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Abstract
Background: Conventional diagnostic methods for dysphagia have limitations such as long wait times,
radiation risks, and restricted evaluation. Therefore, voice-based diagnostic and monitoring technologies are
required to overcome these limitations. Based on our hypothesis regarding the impact of weakened muscle
strength and the presence of aspiration on vocal characteristics, this single-center, prospective study aimed to
develop a machine-learning algorithm for predicting dysphagia status (normal, and aspiration) by analyzing
postprandial voice limiting intake to 3cc.

Methods: This study was a single-center, prospective cohort study, conducted from September 2021 to February
2023, at the Seoul National University Bundang Hospital. A total of 204 participants were included, aged 40 or
older, comprising 133 without suspected dysphagia and 71 with dysphagia-aspiration.Voice data from
participants were collected and used to develop dysphagia prediction models using the Audio Spectrogram
Transformer process with MobileNet V3. Male-only, female-only, and combined models were constructed using
10-fold cross-validation. Through the inference process, we established a model capable of probabilistically
categorizing a new patient's voice as either normal or indicating the possibility of aspiration.

Results: The pre-trained models (mn40_as and mn30_as) exhibited superior performance compared to the non-
pre-trained models (mn4.0 and mn3.0). The best-performing model, mn30_as, which is a pre-trained model,
demonstrated an average AUC across 10 folds as follows: combined model 0.7879 (95% CI 0.7355-0.8403; max
0.9531), male model 0.7787 (95% CI 0.6768-0.8806; max 1.000), and female model 0.7586 (95% CI 0.6769-
0.8402; max 0.9132). Additionally, the other models (pre-trained; mn40_as, non-pre-trained; mn4.0 and mn3.0)
also achieved performance above 0.7 in most cases, and the highest fold-level performance for most models
was approximately around 0.9.

Conclusions: This study suggests the potential of using simple voice analysis as a supplementary tool for
screening, diagnosing, and monitoring dysphagia aspiration. By directly analyzing the voice itself, this method
enables simpler and more remarkable analysis in contrast to conventional clinical evaluations. The postprandial
voice-based prediction model holds implications for improving patient quality of life and advancing the
development of non-invasive, safer, and more effective intervention methods.

Trial registration: This study was approved by the IRB (No. B-2109-707-303) and registered on clinicaltrials.gov
(ID: NCT05149976).

Introduction
Dysphagia is a difficulty in swallowing food normally due to impaired movement in swallowing-related organs,
which increases the risk of food passing into the airway. [1] The most common diagnostic method, the
videofluoroscopic swallowing study (VFSS), requires specialized equipment typically found only in hospitals,
resulting in long wait times and radiation risks. [2–4] Despite the availability of other diagnostic methods such
as fiberoptic endoscopic evaluation of swallowing (FEES), manometry, and laryngeal electromyography, they
also have limitations. [5–9] For example, FEES can only evaluate the pharyngeal stage and carries the risk of
complications such as anterior or posterior epistaxis, and laryngospasm. [6] Meanwhile, manometry requires
invasive procedures, and both manometry and laryngeal electromyography remain challenging to analyze. [7–9]
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Thus, the current dysphagia diagnostic methods in clinical settings are limited in their ability to continuously
monitor changes in a patient's condition over time. [10]

To overcome the limitations of conventional tests, researchers have focused on developing voice-based
diagnostic and monitoring technologies for patients with dysphagia in clinical settings. [11–14] Dysphagia-
induced food aspiration alters the airway vibrations, resulting in changes in voice quality and parameters. [14–
16] Previous studies analyzing the voice of patients with dysphagia have reported significant changes in
parameters such as RAP, SHIM, and NHR due to aspiration into the airway. [11–14] However, these studies often
extracted specific vocal parameters rather than analyzing the patient's voice itself, which may limit their
universal application in diagnosis and monitoring.

We hypothesized that patients with dysphagia may experience changes in their voice because weakened
muscles and aspiration below the vocal cords. Additionally, it is assumed that a more precise assessment can
be achieved through the application of Machine Learning to analyze patients' voices. Based on this hypothesis,
the primary objective of this study was to explore the efficacy of machine learning into predicting dysphagia by
analyzing the post-meal voices of patients. The ultimate goal was to establish the groundwork for the future
development of an advanced dysphagia diagnosis and monitoring system.

Methods

Study Design
This single-center, prospective study was conducted from October 2021 to February 2023 at the Seoul National
University Bundang Hospital. The study protocol was approved by the Seoul National University Bundang
Hospital Institutional Review Board (IRB No.: B-2109-707-303) and registered at clinicaltrials.gov
(ClnicalTrial.gov ID: NCT05149976). This study was conducted in accordance with the strengthening the
reporting of observational studies in epidemiology (STROBE) guidelines.

Participants
The inclusion criteria for selecting study subjects are as follows: patients (1) who have signs and symptoms of
dysphagia and are scheduled for VFSS, (2) can record ‘Ah ~ for 5 seconds’, and (3) normal subjects without
dysphagia symptoms who can record voice as a normal. The exclusion criteria were as follows: (1) inability to
speak, (2) inability to speak according to the researcher’s instructions, and (3) patients whose VFSS was
reexamined.

Voice recordings were obtained with the consent of 285 participants, including 159 individuals without
suspected dysphagia and 126 who underwent VFSS because of suspected dysphagia aspiration (PAS 5–7).
Two participants (one from the normal group based on VFSS examination and one from the dysphagia
aspiration group) with poor audio quality were excluded from the collected recordings. In the patient group, 1
participant aged < 40 years was included in the aspiration subgroup. To eliminate age-related bias in the
patient's voice-based predictive model, 79 participants under the age of 40 years (comprising 75 participants
without suspected dysphagia, 3 participants from the normal group by VFSS examination and 1 participant
from the aspiration group) were excluded from the study population. The final study population consisted of
204 participants, categorized into the normal group (133 participants, including both individuals without
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suspected dysphagia and those who received a normal diagnosis based on VFSS), and the aspiration group (71
participants), based on VFSS interpretations by physicians. Figure 1 shows detailed flow chart of the
recruitment of research subjects.

Voice Recording Procedures
After obtaining consent from the patient, a VFSS was performed using the modified Logemann protocol which
is commonly used in domestic hospitals, to evaluate dysphagia. [17] During the test, the patient was instructed
to repeat the sound 'Ah~' once or more for at least 5 seconds after consuming water (CUP), thin liquid (FT3),
thickened liquid (LF), pureed food (SBD), soft and moist food (SF), and yogurt (YP), while their voice was
recorded using a Sony ICD-TX660 recorder while limiting intake to 3cc. For the control group, which consisted of
subjects without dysphagia, their voices were recorded once or more for at least 5 seconds before and after
drinking water using a voice recording function on a mobile device.

In total, 411 voice files were collected, consisting of 217 files from the normal group (72 files for men, 145 files
for women) and 194 files from the aspiration group. (148 files for men, 46 files for women). Among them, two
data files from the normal group of men were excluded because they could not be analyzed. Therefore, 409 data
files were utilized for the analysis.

Voice Data Preprocessing
Following the procedure outlined in Fig. 2, preprocessing was conducted on the voice data, and based on this, a
machine learning model was constructed.

Step 1. Conversion of Voice Data Format
To make the acquired voice files suitable for machine learning, we performed two steps: (1) converting the
stereo format to mono and (2) standardizing the data files, which were in various formats such as wav, m4a,
and mp3, to the mp3 format. As a result, 671 data files (284 normal group files: men (99 files), women (185
files), 387 aspiration group files: men (295 files), women (92 files) were converted to mp3 format and utilized for
model development.

Step 2. Creation of Train and Test Dataset for k-Fold Cross
Validation
The mp3-formatted data were divided into training and testing sets in a ratio of approximately 9:1 for each
group. For 10-fold cross-validation, the data has been divided into 10 sections based on individuals in each
group. In other words, data from the same person is grouped together in the same fold. The range of these
sections was varied to create 10-fold cross-validation datasets.

Step 3. Conversion of Voice Data to HDF5 Format for Model
Training
To train MobileNet V3 with an efficient large-scale audio tagging model using voice data, we converted the data
into a suitable format. This was achieved by modifying the create_h5pymp3_dataset.py code from PaSST
(Patchout faSt spectrogram transformer, Apache-2.0 license) research and transforming the training/test data
into HDF5 format files. [18, 19] The structure of the transformed HDF5 data consisted of the file name, audio
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data in MP3 format, and labeled information on normal, or aspiration in numeric form. The transformed data
were saved as Dysphagia_post.train_mp3.hdf and Dysphagia_post.test_mp3.hdf.

Step 4. Preprocessing of Voice Data
Voice preprocessing was conducted using an efficient large-scale audio tagging model (Efficient AT Model, MIT
license), which is widely utilized for audio classification tasks. [20, 21] This process involved defining the 

 class for audio augmentation and converting audio waveforms into Mel spectrogram
format suitable for machine learning. It consists of several steps, including pre-emphasis filtering, short-time
Fourier transform (STFT), power magnitude computation, and a Mel frequency filter bank. The hyperparameters
such as the number of mels (128), sample rate (32,000), window length (800), hop size (320), number of fast
Fourier transforms (FFT, 1024), etc. control the preprocessing process. The 'freqm (48)' and 'timem (192)'
hyperparameters enable frequency and time masking for data augmentation, respectively. In summary, this code
enables the augmentation of audio data and their transformation into a perceptually related Mel-spectrogram
representation.

Development of Dysphagia Prediction Models.

The preprocessed voice data underwent an Audio Spectrogram Transformer process using multi-head attention
pooling, which can improve learning performance in NLP and other speech analysis tasks. [20, 22] MobileNet V3
was utilized as the machine learning technique for voice training. Binary cross entropy with logits loss was used
as the loss function to evaluate the predictive performance of the algorithm. [20] The two pre-trained models
were named mn30_as, and mn40_as in accordance with the width_mult and hyperparameters in the Efficient AT
Model. Similarly, two non-pre-trained models were designed with the same width_mult and hyperparameters as
the pre-trained models, and were uniformly named mn3.0, and mn4.0, respectively. In situations where the
dataset is limited, non-pre-trained models may encounter challenges in effectively extracting features. [22, 23]
Therefore, this study conducted a comparison between the pre-trained and non-pre-trained models. [20, 21] The
model constructed in this manner was validated for prediction accuracy using a k-fold cross-validation with k = 
10. All the models were trained for 5e-5 learning rate, 12 number of workers, 150 epochs, and 64 batch sizes.

Inference design based on learned machine learning results.

The machine learning model trained using the before mentioned method was applied to actual patient voice
data to determine the probability of normal, or aspiration using a technique divided into four stages:
'decode_mp3,' 'pad_or_truncate,' 'pydub_augment,' and 'audio_tagging’. In the 'decode_mp3' process, the input
mp3 file was converted into an np.array waveform. The 'pad_or_truncate' process converted the audio waveform
of the input mp3 file into a specific length of audio for discrimination. In our study, the patients’ voices did not
start at the beginning of the audio files. To minimize noise, we adjusted the  by considering the
actual length of the patient's voice, enabling us to effectively analyze the data by cutting it accordingly. The
'pydub_augment' process augmented the audio waveform data to improve prediction ability, while the
'audio_tagging' process transformed the augmented data into Mel spectrogram format. [20] Finally, these steps
provide the probability of normal, or aspiration, based on the prediction of the model.

Outcome Variables

AugmentMelSTFT

audio≤n > h
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The primary outcome of this study is the area under the curve (AUC), considering the imbalanced distribution of
data among groups in the medical field. Additionally, the degree of prediction for the model was analyzed from
the perspectives of accuracy, mean average precision (mAP), recall, specificity, positive predictive value (PPV),
negative predictive value (NPV), and F1-score, and a final model was established.

Statistical Analysis
The baseline characteristics were analyzed, with mean ± SD used for continuous variables and number (%) for
nominal variables. We used appropriate statistical tests to compare the baseline characteristics between the
groups. We conducted a chi-square test for nominal variables and a Mann-Whitney U test for continuous
variables. These tests were chosen because of violations of normality based on the Shapiro-Wilk test and
sphericity assumptions based on Mauchly’s test of sphericity. The significance level was set at p < 0.05. The
performance of each model was evaluated using metrics such as the AUC, accuracy, mAP, recall, specificity, PPV,
NPV, and F1-score. Additionally, the performance of each model was calculated for each fold, and the average
values across the ten folds were selected as the final predictions for the model. All the analyses were conducted
using Python and Google Colaboratory Pro + GPU A100. Statistical analysis and machine learning modeling
were conducted between January and July 2023.

Results
 
Table 1 shows the demographic characteristics of all the study subjects.
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Table 1
 Demographic Characteristics

  Normal Aspiration p-value

Sex (N (%))

Men 45 (33.83%) 53 (74.65%) < 0.001*

(x2: 29.28, df: 1)Women 88 (66.17%) 18 (25.35%)

Age (Mean ± SD)

Total 61.34 ± 12.92 72.45 ± 12.01 < 0.001**

Men 63.18 ± 13.13 72.45 ± 11.66 < 0.001**

Women 60.40 ± 12.79 72.44 ± 13.34 0.001**

Diagnosis (N (%))

Central Nervous System Disorders 18 (13.53%) 19 (26.76%) < 0.001*

(x2: 35.19, df: 6)Digestive System and Dental Disorders 3 (2.26%) 10 (14.08%)

Pulmonary Disorders 3 (2.26%) 9 (12.68%)

Other Cancers 6 (4.51%) 3 (4.23%)

Vocal Fold Disorders 2 (1.50%) 2 (2.82%)

Aging-Related Disorders 13 (9.77%) 7 (9.86%)

None 88 (66.17%) 21 (29.58%)

* The Chi-square test results show a significant difference. To address gender bias, separate models were
constructed for each gender (male and female). The data was then divided into 10 folds for each gender. After
that, the results were combined in the gender-neutral model, effectively removing any gender-related biases.

** The Mann-Whitney U test results indicate a significant difference between the two groups. However, to
eliminate bias, participants under the age of 40 were excluded from the analysis.

For the 10-fold cross-validation, male-only, female-only, and combined (men + women) models were constructed.
Table 2 shows the average predictive performance of the combined (men + women) model across 10 folds.
Regarding the primary outcome, the average AUC values were mn40_as = 0.7798 (95% CI 0.7130–0.8465; max
in 10 folds 0.9777) and mn30_as = 0.7879 (95% CI 0.7355–0.8403; max in 10 folds 0.9531) for the pre-trained
models and mn4.0 = 0.7658 (95% CI 0.7069–0.8246; max in 10 folds 0.9324), mn3.0 = 0.7603 (95% CI 0.6950–
0.8256; max in 10 folds 0.8973) for the non-pre-trained models. Owing to the smaller amount of available data,
the pre-trained models (mn40_as and mn30_as) demonstrated higher performance than the non-pre-trained
models (mn4.0 and mn3.0). In addition, all models consistently showed high prediction accuracy in analyzing a
person's voice, with metrics such as accuracy, mAP, recall, specificity, PPV, NPV, and F1-score exceeding
approximately 70%.

Table 2. The levels of prediction for combined (men + women) model
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Model Pre-trained models Non-pre-trained models

mn40_as mn30_as mn40 mn30

AUC (Area Under the Curve)

AUC average

(95% CI)

0.7798

(0.7130, 0.8465)

0.7879

(0.7355, 0.8403)

0.7658

(0.7069, 0.8246)

0.7603

(0.6950, 0.8256)

AUC max in 10 folds 0.9777 0.9531 0.9324 0.8973

Accuracy (%)

Accuracy average

(95% CI)

71.81

(65.81, 77.81)

69.51

(64.90, 74.12)

73.37

(66.31, 80.44)

73.39

(67.20, 79.58)

Accuracy max in 10 folds 92.31 82.69 95.24 89.29

mAP (Mean Average Precision, %)

mAP average

(95% CI)

79.15

(72.89, 85.41)

80.04

(75.03, 85.06)

78.26

(73.72, 82.79)

77.12

(71.62, 82.63)

mAP max in 10 folds 97.97 95.77 93.17 89.58

Recall (%)

Recall average

(95% CI)

71.85

(65.54, 78.16)

69.45

(65.04, 73.86)

73.37

(66.31, 80.44)

73.22

(66.96, 79.48)

Recall max in 10 folds 92.31 82.69 95.24 89.29

Specificity (%)

Specificity average

(95% CI)

71.97

(65.70, 78.25)

70.08

(65.78, 74.39)

72.82

(65.76, 79.88)

72.78

(66.57, 78.98)

Specificity max

in 10 folds

92.26 83.04 93.75 88.39

PPV (Positive Predictive Value, %)

PPV average

(95% CI)

71.62

(65.50, 77.73)

70.25

(65.67, 74.83)

73.46

(66.20, 80.72)

73.07

(66.79, 79.35)

PPV max in 10 folds 92.26 82.89 95.49 87.74

NPV (Negative Predictive Value, %)

NPV average

(95% CI)

71.67

(65.51, 77.84)

70.20

(65.69, 74.72)

73.46

(66.20, 80.72)

73.07

(66.79, 79.35)

NPV max in 10 folds 92.26 82.89 95.49 87.74
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Model Pre-trained models Non-pre-trained models

mn40_as mn30_as mn40 mn30

AUC (Area Under the Curve)

F1 Score

F1 Score average

(95% CI)

0.7189

(0.6564, 0.7814)

0.6951

(0.6520, 0.7382)

0.7321

(0.6609, 0.8033)

0.7313

(0.6683, 0.7942)

F1 Score max in 10 folds 0.9231 0.8271 0.9519 0.8933

* All metrics represent the predictive performance on the Test Data. The results presented in this table are the
average predictive performance (95% CI) across all folds of each model after performing 10-fold cross-
validation.

Table 3 presents the average predictive performance for each sex (men and women) across the 10 folds. The
average AUC values for the pre-trained model, using mn40_as, were 0.7673 (95% CI 0.6516-0.8829; max in 10
folds 1.000) and 0.7692 (95% CI 0.6828-0.8556; max in 10 folds 0.9375) for the male and female model,
respectively. Additionally, for the pre-trained model using mn30_as, the AUC values were 0.7787 (95% CI 0.6768-
0.8806; max in 10 folds 1.000) and 0.7586 (95% CI 0.6769-0.8402; max in 10 folds 0.9132) for the male and
female models, respectively. For the non-pre-trained model, using mn4.0, the AUC values were 0.7239 (95% CI
0.6230-0.8247; max in 10 folds 0.9000) and 0.7575 (95% CI 0.6476-0.8674; max in 10 folds 0.9412) for the
male and female models, respectively. For the non-pre-trained model using mn3.0, the AUC values were 0.6784
(95% CI 0.5713-0.7856; max in 10 folds 0.9603) and 0.7007 (95% CI 0.5494-0.8519; max in 10 folds 1.000) for
the male and female models, respectively. Figure 3 presents the macro-average ROC across 10 folds for each
model.
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Table 3
The levels of prediction for gender-specific model

Model Male Models Female Models

Pre-trained models Non-pre-trained
models

Pre-trained models Non-pre-trained
models

mn40_as mn30_as** mn40 mn30 mn40_as mn40_as mn40 mn30

AUC (Area Under the Curve)

AUC
average

(95% CI)

0.7673

(0.6516,
0.8829)

0.7787

(0.6768,
0.8806)

0.7239

(0.6230,
0.8247)

0.6784

(0.5713,
0.7856)

0.7692

(0.6828,
0.8556)

0.7586

(0.6769,
0.8402)

0.7575

(0.6476,
0.8674)

0.7007

(0.5494,
0.8519)

AUC max
in 10
folds

1.0000 1.0000 0.9000 0.9603 0.9375 0.9132 0.9412 1.0000

Accuracy

Accuracy
average

(95% CI)

78.41

(72.54,
84.28)

80.60

(74.16,
87.03)

81.98

(77.88,
86.08)

80.03

(76.29,
83.77)

65.18

(58.77,
71.60)

65.77

(60.49,
71.04)

64.09

(50.40,
77.79)

50.79

(40.00,
61.57)

Accuracy
max

in 10
folds

96.08 96.15 90.20 94.12 80.00 80.77 93.94 69.23

mAP (Mean Average Precision)

mAP
average

(95% CI)

79.60

(69.58,
89.61)

80.15

(71.25,
89.05)

75.52

(67.43,
83.60)

72.21

(63.66,
80.77)

66.27

(49.73,
82.81)

74.10

(66.44,
81.76)

75.51

(65.59,
85.42)

72.45

(60.36,
84.55)

mAP max
in 10
folds

100.00 100.00 90.06 94.22 93.43 91.43 94.88 100.00

Recall

Recall
average

(95% CI)

78.23

(72.38,
84.08)

80.60

(74.16,
87.03)

81.98

(77.88,
86.08)

80.32

(76.66,
83.99)

65.93

(59.40,
72.46)

65.77

(60.49,
71.04)

64.88

(51.41,
78.36)

50.79

(40.00,
61.57)

Recall
max

in 10
folds

96.08 96.15 90.20 94.12 80.00 80.77 93.94 69.23

Specificity
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Model Male Models Female Models

Pre-trained models Non-pre-trained
models

Pre-trained models Non-pre-trained
models

mn40_as mn30_as** mn40 mn30 mn40_as mn40_as mn40 mn30

Specificity
average

(95% CI)

70.66

(61.63,
79.70)

73.88

(64.17,
83.59)

69.70

(62.53,
76.87)

66.68

(59.85,
73.52)

62.99

(54.03,
71.96)

58.34

(50.27,
66.41)

58.02

(48.14,
67.91)

52.81

(49.11,
56.52)

Specificity
max

in 10
folds

97.62 96.88 85.32 87.70 83.33 80.95 93.33 65.62

PPV (Positive Predictive Value)

PPV
average

(95% CI)

72.74

(64.66,
80.83)

78.87

(70.42,
87.33)

78.90

(68.58,
89.22)

76.23

(66.27,
86.18)

62.17

(53.44,
70.91)

59.66

(49.52,
69.80)

46.15

(30.08,
62.22)

33.79

(22.66,
44.92)

PPV max
in 10
folds

91.67 95.45 94.23 91.42 83.33 86.96 95.00 64.29

NPV (Negative Predictive Value)

NPV
average

(95% CI)

72.74

(64.66,
80.83)

78.96

(70.58,
87.34)

78.90

(68.58,
89.22)

76.23

(66.27,
86.18)

62.28

(53.55,
71.01)

59.66

(49.52,
69.80)

46.20

(30.11,
62.29)

33.79

(22.66,
44.92)

NPV max
in 10
folds

91.67 95.45 94.23 91.42 83.33 86.96 95.00 64.29

F1 Score

F1 Score
average

(95% CI)

0.7721

(0.7088,
0.8354)

0.7938

(0.7214,
0.8662)

0.7923

(0.7334,
0.8513)

0.7689

(0.7147,
0.8231)

0.6476

(0.5850,
0.7102)

0.6401

(0.5838,
0.6965)

0.5558

(0.4022,
0.7094)

0.3940

(0.2853,
0.5028)

F1 Score
max

in 10
folds

0.9623 0.9618 0.9040 0.9398 0.8000 0.8039 0.9388 0.5664

* The table shows average predictive performance across all folds of each model after 10-fold cross-validation.

** In the case of the male model's performance on mn30_as, the highest results were achieved across all metrics
in one of the folds, with all indicators reaching 100%. However, considering that this could be indicative of
overfitting to the specific data configuration of the train and test datasets, the results from the second-highest
performing fold were reported instead.
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The program that we aim to develop for the constructed model is shown in Fig. 4 determines the probabilities, in
percentage, of classifying a patient's voice input into normal or aspiration during the inference stage. This is the
final output of the study.
 

Discussion
This study applied an efficient large-audio tagging model [20], which is known for its outstanding performance
in sound analysis, to predict the presence of postprandial dysphagia at two levels (normal and aspiration). It
demonstrates a high predictive performance, with the majority of the models achieving an AUC value of over
0.75, considering the diversity of people's voices. In particular, the mn30_as model, which had the highest
number of hyperparameters among the trained models, demonstrated an AUC of approximately 0.7879 in the
combined model and 0.7787 in the male model, indicating good performance in predicting dysphagia
aspiration. Additionally, all other predictive performance measures for the combined and male models yielded
high results, exceeding 70%.

Various studies on dysphagia aspiration have been conducted using non-invasive methods. The 3-ounce water
swallow test showed a sensitivity of 59–96.5% and specificity of 15–59% when compared with FEES and VFSS.
[24–26] The Gugging swallowing screen test had a sensitivity of 100% and a specificity of 50–69% in acute
stroke patients. [27] Sensitivity and specificity for dysphagia based on language and speech-related
dysfunctions were reported as follows: aphasia (36% and 83%, respectively), dysarthria (56% and 100%,
respectively), and a combination of variables (64% and 83%, respectively). [28] Dysphonia, dysarthria, gag reflex,
cough, and voice changes were used as diagnostic performance measures. [29] Other screening tools, such as
the food intake level scale (FOIS), modified Mann assessment of swallowing ability test, and volume-viscosity
swallow test (V-VST), etc., were also developed and subjected to performance validation. [16, 26, 30–37] While
predictive performance varies depending on the research techniques, all of them require expert intervention for
accurate diagnosis and monitoring, posing limitations on their applicability for everyday life monitoring. Efforts
to observe voice changes during dysphagia monitoring are ongoing. [11–14, 38, 39]

Most previous studies on voice analysis in patients with dysphagia have focused on analyzing frequency
perturbation measures (RAP, Jitter, PPQ, etc.), amplitude perturbation measures (Shimmer, APQ, etc.), and noise
analysis (NHR) to differentiate between high- and low-risk groups. [11–14, 38, 39] Additionally, vocal intensity
(MVI) and vocal duration measures (MPT) were used as voice analysis indicators. [38] Moreover, some studies
have analyzed the correlations between these measures and established clinical diagnostic indicators for
dysphagia, such as the penetration-aspiration scale (PAS), videofluoroscopic dysphagia scale (VDS), and
American speech-language-hearing association national outcome measurement system swallowing scale
(ASHA-NOMS). [38] Some studies have employed the Praat program to extract these sound parameters and
analyze each indicator, either using voice-only or combining voice with clinical data indicators, trained with
algorithms such as Logistic Regression, Decision Tree, Random Forest, SVM, GMM, and XGBoost. [12] Another
study reported the results of dysphagia prediction using specific phonation or articulation features trained using
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support vector machine (SVM), random forest, and other methods. [39] However, these studies have limitations
in that they only analyzed specific numerical indicators of voice and failed to analyze the overall voice itself.

Therefore, in this study, we trained a dysphagia prediction model using the entire voices of patients, represented
as mel-spectrograms. Our model design focused on noise removal, prediction performance, and light-weighting
for mobile integration. To reduce the noise from audio files, we implemented preprocessing steps from an
efficient large-scale audio tagging model, resulting in improved prediction performance. [20, 21] Regarding the
second consideration, we experimented with different models including the ResNet model, which is known for its
excellent performance in CNN image recognition. [40, 41] However, its accuracy was relatively low. We also
found that training the model solely on the Jitter, RAP, and Shimmer parameters did not yield stable results.
Considering the recent advancements in machine learning for sound analysis, we ultimately chose the current
learning model. Moving on to the third consideration, we focused on model light-weighting, to achieve real-time
dysphagia diagnosis, monitoring, and intervention in mobile or resource-constrained environments. We
converted the audio data from stereo to mono format, improving efficiency by eliminating the need for
simultaneous processing of the two channels and enhancing voice recognition accuracy. [42] Additionally, we
unified and compressed the files into mp3 format for real-time processing on mobile devices. [43, 44] Utilizing
the HDF5 data format provides faster loading, increased storage efficiency, and compatibility with various
programming languages. [45, 46] Throughout the study, we prioritized a compact model that occupied less
storage space and enabled fast prediction of speech impairments. Employing MobileNetV3, a light-weighting
and high-performance model, ensures the efficient execution of mobile devices. [47] We adapted the efficient
large-scale audio tagging model [20, 21] as a reference, tailored to our specific data environment.

This study developed a model to predict dysphagia - aspiration based on the postprandial voice. The expected
benefits of this study are as follows. First, by determining the occurrence of aspiration and providing clinicians
with more parameters through voice, it enhances the clinical utility compared to previous studies. Second, it is
anticipated that the diagnosis time for both outpatient and inpatient cases will be significantly reduced,
providing additional diagnostic parameters for a more accurate assessment of dysphagia. Third, this study is
expected to lay the groundwork for designing diagnostic, treatment, and management systems by integrating
them with future developments, such as a mobile application-based dysphagia meal guide monitoring system.

Limitations
This study has several limitations. First, owing to the limited availability of voice data for individuals with
dysphagia, we did not create a validation set, instead, we used a 9:1 training-to-testing data split (10-fold cross-
validation). Second, due to the limited number of recruited female aspiration subjects, the female model showed
lower performance compared with the combined model and male model. Third, voice data collection for healthy
individuals and patients with dysphagia occurred in different environments and with varying numbers of
participant, whereas the diet types were not standardized. Fourth, as a mel-spectrogram-based machine learning
model, we lacked characteristic parameter extraction, which is similar to conventional voice indicators. In future
studies, we aim to develop a more predictive model with better performance by recording a more diverse range
of voices and diet types in patients with dysphagia, and comparing voice changes before and after meals.

Conclusions
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This study suggests the potential of simple voice analysis as a supplementary tool for screening, diagnosing,
and monitoring dysphagia. Our high-performance postprandial voice-based prediction model highlights the
possibility of using voice-based technology for the diagnosis and management of dysphagia. By analyzing the
voice itself, this method allows for easier and outstanding analysis compared to traditional clinical evaluations
such as VFFS or FEES. Moreover, it empowers patients to record their voices at home, enabling self-monitoring
of aspirations in daily life, while providing clinical practitioners with valuable everyday data to track changes. By
identifying aspiration in patients' daily lives, this approach has the potential to improve patients’ quality of life
and enable the development of non-invasive, safer, and more effective intervention methods.
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Figure 1

Flowchart of the Dysphagia Voice Cohort
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Figure 2

Overview of Voice Data Preprocessing and Modeling
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Figure 3

ROC Curve for each prediction model

The pre-trained   models demonstrated higher performance compared to the non-pre-trained   models. Among
the four models, the mn30_as (pre-trained model) performed the   best on average. The ROC curve was plotted,
and the AUC (Area Under the   Curve) was calculated.
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Figure 4

Inference

After evaluating   one example of postprandial voice data that was not used during model   training, it was
observed that when classifying it as aspiration, the model   assigned a probability of 92.7%. The output window
displayed the results as   mentioned earlier.


