
An Improved ARO Model for Task O�oading in
Vehicular Cloud Computing in VANET
Mohan Das R

New Horizon College of Engineering
Arunadevi Thirumalraj ( aruna.devi96@gmail.com)

K. Ramakrishnan College of Technology
Rajesh T

Malla Reddy Engineering College

Short Report

Keywords: Vehicular Cloud, Arti�cial rabbits’ optimization, Vehicular Ad-Hoc Network, Cooperative
computing method, Lévy �ight

Posted Date: August 31st, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3291507/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-3291507/v1
mailto:aruna.devi96@gmail.com
https://doi.org/10.21203/rs.3.rs-3291507/v1
https://creativecommons.org/licenses/by/4.0/

An Improved ARO Model for Task Offloading in Vehicular

Cloud Computing in VANET

1Dr.R.Mohan Das 2Arunadevi Thirumalraj and T.Rajesh,

1Associate Professor, Department of Electrical and Electronic Engineering, New Horizon College of

Engineering Bengaluru, Karnataka

2Department of Computer Science Engineering, K.Ramakrishnan College of Technology, Trichy, Tamil Nādu.

3Professor, Department of Electrical and Electronic Engineering, Malla Reddy Engineering College, Hyderabad

1mohandas@newhorizonindia.edu 2aruna.devi96@gmail.com and 3rajeshpradha@gmail.com

Abstract

Vehicle-to-vehicle (V2V) communication enables a network of automobiles to perform

collaborative computing, giving rise to the concept of a "vehicular cloud" (VC). However,

without the need for edge nodes or cloud servers, vehicles can carry out applications needing

the massive amount of processing cooperatively on their own by creating a Vehicular Ad-Hoc

Network (VANET). Managing the recurrent topology alteration caused by vehicle mobility is

a significant challenge for VANET cooperative computing. In this research, we present a V2V-

based cooperative computing approach. The suggested method takes into account the distance

between vehicles while choosing which ones to collaborate with, and it waits task offloading

until the last possible moment to ensure a stable and energy-efficient cooperative computing

environment. Despite its competitive performance when compared to other MH algorithms, the

artificial rabbits optimisation (ARO) algorithm still suffers from poor accuracy and the issue

of becoming trapped in solutions. By antagonism methods, this research creates selective

opposition version of the artificial rabbit procedure (LARO), which eliminates the negative

consequences of these shortcomings. To begin, during the random concealment phase, a Lévy

flight strategy is implemented to increase population diversity and dynamics. The algorithm's

convergence accuracy is enhanced by the richness of its various population samples. The

tracking efficiency is improved, and ARO is kept from getting stuck in its existing local

solutions by adopting the selective opposition technique. In comparison to traditional static

scheduling techniques, the suggested strategy improves upon both energy efficiency and

network reliability.

Keywords: Vehicular Cloud; Artificial rabbits’ optimization; Vehicular Ad-Hoc Network;

Cooperative computing method; Lévy flight.

Introduction

The Internet of Vehicle Things (IoV) is a new method of increasing practical uses of

vehicles. Health care, package delivery, electronic transportation, advertising, route planning,

autonomous vehicles, automobiles, virtual reality games, augmented reality, public

surveillance, and 3D video games are just some of the potential uses [2]. However, due to

resource limitations (such as battery life, processing power, and network throughput), smart

mailto:mohandas@newhorizonindia.edu
mailto:aruna.devi96@gmail.com
mailto:rajeshpradha@gmail.com

devices are unable to run compute-intensive IoT applications locally. For Internet of Things

(IoT) applications that require a constant wireless connection, Vehicular Fog Cloud Network

(VFCN) is a possible alternative [3]. Data security and ubiquitous services for apps are also

taken care of by VFCN [4]. Future "smart cities" will rely heavily on their vehicle networks.

Intelligent networking in road transportation systems improves traffic management, security,

and in-car entertainment [5]. Smart cities of the future will have better air quality thanks to

better traffic management, which also decreases carbon emissions and the number of accidents

that occur there [6]. Further, vehicular networks will improve route navigation apps, predictive

car maintenance, and information and entertainment services [7].

On-board units (OBU) located in each vehicle, roadside units (RSU) strategically

placed across a city, and traffic command centres (TCC) make up a vehicular network [8].

OBUs, or on-board units, are the wireless transceivers in vehicles that are responsible for

sending and receiving data of any kind. In order for cars to communicate with one another,

they need on-board units (OBUs) [9]. Roadside units (RSUs) are strategically placed along

roadways so that moving vehicles always have a connection to at least one RSU. For the

purposes of traffic data collection and analysis, as well as offering entertainment services to

automobiles, [10] these RSUs are retroactively connected with the TCC through the Internet

cloud. Intelligent transportation systems (ITS) are made possible by wireless technologies like

cellular communications, which are integrated into vehicular communication. ITS provides a

wide variety of cutting-edge services, including driverless cars, video games, and augmented

and virtual realities. The majority of these services need advanced computing capacity without

any tolerance for delay [11]. In addition, it is anticipated that automobiles will increasingly

support both high-traffic applications and simultaneous multitasking in the not-too-distant

future. Vehicles need powerful computational and battery sources to deal with these issues.

Although these problems can be overcome by shifting computationally intensive operations

and data traffic to the Internet cloud, doing so may result in unacceptable delays for ITS

systems that are particularly sensitive to latency [12].

Computing servers are placed at each RSU site and linked together so that each RSU

may act as a fog node, mitigating the impact of latency on time-critical operations. These fog

nodes contain a large amount of storage space for cached data and processing power for

computationally intensive activities [13]. However, because to the high speed and restricted

coverage area, cars equipped with RSUs have a shorter connectivity time, which is a significant

limitation in job computation. Furthermore, a fog node cannot perform all jobs concurrently

due to the high number of various sorts of tasks. This slows down the execution of some jobs

that aren't necessary for diverse applications, which might have a significant impact on how

well the vehicular networks function. Task scheduling, in which the ideal sequence in which

to conduct tasks is determined, is another essential component in enhancing the effectiveness

of task offloading [14]. The amount of data being sent, the cost of that transfer, and the total

completion time for all jobs are all determined by the task scheduling. The majority of prior

research has primarily concerned itself with reducing this executing time. However, we

construct our job scheduling approach with both execution time and energy costs in mind. For

electric cars in particular, the energy cost is crucial because it affects their range [15].

The primary goal is to plan the offloading of tasks using optimisation models. However,

the findings of the experiments show that the optimisation based on artificial rabbits has a low

convergence accuracy and becomes stuck in solutions when dealing with complex or high

latitude problems. In light of the foregoing, this work proposes an upgraded ARO algorithm

(LARO) approach. The ARO procedure has a variation called LARO. First, the Lévy flight

approach is used extensively to improve ARO's global discovery capabilities. LARO is able to

better plan for avoiding local solutions and exploring foreign options thanks to the Lévy flight

method. Second, an enhanced convergence-accuracy selective opposition technique allows for

local LARO exploitation. Below, we list the paper's most novel and important contributions:

(i) The ARO is further enhanced by the use of the Lévy flying strategy during the

random concealment phase to increase population variety and dynamics.

(ii) The algorithm's capability to escape the local optimum is enhanced by the

introduction of a selection opposition strategy that builds on the original opposition strategy

and re-adaptively updates it.

The remaining sections of the paper are prearranged as shadows: The literature is

presented in Section 2, while Section 3 particulars the suggested perfect. In Section 4, the

consequences of the experiments and their verification are provided, and in Section 5, the

research is summed up and suggestions for further investigation are offered.

.

2. Related works

A cooperative computing approach using V2V communication is proposed by Gong et

al. [16]. The suggested technique takes into account the distance between vehicles while

choosing which ones to collaborate with, and it waits task offloading until the last feasible

moment to provide a stable environment. In comparison to traditional static scheduling

techniques, the results in terms of both energy savings and network reliability. Although

SCOCC's speedup increase is 9% lower than the others. SCOCC does not outperform static

algorithms like HEFT and GBTSA in terms of execution time since it does not attempt to

optimise the execution speed of whole jobs at once. However, SCOCC accomplishes crucial

stability in the context of a rapidly moving vehicle and minimises the amount of energy needed

for wireless communication.

Despite these difficulties, Taha et al. [17] have developed a strategy for achieving data

secrecy on (CP-ABE). To carry out CP-ABE tasks VANET nodes, we construct a cluster of

vehicles. To manage these dispersed microtasks, we utilise container orchestration framework,

to construct vehicle cluster(s). In this approach, we make use of a group of variables that have

an effect on the computational processes in the OBU of a cluster vehicle. There is a

corresponding weight for each component that affects computing processes, and the cluster.

Each factor's weight is determined using the Euclidean approach. Our method divides up the

work amongst vehicles according to their final combined weight. We gauge the efficacy of our

method by contrasting it with Kubernetes's mechanism for workload allocation, which takes

into account solely the available resources in each car. In addition to utilising simulations to

assess our method's effectiveness in terms of tran, we also take into account a number of

scenarios with varied parameters to analyse on OBUs.

To intelligently meet the processing needs of vehicle applications, Haris et al. [18] have

suggested a VANETs architecture based on Intelligent Volunteer Computing. We provide

criteria for choosing volunteers whose cars can complete the computationally demanding

assignment. In this research, we apply a procedure to accurately select the volunteer vehicle

for job execution by making predictions about the competence of various cars. The computing

power of the best volunteer cars is predicted after extensive experimentation. We compared the

effectiveness of nine distinct regression methods using free, downloadable datasets. The

outcomes demonstrate the effectiveness of using these methods to foretell volunteers'

performance. Results from a comparison of regression methods show that ridge regression and

support vector regression are superior at cutting down on MSE, RAE, and RMSE. The

suggested approach is compared to the current one through simulations.

Rashid et al. [19] have presented a machine learning-based approach for detecting rogue

nodes in real time. A classification with GBT, LR, MLPC, and SVM replicas were used to test

the performance of our projected classifier in OMNET++ and SUMO. The suggested model is

applied to a dataset that consists of both typical automobiles and those used in attacks. The

simulation findings improve the assault categorisation with 99% accuracy, which is a

significant improvement. The system obtained 94% and 97% accuracy while using LR and

SVM, respectively. With 98% and 97% accuracy, respectively, the RF and GBT performed

admirably. Because training and testing period does not rise proportionally with the sum of

nodes in the network, the performance of the network has augmented since we began using

Amazon Web Services.

cars in (VANETs) can make use of a technique proposed by Gong et al. [20] termed

vehicular adaptive offloading (VAO) to shift the burden of computationally demanding

activities to neighbouring cars. This is accomplished by factoring in the change of VANETs.

Overall performance in CO is significantly affected by how tasks are scheduled. To reduce the

likelihood of task reallocations due to connection interruption between cars in VANETs, the

uses a directed acyclic graph (DAG) to express the priority relationship between jobs before

assigning them to neighbours. The simulation results shown that compared to Max-Min, the

suggested technique reduces the number of reallocations by 45.4%. This results in an average

14.4 percentage point reduction in the duration of all processes inside a single application.

Avoiding potentially dangerous interactions with hostile vehicle users is made easier

using the batch authentication and key exchange approach proposed by Poongodi et al. [21]. A

Public Key Infrastructure (PKI), an ID-based system, and a MAC-based system are also

proposed. VANET security ratings were predicted using the neuro-fuzzy inference method. For

safe data transmission, the Chain model is employed. This study also analysed the project from

a blockchain and MEC standpoint. The tiers: services. The first layer of the blockchain ensures

the safety of VANET data during transmission. The perception layer leverages edge computing

and distributed cloud services. Data at the service layer is secured by both conventional cloud

storage and blockchain systems. Throughput and quality of service needs of MEC users are

addressed at the foundational level of the system design. The fundamental problem is reaching

agreement across blockchain nodes without negatively impacting the efficiency of the MEC

system or the blockchain itself. A Markov process with a reward function is used to model the

joint optimisation issue. The simulation outcomes are presented to prove the study's claims.

To assure stability and dependability in (VANET) installations, Taha et al. [22] offer a

strategy on Differential Evolution (MOTD-DE). To pick cars that meet the cluster algorithm's

requirements, we employ Kubernetes container-based as the cluster algorithm. As a result, we

can handle intricate operations for the benefit of data owner automobiles. When a vehicle in

our cluster joins the group, its data will be made vehicle), and the fit complexity of individual

jobs will be determined by a deep learning model. To cut down on execution time and resources

(vehicles), the proposed MOTD-DE divides up jobs into smaller chunks and assigns them to

groups of vehicles. We also make the assumption that the jobs are decoupled. We present

scenarios in which the number of jobs, cars, CPU and memory values, and vehicle are all

changed to assess the efficacy of our work. MOTD-DE is superior than four other popular

methods, including Particle Swarm algorithm, according to a summary of evaluation results.

.

2.1. Problem description

With its reliable wireless connectivity and pervasive cloud services, Vehicular Cloud

Network promotes mobility-aware apps. Users of apps will often incur expenses for both data

transfer and processing time. Therefore, the VCN needs to provide low-cost services to user

applications while they are in motion with as little latency as possible. Current VCN provides

cloud services based on resource-intensive machines; they are prohibitively expensive and do

not support mobile devices. In the section that follows, we detail our proposal for a new virtual

private network (VCN) that makes use of containerized microservices.

3. Proposed System

All of the cars discussed in this article are electric and have GPS and transmission

devices with the capacity for direct V2V communication as well as cellular connectivity,

allowing them to carry out the functions of other vehicles as asked by VM technology. A CV

initiates computation offloading by first making a direct V2V communication request to other

cars within the transmission radius, and then making a WV selection based on the information

provided from those vehicles. We'll get into the specifics of how to find and prioritise WVs

among the vehicles that meet your requirements later on. The tasks that make up an application

appc of CV v_c are the smallest logical units that may still be further broken down, and these

tasks are shown as nodes in a directed acyclic graph. The NP-completeness of the issue of

choosing which vehicle should carry out each job is a significant contributor to the total

execution time. As a default, direct V2V connection is used to transmit data and the outcome

of task offloading. However, there are situations where the distance between a CV and a WV

exceeds the V2V communication range, and the outcome of the offloaded job must be delivered

over cellular networks. In this work, appc represents a time-sensitive application with strict

requirements. Taking into account the processing speed and data transfer time of the nearby

vehicles, CV v_c then sends a request to the relevant WV v_j to carry out task t_i of appc. The

time it takes and the amount of energy it takes to finish an application depend heavily on the

task scheduling that decides which WV will be allocated t.

3.1. System Description

A CV v_c will attempt to delegate application appc duties to other CVs. v_c looks for vehicles

in the area, selects WVs, and then asks them to carry out the DAG-expressed duties of app_c.

It takes on average as many instructions from ipbi to complete task t_i, where i is the number

of bytes of output data. Therefore, D_o(t_i) ipb_i instructions are required if the data produced

by task t_i is D_o(t_i) bytes. The computer capability of each vehicle is measured in

instructions per second (ips), while the rate of information exchange between cars is

represented in bytes per second (bps).

To learn more about the cars in its vicinity, v_c first sends out a broadcast message asking for

details about them. The vehicle that is willing to share its computer capitals with v_c responds

to this message with its present position, its movement status, and the computing resources that

it can share with v_c. All vehicles give priority to their own tasks, thus these resources are

what's left over once those jobs are completed. The next step is for v_c to use the gathered data

to determine which cars should do which jobs. Since the quantity of energy used and the time

it takes to finish the application both depend on how jobs are scheduled, it's important to

discover an allocation strategy that minimises energy use while still meeting the deadline T for

the application. Due to the wireless nature of the channel, data broadcast overhead is crucial in

a vehicle network. It takes energy to relay data across wireless channels to other cars. There is

no use in offloading jobs if the cost of doing so, including the cost of transmitting data, is more

than the benefit.

3.2. Problem Definition

A DAG 𝐺 = (𝑇 , 𝐸) is accepted to perfect errands of an application 𝑎𝑝𝑝c. 𝑇 is a usual of nodes

sense tasks ti’s of 𝑎𝑝𝑝c and E is called a source task. This work focuses on directed acyclic

graphs (DAGs) with a single source job. However, the suggested technique is not limited in its

applicability DAGs with many source tasks may be readily transformed to DAGs with a single

task by simply adding a void job with tasks. If there is a dividing line from 𝑡i to 𝑡𝑙 , 𝑡𝑖 is called

an instant predecessor of 𝑡l. Conversel.

After CV 𝑣c brands a set 𝑉𝑤 of WVs with some 1-hop that reply to its broadcast

communication, each job in T is allocated to a WV in 𝑉𝑤. The binary mutable 𝑥ij designates

that task 𝑡i is allocated to WV 𝑣j. 𝑥𝑖𝑗 = { 1 𝑖𝑓 𝑡𝑖 𝑖𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑣𝑗 𝑏𝑦 𝑣𝑐0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (1) 𝑋 is a set of 𝑥𝑖𝑗, which signifies a job map transmission errand in T to WVs in 𝑉w. ∑ 𝑥𝑖𝑗 = 1𝑗 (2)

𝑣j receives the allocated task via V2V message and execution the task. 𝑣j can perform ti after

receiving the consequences of the 𝑡𝑖’s i-predecessors. When the implementation of 𝑡𝑖 is

completed, the subsequent data of size Do(𝑡𝑖) must be conveyed to vehicles execution 𝑡𝑖’s i-

successors. The execution 𝑡𝑖 in 𝑣j, signified by 𝑤ij, is to be treated for 𝑡𝑖, Do(𝑡𝑖)×𝑖𝑝𝑏i, divided

by the sum of orders that can be treated by 𝑣j each second, 𝑖𝑝𝑠j. 𝑤𝑖𝑗 = 𝐷0(𝑡𝑖)×𝑖𝑝𝑏𝑖𝑖𝑝𝑏𝑗 (3)

And the predictable surface period of 𝑡i can be intended as the entirety of the preliminary time

and processing period in 𝑣j. 𝐹𝑇𝑖 = 𝑆𝑇𝑖 + 𝑤𝑖𝑗 (4)

Before 𝑡i may begin 𝑡i -predecessors must have finished and reported their findings to v_j.

Additionally, all tasks assigned to 𝑉i with a higher priority than t_i must be finished before t_i

may be started. In this context, "latest finish time" 𝐹𝑇𝑙 refers to the latest moment when all of

ti's i-predecessors have finished their operation and transferred the result to 𝑣j. 𝐿𝐹𝑇i = {𝐹𝑇𝑙 + 𝐷0(𝑡𝑙)𝑏 }𝑡𝑙∈𝑝𝑟𝑒𝑑(𝑡𝑖)max , ∀𝑖 ∈ {1,2, … . , 𝑛𝑤} (5)

where 𝑝𝑟𝑒𝑑(𝑡𝑖) is a set of 𝑡𝑖’s, and 𝑏 is the data broadcast speed among vehicles.

A DAG already represents of tasks that are scheduled to be completed by a WV. A forerunner

task must be finished before its successor may begin. When all of v_j's tasks with greater

priority than t_i have been finished, v_j is free to work on t_i. by 𝐴𝑇ij. 𝐴𝑇ij = {𝑥𝑙𝑗𝐹𝑇𝑙}𝑙∈{1,2,….,𝑛𝑡}max
 (6)

The initial start period when 𝑡𝑖 can run on 𝑣j, 𝐸𝑆𝑇ij, is the latter of 𝐿𝐹𝑇i and 𝐴𝑇ij. 𝐸𝑆𝑇ij = max {𝐿𝐹𝑇𝑖, 𝐴𝑇ij} (7)

The initial finish time of 𝑡i in 𝑣j, 𝐸𝐹𝑇ij, is as shadows: 𝐸𝐹𝑇𝑖𝑗 = 𝐸𝑆𝑇𝑖𝑗 + 𝑤𝑖𝑗 (8) 𝑡𝑟i is the period it takes to transmission the consequence of 𝑡i from 𝑣j to WVs having 𝑡i’s i-
successors, which can be got as shadows. 𝑡𝑟𝑖 = 𝐷𝑜(𝑡𝑖)𝑏 (9)

For 𝑡𝑖 to be executed in 𝑣j, To ensure that all higher priority jobs are finished, the starting time,

ST_i, for t_i must meet the inequality below. 𝐴𝑇𝑖𝑗 ≤ 𝑆𝑇𝑖 (10)

In 𝑎𝑝𝑝c to be finished before 𝑇, all errands must be finished before 𝑇. {𝐹𝑇𝑖} ≤ 𝑇𝑖∈{1,2,..,𝑛𝑡}max (11)

The energy 𝐸total spent by 𝑣j for 𝑡i is the quantity of the energy 𝐸exe to achieve the task 𝑡i and

the energy 𝐸tr to convey with 𝑡i’ i-successors. 𝐸𝑡𝑜𝑎𝑡𝑎𝑙 = 𝐸𝑒𝑥𝑒 + 𝐸𝑡𝑟 (12)

The majority of a wireless network's power usage is often devoted to data transmission.

Similarly, assuming processors in all cars require the same amount of power to execute an

instruction, mapping produce greater change in data transmission energy than task execution

energy in our vehicular clouds. This makes sense, as state-of-the-art CPUs are likely to be

installed in electric cars, and much like with desktop and laptop computers, only a select few

companies develop these chips. Therefore, it makes little difference where in the world tasks

are executed, and this research centres on the energy expended during data transmission.

We use the energy perfect from Liu's research [33] to determine the transmission energy E_tr.

The energy required to send M bytes is detailed in the publication among 𝑣j and 𝑣k is given as: 𝐸𝑎𝑚𝑝_𝑗𝑘 = 𝑀 × 𝜀𝑓𝑠 × 𝑑𝑗𝑘2 (13)

Here, 𝜀𝑓𝑠 is the power required to send a single byte over empty space, where d_jk is the

separation between two points in the universe denoted by v_j and v_k. Therefore, the total

amount of energy, denoted by the symbol E_tr, required to transfer data from cars performing

predecessor activities to successor duties may be calculated as follows, across all tasks in an

application. 𝐸𝑡𝑟 = ∑ 𝐸𝑎𝑚𝑝 = 𝜀𝑓𝑠 ∑ ∑ {𝐷𝑜(𝑡𝑖) ∑ ∑ 𝑥𝑖𝑗𝑥𝑙𝑘𝑑𝑗𝑘2𝑘𝑗 }𝑡𝑙∈𝑠𝑢𝑐𝑐(𝑡𝑖)𝑖 (14)

where 𝑠𝑢𝑐𝑐(𝑡𝑖) is a set of 𝑡i’s i- end results of collaborative computing are communicated

directly between vehicles via V2V networks. The problem is that by the time a WV completes

its job operation, it is frequently no longer in close enough proximity to the vehicles that should

receive the outcome to do so via direct connection. In this scenario, cellular networks are used

to transfer information. The predicted data broadcast cost may be calculated as follows, where

pout is the likelihood that 𝑣v j with ti is out of direct communiqué variety at the time 𝑡j is

finished, and ns(t_i) is the sum of vehicles of 𝑡j. 𝐸̅[𝐶𝑡𝑟] = {𝑝𝑜𝑢𝑡𝑐𝑐𝑒 + (1 − 𝑝𝑜𝑢𝑡)𝑐𝑑𝑖} ∑ 𝐷0(𝑡𝑖)𝑛𝑠(𝑡𝑖)𝑖 (15)

where 𝑐ce is the cost of cellular networks and cdi is the cost of communication. Because using

a cellular network is more expensive each transmission, the total cost rises as its use increases.

We factor in the potential expense of using the cellular network by thinking about the price that

would need to be paid to network operators. In contrast to cellular communication, DSRC saves

time and energy while transmitting data at a lower cost. Since WiFi and LTE are the

foundations for contemporary DSRC and C-V2X, respectively, WiFi has a 60% greater energy

efficiency than LTE [23]. Additionally, DSRC and C-V2X have transmission periods of 0.4

ms and 1 ms, correspondingly. As a result, we contend that direct DSRC connection is

preferable to cellular communication for compute offloading whenever available.

Therefore, we essential to locate a task mapping X that, given (10) and (11), minimises

E [C_tr]. It is a form of optimisation with the following possible ends in mind: 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐸𝑡𝑟𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐸̅[𝐶𝑡𝑟] 𝑠. 𝑡 (10), (11) (16)

In order to minimize the above equation values, the research work proposes an improved ARO

model.

3.3. Basic Steps of Artificial Rabbits Optimization (ARO)

Two natural rules of rabbit survival—detour hiding—form the basis of the ARO

algorithm's proposal [24]. One such tactic is called "detour foraging," and it involves rabbits

eating grass around their nests to avoid being spotted by predators. As part of their technique

of "random hiding," rabbits frequently hop to different burrows. The initialisation procedure is

crucial to the launch of any search algorithm. Size of the artificial rabbit colony is a design

variable with dimension d. is 𝑁, and the limits are 𝑢𝑏 and 𝑙𝑏. Then shadows. 𝑧𝑖,𝑘 = 𝑟. (𝑢𝑏𝑘 − 𝑙𝑏𝑘) + 𝑙𝑏𝑘, 𝑘 = 1,2, … , 𝑑 (17)

where 𝑧𝑖,𝑘 signifies the location of the ith rabbit's jth dimension, and r is a chance sum that is

also provided.

Both exploration and exploitation are taken into account by the metaheuristic algorithm,

although detour foraging focuses on the former. In order to find enough to eat, individual

rabbits may often wander away from the group and forage in a different part of the territory.

Below is the most recent iteration of the detour foraging formula. 𝑣⃗𝑖(𝑡 + 1) = 𝑧𝑗(𝑡) + 𝑅. (𝑧𝑖(𝑡) − 𝑧𝑗(𝑡)) + 𝑟𝑜𝑢𝑛𝑑(0.5. (0.05 + 𝑟1)). 𝑛1 (18) 𝑅 = 𝑙. 𝐶 (19)

𝑙 = (𝑒 − 𝑒(𝑡−1𝑇𝑚𝑎𝑥)2) . sin(2𝜋𝑟2) (20)

𝐶(𝑘) = {1 𝑖𝑓 𝑘 == 𝐺(𝑙)0 𝑒𝑙𝑠𝑒 𝑙𝑘 = 1, … , 𝑑 𝑎𝑛𝑑 𝑙 = 1, … , [𝑟3. 𝑑] (21) 𝐺 = 𝑟𝑎𝑛𝑑𝑝(𝑑) (22) 𝑛1~𝑁(0,1) (23)

where 𝑣⃗𝑖,𝑘(𝑡 + 1) denotes the rabbit, 𝑖, 𝑗 = 1, . . . , 𝑁. 𝑧𝑖 denotes the rabbit, and 𝑧𝑗 stands in for

phoney bunnies in several other locations. The maximum number of cycles is denoted by

T_(max). Rounding to the closest integer is represented by the [] symbol, while a random

permutation of integers from 1 to d is denoted by the randp symbol.. 𝑟1, 𝑟2, and 𝑟3 are stochastic

numbers from 0 to 1. L signifies the running length, This is the rate of travel when on a foraging

detour. There is a normal distribution for n1. The random number n_1 from a normal

distribution best represents the disturbance. The final term in Equation (18) can be perturbed

to aid ARO in avoiding local extremum and conducting a global search.

The algorithm's random hiding strategy is inspired by the exploring phase, when rabbits dig

many burrows near their nests and pick one at random to hide in to avoid predators. First, we

provide a working definition of how rabbits come up with their burrows on their own. When

the ith rabbit digs the jth hole, it is called a

: 𝑏⃗⃗𝑖,𝑗(𝑡) = 𝑧𝑖(𝑡) + 𝐻. 𝑔. 𝑧𝑖(𝑡) (24) 𝐻 = 𝑇𝑚𝑎𝑥−𝑡+1𝑇𝑚𝑎𝑥 . 𝑛2 (25) 𝑛2~𝑁(0,1) (26) 𝑔(𝑘) = {1 𝑖𝑓 𝑘 == 𝑗0 𝑒𝑙𝑠𝑒 𝑙 𝑘 = 1, … , 𝑑 (27)

where 𝑖 = 1, . . . , 𝑁 and 𝑗 = 1, . . . , 𝑑, and 𝑛2 shadows the distribution. H signifies the hidden

limit that reductions linearly from 1 to 1/𝑇𝑚𝑎𝑥 perturbations. Fig. 1 demonstrations the

alteration in the worth of 1000 iterations. The lessening trend in H values shown in the image

indicates a steady progression as the repetitions go.

Figure 1. The alteration of H over the course of 1000 repetitions.

Below is the formula for updating the random concealment technique.: 𝑣⃗𝑖(𝑡 + 1) = 𝑧𝑖(𝑡) + 𝑅. (𝑟4. 𝑏⃗⃗𝑖,𝑟(𝑡) − 𝑧𝑖(𝑡)) (28) 𝑔𝑟(𝑘) = {1 𝑖𝑓 𝑘 == [𝑟5. 𝑑]0 𝑒𝑙𝑠𝑒 𝑙𝑘 = 1, … . , 𝑑 (29)

𝑏⃗⃗𝑖,𝑟(𝑡) = 𝑧𝑖(𝑡) + 𝐻. 𝑔𝑟 . 𝑧𝑖(𝑡) (30)

Equation (31) is used to update the site of the ith artificial rabbit after the two update procedures

have been applied.

𝑧𝑖(𝑡 + 1) = { 𝑧𝑖(𝑡) 𝑖𝑓 𝑓(𝑧𝑖(𝑡)) ≤ 𝑓(𝑣⃗𝑖(𝑡 + 1))𝑣⃗𝑖(𝑡 + 1) 𝑒𝑙𝑠𝑒 𝑓(𝑧𝑖(𝑡)) > 𝑓(𝑣⃗𝑖(𝑡 + 1)) (31)

An adaptive update is shown here in the form of an equation. Based on the adaption value, the

rabbit will decide on its own whether to remain in its present location or search for a new one.

In an optimisation algorithm, populations often choose carrying out the exploration phase early

on and phase later on. The rabbits' dwindling vitality is used by ARO to devise a searching

strategy that mimics the discovery-to-exploitation cycle. In the algorithm of the synthetic

rabbit, we define the energy factor as: 𝐴(𝑡) = 4. (1 − 𝑡𝑇𝑚𝑎𝑥) . 𝐼𝑛 1𝑟 (32)

where (r, r) are two random numbers among zero and one. By analysing the data shown in the

image, we see that the value of A is dropping as a whole, which ensures a smooth change from

as the iterations go.

3.4. Hybrid Artificial Rabbits Optimization

Since hybrid optimisation procedures are the result of targeted changes to the original

method, which boost the various performances of the algorithm, they find widespread usage in

practical engineering. When applied to the problem of wave front shaping, for instance, Liu's

suggested novel hybrid method combines particle swarm optimisation with a single layer

neural network to take use of the strengths of both approaches [25]. For the clustered vehicle

routeing problem, Islam uses particle swarm optimisation (PSO) and variable neighbourhood

search (VNS), with PSO fusing the different solutions and VNS bringing them to local

optimums [26]. Devarapalli [27] suggested a cosine approach for addressing the challenge of

power system stabiliser parameter adjustment in a system. As a means of compensating for the

ARO algorithm's subpar accuracy and propensity to quickly descend into locally optimal

solutions, we propose a hybrid, improved LARO algorithm that incorporates and then apply it

to engineering optimisation problems. Lévy flight is one such method that may be used to boost

the procedure's correctness. Using the selected opposition method, the algorithm is freed from

the confines of local minima.

3.4.1. Lévy Flight Method

Regular random numbers, generated by the Lévy flight operator, are small in most cases

and large in a few, and are thus frequently algorithms, primarily to add energy to the updates

to the algorithms.. This law of generating random numbers can aid in introducing dynamism

into update techniques and allowing them to escape from stagnant local minima. The following

equation describes the Lévy distribution. 𝐿𝑒𝑣𝑦(𝑡)~𝑢 = 𝑡−1−𝛾, 0 < 𝛾 ≤ 2 (33)

where t is the step size and is determined by (34). Equations (34)-(37) provide the formulae for

determining the Lévy flight's step size. 𝑡 = 𝑢|𝑣|1/𝛾 (34) 𝑢~𝑁(0, 𝜎𝑢2), 𝑣~𝑁(0, 𝜎𝑣2) (35)

𝜎𝑢 = (Γ(1+𝛽).sin (𝜋.𝛽 2⁄)Γ((1+𝛽).𝛽.2(𝛽−1)/2)1/𝛽
 (36)

𝜎𝑣 = 1 (37)

where 𝜎𝑢 and 𝜎𝑣 are distinct as assumed in Equations (36) and (378). Both 𝑢 and 𝑣 obey mean

0 and variance 𝜎𝑢2 and 𝜎𝑣2, as exposed in Equation (35). Γ signifies a standard Gamma purpose,

while b means a set to 1.5.

In the phase of random concealment, we use the random statistics generated by the Lévy flight

method in place of the r4 random numbers. To prevent ARO from being stuck on local

candidate solutions during the exploitation phase, which includes the random concealment step,

we include Lévy flight into this technique. The algorithm's convergence accuracy is enhanced,

and its random concealing step is made more adaptable. The Lévy flight's hidden phase is given

by the following equation, where an is a constant value of 0.1. 𝑣⃗𝑖(𝑡 + 1) = 𝑧𝑖(𝑡) + 𝑅. (𝑎. 𝑙𝑒𝑣𝑦(𝛽). 𝑏⃗⃗𝑖,𝑟(𝑡) − 𝑧𝑖(𝑡)) , 𝑖 = 1, … , 𝑁 (38)

3.4.2. Selective Opposition (SO) Strategy

Based on the concept of opposition-based learning (OBL), SO was developed [28]. The goal

of SO is to use novel opposition-based learning to shrink the scope of the rabbits that are far

from the ideal solution in order to get them closer to the size of the rabbit that is in the optimal

location. Furthermore, a linearly declining threshold is typically associated with the selective

opposition technique. By altering the closeness dimension of various bunnies, selected

opposition helps the rabbits improve their condition throughout growth when they use SO [29].

What follows is an update.

We start by settling on a cutoff point. Until the limit case is achieved, the threshold value will

be lowered. The following equation demonstrates how SO determines which rabbit location is

optimum given the current rabbit dimension and the set of rabbit locations under consideration.

. 𝑑𝑑𝑖 = |𝑧𝑖𝑏𝑒𝑠𝑡,𝑗 − 𝑧𝑖,𝑗| (39)

where 𝑑𝑑𝑗 is how far apart each rabbit is in every direction. The distant and near rabbit locations

are computed when dd_j is larger than the value we set. Next, we see a complete catalogue of

rabbit-positional distance differences. 𝑠𝑟𝑐 = 1 − 6.∑ (𝑑𝑑𝑗)2𝑗=1𝑑𝑑𝑗.(𝑑𝑑𝑗2−1) (40)

The 𝑠𝑟𝑐 is projected mostly to measure the association among the current best rabbit position.

Presumptuous that 𝑠𝑟𝑐 < 0 and the far dimension (𝑑𝑓) is greater than the (𝑑𝑐), the rabbit’s site

will be efficient by Equation (41). 𝑧𝑑𝑓′ = 𝑙𝑏𝑑𝑓 + 𝑢𝑏𝑑𝑓 − 𝑍𝑑𝑓 (41)

3.4.3. Detailed Implementation of LARO

ARO incorporates two changes, opposition. The ARO algorithm is improved by these

tweaks, which lead to greater convergence and population diversity as well as higher-quality

solutions. Listed below are LARO's methods in detail.

Step1: Appropriate limits for LARO are supplied: the scope of rabbit N, the dimensionality of

the variable star d, the bounds 𝑢𝑏 and 𝑙𝑏 of the problematic variables, iterations 𝑇Max;

Step2: Pick many locations at random for the rabbits and determine their fitness levels. Identify

the bunny who is strategically placed.;

Step3: The value of the energy component A may be determined using Equation (32). If A >

1, pick any rabbit at random from each set;

Step4: Using Equations (19)–(22), determine R's value. Apply the approach of detour foraging

by solving Equation (18). Then, using Equation (31), determine the new rabbit position's

adaption value and update it.

Step5: If 𝐴 ≤ 1, Make a bunch of burrows at random, and then pick one at random using

Equation (30). With the help of a random concealment plan based on the enhanced Lévy flying

strategy of Equation (38), the rabbit's current location is constantly being updated. Equation

(31) is used to determine the consistent fitness and then update the rabbit's site;

Step6: The distance of each site from the rabbit dimension to the best rabbit position is intended

by Equation (39);

Step7: If 𝑑𝑑j > Threshold, regulate the near size 𝑑f and count the sum of df. If 𝑑𝑑j ≤ Threshold,
regulate the far dc and sum the sum of 𝑑c. Then compute src from the calculated 𝑑𝑑j by

Equation (40);

Step8: If 𝑠𝑟𝑐 <= 0 and 𝑑𝑓 > 𝑑𝑐, execute Equation (41) and rabbit’s location;

Step9: The ideal result is exported if the sum of iterations exceeds the worst-case scenario.

3.4.4. In-Depth Discussion of LARO Complexity

Adding the selective opposition component to the ARO base method is the major way that

LARO complexity is estimated. However, the Lévy approach does not add any complexity

while simplifying how ARO is updated. Assessing the difficulty of addressing real-world

situations is difficult, but calculations of complexity can help. The difficulty is related with the

size of false rabbits N, d, and 𝑇Max. The total difficulty of the rabbit’s procedure is as shadows. 𝑂(𝐴𝑅𝑂) = 𝑂(1 + 𝑁 + 𝑇𝑀𝑎𝑥𝑁 + 0.5𝑇𝑀𝑎𝑥𝑁𝑑 + 0.5𝑇𝑀𝑎𝑥𝑁𝑑) = 𝑂(𝑇𝑀𝑎𝑥Nd + 𝑇𝑀𝑎𝑥N + N) (42)

With selective opposition, every facet of every possible rabbit habitat is taken into account.

Consequently, the LARO algorithm is complex because: 𝑂(𝐿𝐴𝑅𝑂) = 𝑂(2𝑇𝑀𝑎𝑥𝑁𝑑 + 𝑇𝑀𝑎𝑥𝑁 + 𝑁) (43)

4. Results and Discussion

Simulations were used to assess the effectiveness of the suggested model. We used

Veins [30] to think about how the road actually works and how cars travel over it. This

simulation follows a standard architecture for virtual autonomous networks (VANETs) in

which cars travel at varying speeds over a straight section of Manhattan Street. Every two

seconds, a brand-new car is produced and driven at a random speed between 25 and 30

kilometres per hour. After 5 seconds, the speed of each car is raised by 5 km/h to account for

the shift in the distance between them; after another 5 seconds, the speed is decreased to its

previous value. In the processing power of all cars falls somewhere in the middle. The

maximum rate of data transfer between cars is 25 Mbps. We use DSRC, IEEE 802.11p, and

cellular networks for the physical and connection layers. They implement CSMA/CA for

collision avoidance and channel assignment. Since the DSRC data rate is up to 27 Mbps, the

maximum speed of data transfer between cars has been set at 25 Mbps.

Due of the simulation's narrow emphasis, we don't account for congestion by having

trucks dump data in any particular order; instead, we monitor how well different algorithms

divide up the work. The assignment of work to a worker car is not directly responsible for the

congestion. Meanwhile, some works, such as [31], examine data offloading load balancing in

a scenario where many vehicles deliver packets at once. In addition, we do not analyse the

scenario in which is meaningless for the following presentation measures, as is the case with

most prior research on compute offloading.

4.1. Average packet delivery ratio (PDR)

The packet reception ratio is the measure of network performance, defined as the ratio of

packets received at the surface sink to packets sent from the source node.

𝑃𝐷𝑅 = ∑ 𝑃𝑟𝑢𝑃𝑙𝑢𝐾𝑢=1𝐾 (44)

where 𝑃𝑟𝑢, 𝑃𝑙𝑢, and K are how many simulation runs were performed, how many packets were

generated by the source node in the uth simulation run, and how many packets were received

by the surface sink in the uth simulation run.

Table 1: PDR Analysis

Models 100 200 300 400 500 600 700

GWO 0.1 0.21 0.31 0.38 0.44 0.45 0.45

Whale 0.12 0.29 0.39 0.42 0.52 0.52 0.52

Butterfly 0.16 0.34 0.44 0.51 0.66 0.73 0.73

Proposed 0.22 0.53 0.72 0.85 0.91 0.92 0.92

In table 1 and figure 2 represent that the PDR Analysis. In this analysis, we have used different

models as GWO, Whale, Butterfly with Proposed model. In the model of GWO reached the

PDR value of 100 runs at 0.1 and also, the 200 runs the model reached the PDR value of 200

runs at 0.21 and also, the 300 runs the model reached the PDR value of 200 runs at 0.31 and

also, the 400 runs the model reached the PDR value of 200 runs at 0.38 and also, the 500 runs

the model reached the PDR value of 200 runs at 0.44 and also, the 600 runs the model reached

the PDR value of 200 runs at 0.45 and also, the 700 runs the model reached the PDR value of

200 runs at 0.45 respectively. And another model of Whale reached the PDR value of 100 runs

at 0.12 and reached the PDR value of 200 runs at 0.29 and reached the PDR value of 300 runs

at 0.39 and reached the PDR value of 400 runs at 0.42 and also reached the PDR value of 500

runs at 0.52 and another reached the PDR value of 600 runs at 0.52 and reached the PDR value

of 700 runs at 0.52 respectively. And also, the Butterfly model in 100 runs the model reached

the PDR value of 0.16 and the model in 200 runs the model reached the PDR value of 0.34 and

the model in 300 runs the model reached the PDR value of 0.44 and the model in 400 runs the

model reached the PDR value of 0.51 and the model in 500 runs the model reached the PDR

value of 0.66 and the model in 600 runs the model reached the PDR value of 0.73 and the

model in 700 runs the model reached the PDR value of 0.73 respectively.

Figure 2: Graphical Analysis for PDR

.

And finally, the proposed model reaches the PDR value in the runs of 100 in the PDR value as

0.22 and in the runs of 200 in the PDR value as 0.53 and in the runs of 300 in the PDR value

as 0.72 and in the runs of 400 in the PDR value as 0.85 and in the runs of 500 in the

PDR value as 0.91 and in the runs of 600 in the PDR value as 0.92 and in the runs of 700

in the PDR value as 0.92 respectively.

4.2. Average end-to-end delay

The time it takes its origin node to its destination sink on the network's outermost layer is

known as its end-to-end latency. Average end-to-end latency may be calculated using the

formula:

𝐸𝐸𝐷 = ∑ ∑ {(𝑇𝑃𝑢𝑚−𝑅𝑃𝑢𝑚)+𝑇𝐻𝑟𝑗 }𝑃𝑟𝑚=1𝐾𝑢=1 𝑃𝑟𝐾 (45)

where 𝑃𝑟, 𝑅𝑃𝑢𝑚, and 𝑇𝑃𝑢𝑚 are the sum of the timestamps of the mth packet transmitted and

received in the uth imitation run and the mth packet received in the uth imitation run,

correspondingly.

Table 2: End to End delay (s)

Models 100 200 300 400 500 600 700

GWO 93 81 76 75 72 72 72

Whale 84 74 69 64 57 57 56

Butterfly 68 52 46 46 44 42 41

Proposed 58 43 38 36 34 34 34

In table 2 and figure 3 represent that the delay analysis validation of various models. In this

analysis, we have used different models as GWO, Whale, Butterfly with Proposed model. In

the model of GWO reached the End-to-End delay value of 100 runs at 93 and the End-to-End

delay value of 200 runs at 81 and the End-to-End delay value of 300 runs at 76 and the End-

to-End delay value of 400 runs at 75 and the delay value of 500 runs at 72 and the End-to-End

delay value of 600 runs at 72 and the value of 700 runs at 72 respectively. In the model of

Whale reached the End-to-End delay of 100 runs at value as 84, and the End-to-End delay of

200 runs at value as 74, and the delay value of 300 runs at value as 69, and the End-to-End

delay value of 400 runs at value as 64, and the End-to-End delay value of 500 runs at value as

57 and the End-to-End delay value of 600 runs at value as 57 and the value of 700 runs at value

as 56 respectively. And another Butterfly model reaches the End-to-End delay value of 100

runs at value as 68 and the End-to-End delay value of 200 runs at value as 52 and the End-to-

End delay value of 300 runs at value as 46 and the End-to-End delay value of 400 runs at value

as 46 and the End-to-End delay value of 500 runs at value as 44 and the End-to-End delay value

of 600 runs at value as 42 and the End-to-End delay value of 700 runs at value as 41,

respectively. And finally, the proposed model reaches the End-to-End delay value of 100 runs

at value as 58 and reaches the End-to-End delay value of 200 runs at value as 43 and model

reaches the End-to-End delay value of 300 runs at value as 38 and the End-to-End delay value

of 400 runs at value as 36 and the value of 500 runs at value as 34 and the delay value of 600

runs at value as 34 and the delay value of 700 runs at value as 34 respectively.

Figure 3: Validation of Various models

.

4.3. Average energy consumption

The average volume of energy used for a successful transmission comes from the packets'

transmission and reception, as well as the packets' overhearing by the nodes in the forwarding

relay set. The regular network power ingesting may be determined if 𝐸𝐴𝑣𝑔 = ∑ {𝐹(𝑖),𝑟𝑗}𝐾𝑢=1 𝐾 (46)

Table 3: Validation of Ptoposed model in terms of Energy Consumption (J)

Models 100 200 300 400 500 600 700

Proposed 32 86 120 153 190 230 260

Whale 45 110 125 160 210 240 290

Butterfly 55 125 135 185 245 265 330

GWO 86 140 156 210 260 290 340

In above table 3 and figure 4 represent that the Validation of Proposed model in terms of Energy

Consumption (J). In the Projected model reaches the Energy at the 100 runs in value of 32 and

also reaches the Energy Consumption at the 200 runs in value of 86 and also reaches the Energy

Consumption at the 300 runs in value of 120 and also reaches the Energy Consumption at the

400 runs in value of 153 and also reaches the Energy Consumption at the 500 runs in value of

190 and also reaches the Energy Consumption at the 600 runs in value of 230 and also reaches

the Energy Consumption at the 700 runs in value of 260 respectively. Another model of Whale

reaches the Energy Consumption at the 700 runs in value of 45 and also reaches the Energy

Consumption at the 700 runs in value of 110 and also reaches the Energy Consumption at the

700 runs in value of 125 and also reaches the Energy Consumption at the 700 runs in value of

160 and also reaches the Energy Consumption at the 700 runs in value of 210 and also reaches

the Energy Consumption at the 700 runs in value of 240 and also reaches the Energy

Consumption at the 700 runs in value of 290 respectively. Another model of Butterfly reaches

the Energy Consumption at the 100 runs in value of 55 and also reaches the Energy

Consumption at the 200 runs in value of 125 and also reaches the Energy Consumption at the

300 runs in value of 135 and also reaches the Energy Consumption at the 400 runs in value of

185 and also reaches the Energy Consumption at the 500 runs in value of 245 and also reaches

the Energy Consumption at the 600 runs in value of 265 and also reaches the Energy

Consumption at the 700 runs in value of 330 respectively. Another model of GWO reaches the

Energy Consumption at the 100 runs in value of 86 and also reaches the Energy Consumption

at the 200 runs in value of 140 and also reaches the Energy Consumption at the 300 runs in

value of 156 and also reaches the Energy Consumption at the 400 runs in value of 210 and also

reaches the Energy Consumption at the 500 runs in value of 260 and also reaches the Energy

Consumption at the 600 runs in value of 290 and also reaches the Energy Consumption at the

700 runs in value of 340 respectively.

Figure 4: Graphical Representation of various models

4.4. Average network lifetime

For at least this long, the network would function normally. In this study, we define network

lifespan as the period until the first participating sensor node in the network loses power.

Therefore, we determined how long a network would last by timing how long it took for the

first node to run out of juice throughout the simulation. For a statistical analysis of a network's

expected lifespan, one may use the formula 𝐿𝐴𝑣𝑔 = ∑ (𝑆𝑇𝑢−𝐹𝑇𝑢)𝐾𝑢=1 𝐾 (47)

where 𝑆𝑇𝑢 and 𝐹𝑇𝑢 are the time at which the first node in the uth imitation run began using

energy and the moment at which the simulation began.

Table 4: Analysis based on Network Lifetime (s)

Models 100 200 300 400 500 600 700

GWO 1000 800 750 700 700 700 700

Whale 1200 940 820 750 750 750 750

Butterfly 1600 1400 1200 1000 900 900 900

Proposed 1800 1500 1300 1150 1050 1050 1050

In above table 4 and figure 5 represent that the analysis based on network lifetime in various

models. In the model of GWO reaches the network lifetime value in 100 runs as 1000 and

reaches the network lifetime value in 200 runs as 800 reaches the network lifetime value in 300

runs as 750 reaches the network lifetime value in 400 runs as 700 reaches the network lifetime

value in 100 runs as 700 and reaches the network lifetime value in 100 runs as 700 and reaches

the network lifetime value in 100 runs as 700 respectively. In the model of Whale reaches the

network lifetime value in 100 runs as 1200 and reaches the network lifetime value in 100 runs

as 940 and reaches the network lifetime value in 100 runs as 820 and reaches the network

lifetime value in 100 runs as 750 and reaches the network lifetime value in 100 runs as 750 and

reaches the network lifetime value in 100 runs as 750 and reaches the network lifetime value

in 100 runs as 750 respectively. In the model of Butterfly reaches the network lifetime value in

100 runs as 1600 and reaches the network lifetime value in 200 runs as 1400 and reaches the

network lifetime value in 300 runs as 1200 and reaches the network lifetime value in 400 runs

as 1000 and reaches the network lifetime value in 500 runs as 900 and reaches the network

lifetime value in 600 runs as 900 and reaches the network lifetime value in 700 runs as 900

respectively. In the model of Proposed reaches the network lifetime value in 100 runs as 1800

and reaches the network lifetime value in 200 runs as 1500 and reaches the network lifetime

value in 300 runs as 1300 and reaches the network lifetime value in 400 runs as 1150 and

reaches the network lifetime value in 500 runs as 1050 and reaches the network lifetime value

in 600 runs as 1050 and reaches the network lifetime value in 700 runs as 1050 respectively.

Figure 5: NLT Analysis

5. Conclusion

In order to create a reliable VANET cloud and carry out an energy- compute offloading

among vehicles, the LARO model was presented in this work. The suggested approach

achieves this by i) delaying job task as much as feasible and ii) taking into account the aloofness

between a client vehicle and a worker vehicle when picking worker cars. Decreases in the

average inter-vehicle distance and the time among job assignment and execution aided VANET

stability and energy usage, respectively. Since the suggested LARO model does not attempt to

optimise the execution speed of whole jobs at once, it does not outperform the static algorithms

like GWO, Whale, and butterfly. LARO, on the other hand, maintains crucial steadiness in the

context of a rapidly moving vehicle while also minimising the amount of power needed for

wireless transmission. To lower application expenses, both in terms of storage and processing

time, we will propose a revolutionary serverless approach in further work. All dynamic and

mobility-aware failures will be handled by the reinforcement aware offloading and scheduling

algorithm, according to the study's recommendations.

Declarations

Ethical Approval

No human trails or animal trails are conducted for this research work

Competing interests

None declared.

Authors' contributions

The papers’ concept is designed by Dr. R. Mohan Das. Under his guidance, the paper is written
by Arunadevi Thirumalraj. The flow of the work, correction and English grammatical errors

are corrected by T. Rajesh.

Funding

No funding are received for this project

Availability of data and materials

No data are available.

References

[1] Khayyat, M., Elgendy, I.A., Muthanna, A., Alshahrani, A.S., Alharbi, S. and Koucheryavy,

A., 2020. Advanced deep learning-based computational offloading for multilevel vehicular

edge-cloud computing networks. IEEE Access, 8, pp.137052-137062.

[2] Xu, S. and Guo, C., 2020. Computation offloading in a cognitive vehicular networks with

vehicular cloud computing and remote cloud computing. Sensors, 20(23), p.6820.

[3] Xu, S., Guo, C., Hu, R.Q. and Qian, Y., 2021. Blockchain-Inspired Secure Computation

Offloading in a Vehicular Cloud Network. IEEE Internet of Things Journal, 9(16), pp.14723-

14740.

[4] Li, X., Dang, Y., Aazam, M., Peng, X., Chen, T. and Chen, C., 2020. Energy-efficient

computation offloading in vehicular edge cloud computing. IEEE Access, 8, pp.37632-37644.

[5] LiWang, M., Gao, Z., Hosseinalipour, S. and Dai, H., 2020, June. Multi-task offloading

over vehicular clouds under graph-based representation. In ICC 2020-2020 IEEE International

Conference on Communications (ICC) (pp. 1-7). IEEE.

[6] de Souza, A.B., Rego, P.A.L., Rocha, P.H.G., Carneiro, T. and de Souza, J.N., 2020,

December. A task offloading scheme for wave vehicular clouds and 5G mobile edge

computing. In GLOBECOM 2020-2020 IEEE Global Communications Conference (pp. 1-6).

IEEE.

[7] Liu, Z., Dai, P., Xing, H., Yu, Z. and Zhang, W., 2021. A distributed algorithm for task

offloading in vehicular networks with hybrid fog/cloud computing. IEEE Transactions on

Systems, Man, and Cybernetics: Systems, 52(7), pp.4388-4401.

[8] Lakhan, A., Ahmad, M., Bilal, M., Jolfaei, A. and Mehmood, R.M., 2021. Mobility aware

blockchain enabled offloading and scheduling in vehicular fog cloud computing. IEEE

Transactions on Intelligent Transportation Systems, 22(7), pp.4212-4223.

[9] Raza, S., Liu, W., Ahmed, M., Anwar, M.R., Mirza, M.A., Sun, Q. and Wang, S., 2020. An

efficient task offloading scheme in vehicular edge computing. Journal of Cloud Computing, 9,

pp.1-14.

[10] Shakarami, A., Ghobaei-Arani, M., Masdari, M. and Hosseinzadeh, M., 2020. A survey

on the computation offloading approaches in mobile edge/cloud computing environment: a

stochastic-based perspective. Journal of Grid Computing, 18, pp.639-671.

[11] Kang, Y., Liu, Z., Chen, Q. and Dai, Y., 2020. Joint task offloading and resource allocation

strategy for DiffServ in vehicular cloud system. Wireless Communications and Mobile

Computing, 2020, pp.1-15.

[12] Sun, J., Gu, Q., Zheng, T., Dong, P., Valera, A. and Qin, Y., 2020. Joint optimization of

computation offloading and task scheduling in vehicular edge computing networks. Ieee

Access, 8, pp.10466-10477.

[13] Tang, L., Tang, B., Zhang, L., Guo, F. and He, H., 2021. Joint optimization of network

selection and task offloading for vehicular edge computing. Journal of Cloud Computing,

10(1), pp.1-13.

[14] Guo, H., Liu, J., Ren, J. and Zhang, Y., 2020. Intelligent task offloading in vehicular edge

computing networks. IEEE Wireless Communications, 27(4), pp.126-132.

[15] Li, H., Huang, H. and Qian, Z., 2021, September. Latency-aware batch task offloading for

vehicular cloud: Maximizing submodular bandit. In 2021 IEEE 14th International Conference

on Cloud Computing (CLOUD) (pp. 584-593). IEEE.

[16] Gong, M., Yoo, Y. and Ahn, S., 2023. Vehicular Cloud Forming and Task Scheduling for

Energy-efficient Cooperative Computing. IEEE Access.

[17] Taha, M.B., Alrabaee, S. and Choo, K.K.R., 2023. Efficient resource management of

micro-services in vanets. IEEE Transactions on Intelligent Transportation Systems.

[18] Haris, M., Shah, M.A. and Maple, C., 2023. Internet of Intelligent Vehicles (IoIV): An

Intelligent VANET Based Computing via Predictive Modeling. IEEE Access.

[19] Rashid, K., Saeed, Y., Ali, A., Jamil, F., Alkanhel, R. and Muthanna, A., 2023. An

Adaptive Real-Time Malicious Node Detection Framework Using Machine Learning in

Vehicular Ad-Hoc Networks (VANETs). Sensors, 23(5), p.2594.

[20] Gong, M., Yoo, Y. and Ahn, S., 2022. Adaptive Computation Offloading with Task

Scheduling Minimizing Reallocation in VANETs. Electronics, 11(7), p.1106.

[21] Poongodi, M., Bourouis, S., Ahmed, A.N., Vijayaragavan, M., Venkatesan, K.G.S.,

Alhakami, W. and Hamdi, M., 2022. A novel secured multi-access edge computing based vanet

with neuro fuzzy systems based blockchain framework. Computer Communications, 192,

pp.48-56.

[22] Taha, M.B., Talhi, C., Ould-Slimane, H., Alrabaee, S. and Choo, K.K.R., 2022. A multi-

objective approach based on differential evolution and deep learning algorithms for VANETs.

IEEE Transactions on Vehicular Technology.

[23] L. Zou, A. Javed, and G.-M. Muntean, ‘‘Smart mobile device power consumption
measurement for video streaming in wireless environments: WiFi vs. LTE,’’ in Proc. IEEE Int.

Symp. Broadband Multimedia Syst. Broadcast. (BMSB), Jun. 2017, pp. 1–6.

[24] Wang, L.; Cao, Q.; Zhang, Z.; Mirjalili, S.; Zhao, W. Artificial rabbits optimization: A

new bio-inspired meta-heuristic algorithm for solving engineering optimization problems. Eng.

Appl. Artif. Intell. 2022, 114, 105082.

[25]. Liu, K.; Zhang, H.; Zhang, B.; Liu, Q. Hybrid optimization algorithm based on neural

networks and its application in wavefront shaping. Opt. Express 2021, 29, 15517–15527.

[26]. Islam, M.A.; Gajpal, Y.; ElMekkawy, T.Y. Hybrid particle swarm optimization algorithm

for solving the clustered vehicle routing problem. Appl. Soft Comput. 2021, 110, 107655.

[27]. Devarapalli, R.; Bhattacharyya, B. A hybrid modified grey wolf optimization-sine cosine

algorithm-based power system stabilizer parameter tuning in a multimachine power system.

Optim. Control. Appl. Methods 2020, 41, 1143–1159.

[28] Service, T.C. A No Free Lunch theorem for multi-objective optimization. Inf. Process.

Lett. 2010, 110, 917–923.

[29] Arini, F.Y.; Chiewchanwattana, S.; Soomlek, C.; Sunat, K. Joint Opposite Selection

(JOS): A premiere joint of selective leading opposition and dynamic opposite enhanced Harris’
hawks optimization for solving single-objective problems. Expert Syst. Appl. 2022, 188,

116001.

[30] C. Sommer, D. Eckhoff, A. Brummer, D. S. Buse, F. Hagenauer, S. Joerer, and M. Segata,

‘‘Veins: The open source vehicular network simulation framework,’’ in Recent Advances in
Network Simulation. Cham, Switzerland: Springer, 2019, pp. 215–252.

[31] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, ‘‘Joint load balancing and offloading in
vehicular edge computing and networks,’’ IEEE Internet Things J., vol. 6, no. 3, pp. 4377–
4387, Jun. 2018.

