[1] D.F. Ollis, Contaminant degradation in water, Environ. Sci. Technol. 19 (1985) 480–484.
[2] D.F. Ollis, E. Pelizzetti, N. Serpone, Destruction of water contaminants, Environ. Sci. Technol. 25 (1991) 1522–1529.
[3] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemannt, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69–96.
[4] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting,Chem. Soc. Rev. 38 (2009) 253–278.
[5] A. Fujishima, K. Honda, Electrochemical photocatalysis of water at a semiconductor electrode, Nature 238 (1972) 37–38.
[6] L.Y. Chen, W.D. Zhang, B. Xu, Y.X. Yu, A facile hydrothermal strategy for synthesis of SnO2 nanorods-graphene nanocomposites for high performance photocatalysis, J. Nanosci. Nanotechnol. 12 (2012) 6921–6929.
[7] N.M. Mahmoodi, M. Arami, N.Y. Limaee, N.S. Tabrizi, Decolorization and aromatic ring degradation kinetics of Direct Red 80 by UV oxidation in the presenceof hydrogen peroxide utilizing TiO2 as a photocatalyst, Chem. Eng. J. 112 (2005)191–196.
[8] J. Nishio, M. Tokumura, H.T. Znad, Y. Kawase, Photocatalytic decolorizationof azo-dye with zinc oxide powder in an external UV light irradiation slurry photoreactor, J. Hazard. Mater. 138 (2006) 106–115.
[9] M.H. Zhou, J.G. Yu, S.W. Liu, P.C. Zhai, L. Jiang, Effects of calcination temperatures on photocatalytic activity of SnO2/TiO2 composite films prepared by an EPD method, J. Hazard. Mater. 154 (2008) 1141–1148.
[10] C.C. Wong, W. Chu, The direct photolysis and photocatalytic degradation of alachlor at different TiO2 and UV sources, Chemosphere 50 (2003) 981–987.
[11] X.T. Hong, Z.P. Wang, W.M. Cai, F. Lu, J. Zhang, Y.Z. Yang, N. Ma, Y.J. Liu, Visible- light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide, Chem. Mater. 17 (2005) 1548–1552.
[12] L. Kuai, B.Y. Geng, X.T. Chen, Y.Y. Zhao, Y.C. Luo, Facile subsequently light-induced route to highly efficient and stable sunlight-driven Ag–AgBr plasmonic photocatalyst, Langmuir 26 (2010) 18723–18727.
[13] X.B. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science 331 (2011)746–750.
[14] Y.P. Bi, S.X. Ouyang, N. Umezawa, J.Y. Cao, J.H. Ye, Facet effect of single-crystalline Ag3PO4 sub-micocrystals on photocatalytic properties, J. Am. Chem. Soc. 133 (2011) 6490– 6492.
[15] X. Xiao, R. Hao, M. Liang, X.X. Zuo, J.M. Nan, L.S. Li, W.D. Zhang, One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activites for the degradation of bisphenol-A, J. Hazard. Mater. 233–234 (2012) 122–130.
[16] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater. 8 (2009) 76–80.
[17] J. Hu, W. Cheng, S. Huang, D. Wu, Z. Xie, Shape memory surfaces, Appl. Phys. Lett. 89 (2006) 041912
[18] Q.J. Xiang, J.G. Yu, M. Jaroniec, Preparation and Enhanced Visible-Light Photocatalytic H2-Production Activity of Graphene/C3N4 Composites, J. Phys. Chem. C 115 (2011) 7355– 7363.
[19] S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine, Langmuir. 25 (2009) 10397–10401.
[20] S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation of Rhodamine B and Methyl Orange over Boron-Doped g-C3N4 under Visible Light Irradiation, Langmuir. 26 (2010) 3894–3901.
[21] G. Liu, P. Niu, C. Sun, S.C. Smith, Z. Chen, G.Q. Lu, H.-M. Cheng, Unique Electronic . Structure Induced High Photoreactivity of Sulfur-Doped Graphitic C3N4, J. Am. Chem. Soc.132 (2010) 11642–11648.
[22] Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Visible-light-driven type II heterostructures and their enhanced photocatalysis properties: a review, Nanoscale 5 (2013) 8326-8339.
[23] W. Liu, M. Wang, C. Xu, S. Chen, Facile synthesis of g-C3N4/ZnO composite with enhanced visible light photooxidation and photoreduction properties, Chem. Eng. J. 209 (2012) 386-393.
[24] C. Wang, W. Zhu, Y. Xu, H. Xu, M. Zhang, Y. Chao, S. Yin, H. Li, J. Wang, Preparation of TiO2/g-C3N4 composites and their application in photocatalytic oxidative desulfurization, Ceram. Int. 40 (2014) 11627-11635.
[25] Y. Zang, L. Li, X. Li, R. Lin, G. Li, Synergistic collaboration of g-C3N4/SnO2 composites for enhanced visible-light photocatalytic activity, Chem. Eng. J. 246 (2014) 277-286.
[26] Y. Ji, J. Cao, L. Jiang, Y. Zhang, Z. Yi, g-C3N4/BiVO4 composites with enhanced and stable visible light photocatalytic activity, J. Alloys Compd. 590 (2014) 9-14.
[27] Z. Jin, N. Murakami, T. Tsubota, T. Ohno, Complete oxidation of acetaldehyde over a composite photocatalyst of graphitic carbon nitride and tungsten(VI) oxide under visible- light irradiation, Appl. Catal. B Environ. 150-151 (2014) 479-485.
[28] R.M. Mohamed, Synthesis and characterization of AgCl@graphitic carbon nitride hybrid materials for the photocatalytic degradation of atrazine, Ceram. Int. 41 (2015) 1197-1204.
[29] H. Xu, J. Yan, Y. Xu, Y. Song, H. Li, J. Xia, C. Huang, H. Wan, Novel visible-light driven AgX/graphite-like C3N4 (X = Br, I) hybrid materials with synergistic photocatalytic activity, Appl. Catal. B Environ. 129 (2013) 182-193.
[30] Z. Xiu, H. Bo, Y. Wu, X. Hao, Graphite-like C3N4 modified Ag3PO4 nanoparticles with highly enhanced photocatalytic activities under visible light irradiation, Appl. Surf. Sci. 289 (2014) 394-399.
[31] J.L. Zhang, Z. Ma, Flower-like Ag3VO4/BiOBr n-p heterojunction photocatalysts with enhanced visible-light-driven catalytic activity, Mol. Catal. 436 (2017) 190–198.
[32] M. Yan, Y. Wu, F.F. Zhu, Y.Q. Hua, W.D. Shi, The fabrication of a novel Ag3VO4/WO3 heterojunction with enhanced visible light efficiency in the photocatalytic degradation of TC, Phys. Chem. Chem. Phys. 18 (2016) 3308–3315
[33] M. Parthibavarman, S. Sathishkumar, S. Prabhakaran, M. Jayashree, R. BoopathiRaja, High visible light-driven photocatalytic activity of large surface area Cu doped SnO2 nanorods synthesized by novel one-step microwave irradiation method, J. Iran. Chem. Soc. 15
(2018) 2789-2801.
[34] M. Sumathi, A. Prakasam, P. M. Anbarasan, High capable visible light driven photocatalytic activity of WO3/g-C3N4 hetrostructure catalysts synthesized by a novel one step microwave irradiation route, J. Mater. Sci. Mater. Electron. 30 (2019) 3294–3304
[35] M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, K. Thavamani, A novel microwave synthesis of nanocrystalline SnO2 and its structural optical and dielectric properties, J. Mater. Sci. Mater. Electron. 25 (2014) 730-735.
[36] J. Zhu, P. Xiao, H. Li, S.A.C. Carabineiro, Graphitic carbon nitride: synthesis, properties, And applications in catalysis, ACS Applied Materials & Interfaces 6 (2014) 16449–16465.
[37] M. Mousavi, A. Habibi-Yangjeh, Ternary g-C3N4/Fe3O4/Ag3VO4 nanocomposites: novel magnetically separable visible-light-driven photocatalysts for efficiently degradation of dye pollutants, Mater. Chem. Phys. 163 (2015) 421–430.
[38] M. Parthibavarman, S. Sathishkumar, S. Prabhakaran, M. Jayashree, R. BoopathiRaja, High visible light-driven photocatalytic activity of large surface area Cu doped SnO2 nanorods synthesized by novel one-step microwave irradiation method, J. Iran. Chem. Soc. 15 (2018) 2789-2801
[39] M. Parthibavarman, M. Karthik, P. Sathishkumar, R. Poonguzhali, Rapid synthesis of novel
Cr-doped WO3 nanorods: an efficient electrochemical and photocatalytic performance, Iran. Chem. Soc. 15 (2018) 1419-1430.
[40] R. BoopathiRaja, M. Parthibavarman, Hetero-structure arrays of MnCo2O4 nanoflakes@ nanowires grown on Ni foam: Design, fabrication and applications in electrochemical energy storage, J. Alloy. Compd. 811 (2019) 152084
[41] R. BoopathiRaja, M. Parthibavarman, A. Nishara Begum, Hydrothermal induced novel CuCo2O4 electrode for high performance supercapacitor applications. Vacuum. 165 (2019) 96-104
[42] M. Sun, Q. Zeng, X. Zhao, Y. Shao, P.G. Ji, C.Q. Wang, T. Yan, B. Du, Fabrication of novel g-C3N4 nanocrystals decorated Ag3PO4 hybrids: enhanced charge separation and excellent visible-light driven photocatalytic activity, J. Hazard Mater. 339 (2017) 9–21.
[43] H. Katsumata, T. Sakai, T. Suzuki, S. Kaneco, Highly efficient photocatalytic activity of g-C3N4/Ag3PO4 hybrid photocatalysts through Z-scheme photocatalytic mechanism under visible light, Ind. Eng. Chem. Res. 53 (2014) 8018–8025.
[44] X. Yang, Z. Chen, J. Xu, H. Tang, K. Chen, Y. Jiang, Tuning the morphology of g-C3N4 for improvement of Z-scheme photocatalytic water oxidation, ACS Appl. Mater. Interfaces 7 (2015) 15285–15293
[45] C. Liu, J. Li, L. Sun, Y. Zhou, C. Liu, H. Wang, P. Huo, C. Ma, Y. Yan, Visible-light driven photocatalyst of CdTe/CdS homologous heterojunction on N-rGO photocatalyst for efficient degradation of 2,4-dichlorophenol, J. Taiwan Inst. Chem. E. 93 (2018) 603–615.
[46] Z. Wang, J. Zhang, J. Lv, K. Dai, C. Liang, Plasmonic Ag2MoO4/AgBr/Ag composite excellent photocatalytic performance and possible photocatalytic mechanism, Appl. Surf. Sci. 396 (2017) 791–798.