data or parameters because it is easy to
implement, has a low computational cost, and requires a low amount of memory. [31].
The training converged in approximately 10 epochs. Given the nature of the problem
and through tests and works found in the literature, a mini-batch of size 128 was
applied due to the number of samples and training parameters as recommended in
[24]. The parameters used in the architecture training phase are shown in Table 5.
A mini-batch of 128 was used based on the long length of the viral genomes and the
large number of samples used to train the model. Other parameters were adjusted to
decrease the training time and the loss function as recommended in [16, 20, 24]. The
training converged in approximately 10 epochs with 72 iterations (see Figures 3 and
4 in Subsection 2.1).
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Table 5 Hyperparameters used in the training phase of the proposed architecture.

Hyperparameters Values

Mini-Batches 128
MaxEpochs 12

InitialLearnRate 0.001
Optimizer Adam

3.3 Pre-processing and data mapping

The methodology used in this work can be divided into two stages: 1) pre-processing
and data mapping; 2) methods to verify and test the model’s generalization. For CNN
to perform feature extraction and classification, it is necessary to pre-process the data,
which involves converting the nucleotides of the genomic sequences, represented by
the characters (A, C, G, T, N), into numerical data, precisely ones and zeros. Once
encoded, the data will be mapped into vectors of a dimension and depth of 5, using
the one-hot-encode technique to be presented to CNN, indicating whether or not it is
SARS-CoV-2.

The Figure 9 illustrates the overview of the technique proposed in this work. Con-
sidering a database with M samples of DNAc viral sequences, each m-th sample, sm is
mapped in a characteristic matrix, Sm, that will be processed by the CNN. The CNN
provides a binary classification in which the SARS-CoV-2 will be identified or not.

Each m-th sample of viral sequence de entrada is expressed by

sm = [s1,m, . . . , sNm,m] (1)

where each i-th element of a m-th sample, si,m represents a possible nucleotide of a
set S ∈ {A,C,G,T}, and Nm is the length of the m-th viral sequence sample. Each
element of S corresponds to one of the nitrogenous bases Adenine (A), Cytosine (C),
Guanine (G) and Thymine (T).

The characteristic matrix associated with the m-th sample, sm, is constructed by
the one-hot encode technique, which can be expressed as

Sm =







a1,1,m . . . a1,5,m
...

. . .
...

aNmax,1,m . . . aNmax,5,m






(2)

where

ai,j,m =































1 for j = 1 & si,m = A

1 for j = 2 & si,m = C

1 for j = 3 & si,m = G

1 for j = 4 & si,m = T

0 for ∀j & si,m /∈ S

(3)

and Nmax is the size of the largest sequence among all the M viral sequence sam-
ples, that is, Nmax = max {N1, . . . , NM}. So, the characteristic matrix has the same
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Fig. 9 Overview of the proposed technique.

dimension (Nmax × 5) for all the M samples of viral sequences. If the size of the m-
th sequence is less than the maximum sequence (Nm < Nmax), Nmax −Nm zeros are
inserted (zero padding).

Before entering into the CNN, the characteristic matrix of each m-th sample, Sm,
is transformed into a matrix of dimension Nmax × 1× 5, expressed as

Bm =
[

b1,m . . . b5,m

]

(4)
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where

bj,m =







b1,1,j,m
...

bNmax,1,j,m






(5)

which bi,1,j,m = ai,j,m. This transformation allows the CNN to process each mth
sequence as an input formed by 5 channels of dimension vectors (Nmax × 1), bj,m.

3.4 Artificial Mutation Technique

The artificial mutation process is initiated by searching for the maximum sequence
length among the samples. So, for the set H of samples, Vmax = max {N1, . . . , NH},
where Ni is the length of the sequences and Vmax is the length of the most extensive
sequence. After this step, the insertion of zeros is performed in each i-th sequence, si,
where Ni < Vmax. Each i-th sequence is completed with zeros until filling the value of
Vmax, i.e., the amount of zeros entered for the i-th sequence is Vmax−Ni. After that, all
the chosen H samples will have the same size, Vmax. The artificial position mutation
rate, γ, is defined at the end of this step. The value of γ establishes the percentage of
the number of nucleotides positions that will change, Nmut, which can be expressed as

Nmut =

⌊

γ × Vmax

100

⌋

. (6)

After the definition of the Nmut, the position of the Nmut nucleotides that will be
changed is randomly defined, which is stored in the vector kmut = [k1, . . . , kNmut

]. From
the position vector, kmut, two methods are applied to change the selected nucleotides
for artificial mutation. The first method was applied to the first half of the selected
nucleotides, i.e., the positions

[

k1, . . . , kNmut/2

]

, and the second method was used for

the second half of the position vector
[

kNmut/2+1, . . . , kNmut

]

.
The first method changes the position of the nucleotides, considering the pairs, i.e.

[

k1, k2, . . . , kNmut/2−1, kNmut/2

]

⇒
[

k2, k1, . . . , kNmut/2, kNmut/2−1

]. (7)

Moreover, the second method changes nucleotide values to

ski
=































A if ski
= T

T if ski
= A

C if ski
= G

G if ski
= C

N if ski
= T

. (8)
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4 Discussion

4.1 Blast comparison

The strategy proposed in this work was compared with the BLAST algorithm. The
comparison obtained results associated with the correctness rate in the classification
of sequences through various values of artificial position mutation rate (see section
3.4) and the average processing time to classify these sequences. In the comparison,
34 sequences belonging to the Coronaviridae family were used (17 SARS-Cov-2 and
17 Not SARS-Cov-2) that did not participate in the deep learning training.

The BLAST software version 2.13.0 made available by the NCBI [30] was down-
loaded and installed locally. The BLAST software used a database of 6,180,834
Betacoronavirus sequences (updated Sep 8, 2022) found in [30]. The database was also
downloaded for local use. Using the BLAST software locally, accessing a local database
allows a fairer comparison in terms of processing time with the deep learning strategy
proposed in this work. The same computer used to run BLAST with its database was
also used to train and run the CNN strategy. The computer has the following configu-
rations: Intel(R) core(TM) i7-10700 CPU 2.9 GHz, 128 GBytes of RAM, 512 GBytes
NVMe HD and an NVIDIA GeForce RTX 3060 GPU with 12 GBytes of RAM.

Figure 10 presents the relationship between the artificial position mutation rate
(see section 3.4) applied in the 34 test sequences and the correctness rate (in percentage
terms) of both the BLAST and the proposed CNN. It is possible to observe that up
to γ ≈ 2% (Nmut ≈ 620 nucleotides), the correctness rate for BLAST and CNN-based
strategy is the same, that is, 100%. However, for values of γ > 2%, the correctness rate
of BLAST drops rapidly to 50%, in which γ ≈ 19% (Nmut ≈ 5,895 nucleotides). On the
other hand, the proposal based on CNN has a correctness rate of 100% up to γ ≈ 13%
(Nmut ≈ 4,033 nucleotides) and decays more slowly than BLAST, with γ > 13%. For
γ ≈ 19%, a proposal based on CNN has a correctness rate of around 95.88% and
BLAST around 50%. For values of γ between ≈ 32% (Nmut ≈ 9,929 nucleotides) and
≈ 45% (Nmut ≈ 13,963 nucleotides), the correctness rate of BLAST rapidly decays
to zero while the proposal with CNN decays more slowly to 50%. Table 6 presents
the values of correctness rate, artificial position mutation rate, γ, and the number of
nucleotides that mutated, Nmut, for each point in the graphs shown in Figure 10.

Table 7 presents the average processing time obtained for BLAST and CNN at
each point presented in the graphs in Figure 10. The data presented for CNN are the
time required to perform the inference of the 34 test sequences, given that the training
is performed only once. However, the time for training the CNN was approximately
341 seconds (around 6 minutes). It is possible to observe that CNN has a constant
processing time while BLAST has a variable processing time that depends on the value
of γ.

For sequences with many mutations, γ > 25.78 (Nmut > 8,000), BLAST has a faster
response (shorter processing time) than for sequences with few mutations γ < 3.22
(Nmut < 1,000). Sequences with many mutations allow BLAST to reduce the search
space due to the high dissimilarity between the query sequence and the sequences
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Fig. 10 Comparison of the correctness rate between BLAST and CNN (proposed in this work) for
a test set of 34 sequences according to the increase of the artificial position mutation rate, γ.

Table 6 Values of correctness rate, artificial position mutation rate, γ, and the number of
nucleotides that mutated, Nmut, for each point in the graphs shown in Figure 10.

γ (%) Nmut

BLAST CNN
Correctness rate (%) Correctness rate (%)

0.32 100 100.00 100.00
1.61 500 100.00 100.00
3.22 1,000 91.18 100.00
6.45 2,000 79.41 100.00
12.89 4,000 61.76 100.00
19.34 6,000 50.00 95.88
22.56 7,000 50.00 93.53
25.78 8,000 50.00 87.65
29.01 9,000 50.00 76.47
32.23 10,000 50.00 67.65
35.45 11,000 41.18 61.76
38.67 12,000 29.41 58.82
41.90 13,000 11.76 54.71
45.12 14,000 0.00 52.35

stored in the base. On the other hand, when the value of g decreases, the BLAST pro-
cessing time increases to obtain a better similarity value between the query sequence
and the sequences stored in the base.
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Table 7 Time processing, artificial position mutation rate, γ, and the number of nucleotides that
mutated, Nmut, for each point in the graphs shown in Figure 10.

γ (%) Nmut

BLAST CNN
Time processing (seconds) Time processing (seconds)

0.32 100 94,261.48 ( ≈ 26.2 hours) 0.33
1.61 500 94,261.48 ( ≈ 26.2 hours) 0.35
3.22 1,000 93,202.74 ( ≈ 25.9 hours) 0.39
6.45 2,000 92,172.83 ( ≈ 25.6 hours) 0.45
12.89 4,000 91,176.66 ( ≈ 25.3 hours) 0.68
19.34 6,000 64,122.58 ( ≈ 17.8 hours) 0.68
22.56 7,000 24,587.36 ( ≈ 6.8 hours) 0.68
25.78 8,000 68,17.63 ( ≈ 1.9 hours) 0.68
29.01 9,000 44,35.43 ( ≈ 1.2 hours) 0.68
32.23 10,000 2,155.14 ( ≈ 0.6 hours) 0.68
35.45 11,000 1,940.66 ( ≈ 0.5 hours) 0.68
38.67 12,000 1,831.33 ( ≈ 0.5 hours) 0.69
41.90 13,000 1,832.6 ( ≈ 0.5 hours) 0.69
45.12 14,000 1,801.26 ( ≈ 0.5 hours) 0.68

The gain in CNN processing time over BLAST is significant, being around 2,600
times faster for γ = 45.12% (Nmut = 14,000) and 130,000 times faster for γ = 0.32%
(Nmut = 100). It is essential to point out that BLAST needs a database of sequences
already stored to find or classify the viral genome, and with this, it needs to carry out
a search procedure which can take a long time. CNN stores the information needed to
classify the viral genome in its models after the training process. After training, the
CNN performs only a simple inference process, not needing to perform a search and
a database.

The proposed CNN model can be an excellent alternative and ally in the rapid
virus classification process, given its high sensitivity in detecting changes in the virus
structure (represented by random mutations in its nucleotides), corroborating SARS-
Cov-2 surveillance. In addition, this model enables the analysis of more significant
amounts of complete genomic samples, at a lower computational cost, compared to
techniques that use alignment and even BLAST.

4.2 State of the art comparison

The tables 9 and 8 summarize a set of approaches from the main works found in the
literature that perform viral classification using CNNs presented in this work. Char-
acteristics such as number of layers and size of genomic sequences will be presented
in the Table 8.

When applying longer sequences, the works presented in [24], [25], and [29] had a
considerable reduction in the performance of their models. This point implied the use
of more extensive networks as in [24] and the reduction of sequence sizes as in works
[25] and [29].

Regarding [20], despite making use of complete genomic sequences and presenting
a smaller number of layers, the author makes use of a small dataset for the training and
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Table 8 Comparison from the proposed architecture with related works.

References Codification Layers Sequence length

Fabijańska e Grabowski [24] ASCII 30 3,257-24,751 bp
Ren {et al.}[29] One-Hot Encoded 6 150-3,000 bp

Tampuu{et al.}[25] One-Hot Encoded
2 CNNs with
7 layers each

300 bp

Lopez-Rincon{et al.}[20]
Assigned values from
0 to 1 to the channels

10 31,029

Proposed Architecture One-Hot Encoded 26 31,029

validation of his model, which may lead to generalization problems and consequently
on the performance of your network by presenting new samples. Table 9 compares
the performance results of the proposed architecture with the available results of the
models in Table 8.

Although it presents an architecture with many layers, the variation in the per-
formance values of the VGDC architecture was observed as the size of the genomic
sequences used in the network increased. Although it uses two convolutional branches,
the ViraMiner tool achieved 92.3% and 32% of the sensitivity and precision values,
even using relatively short sequences.

Table 9 Performance metrics comparison from the proposed architecture with related works.

Ref. Accuracy Precision Sensibility Specificity F1-score AUROC

[24] 0.99− 1 0.83− 1 0.84− 1 0.99− 1 0.83− 1 –

[29] – – – – –

0.8635
0.9210
0.9496
0.9668

[25] 0.90 0.90 0.32 – – 0.923
[20] 0.985 0.98 1 0.9939 0.9797 0.92

This work 1 1 1 1 1 1

The DeepVirFinder architecture provided only the AUROC values obtained in its
model, reaching the maximum value of 96.68% for samples with 3,000 bp. Despite
having obtained the sensitivity value of 100% and accuracy of 98%. The work presented
by [20] obtained the AUROC value of 92%. The results obtained in the proposed
model are superior for all architectures and performance metrics presented in Table
9, indicating the high performance and robustness of the model.

5 Conclusion

The classification and prediction of viral sequences using deep neural networks (DNN)
have shown to be very promising in recent years. This work proposes using a CNN like
DNN capable of classifying SARS CoV 2 through a binary classification from complete
cDNA genomic sequences of eight viral subtypes belonging to the Coronaviridae family.
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For this experiment, the technique of cross validation with folder k=5 was used, which
reached maximum values in all evaluation metrics for the 960 samples used in training.
More than 10,000 sequences were used to test the performance of the DNN after
training. An artificial mutation technique was also used to test model generalization
with sensitivity ¿ 99% for less than 2,000 mutations in the sequence. A test set formed
by 34 samples from the two classes underwent different position mutation rates and
was processed by the model proposed in this work together with the BLAST algorithm
to verify their performance concerning the accuracy rate according to the two classes.
Furthermore, the processing time that both techniques took to obtain their results. In
addition, the main results were compared with other viral classification works found
in the literature. The proposed model was superior, indicating that the tool proposed
in this work can be applied to classify viruses of the Coronaviridae family and viruses
of different species.
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